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Abstract

MicroRNAs play extensive roles in cellular development. Analysis of the microRNA expression pattern during intestinal cell
proliferation in early life is likely to unravel molecular mechanisms behind intestinal development and have implications for
therapeutic intervention. In this study, we isolated mouse intestinal crypt cells, examined the differences in microRNA
expression upon IGF-1 stimulated proliferation and identified miR-103 as a one of the key regulators. Mouse intestinal crypt
cells were cultured and treated with IGF-1 for 24 h. MicroRNA microarray showed that multiple microRNAs are regulated by
IGF-1, and miR-103 was the most sharply down-regulated. Expression of miR-103 in mouse intestinal crypt cells was
confirmed by real-time Q-PCR. Sequence analyses showed that, among the 1040 predicted miR-103 target genes, CCNE1,
CDK2, and CREB1 contain complementary sequences to the miR-103 seed region that are conserved between human and
mouse. We further demonstrated that miR-103 controls the expression level of these three genes in mouse crypt cells by
luciferase assay and immunoblotting assay. Taken together, our data suggest that in mouse intestinal crypt cells, miR-103 is
part of the G1/S transition regulatory network, which targets CCNE1, CDK2, and CREB1 during IGF-1 stimulated proliferation.
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Introduction

The small intestinal epithelium is a major site for nutrient

absorption and also serves as an important barrier to prevent

exogenous pathogens from entering the body. The small intestine is

also a highly dynamic and well-structured tissue which compart-

mentalizes into villi and the crypts of Lieberkuhn (crypts). The

intestine regenerates itself throughout the life as the intestinal

epithelial cells regularly shed off from the villi. This continuous cell

renewal process is achieved by pluripotent epithelial stem cells

which populate the specialized proliferative units known as the

crypts. The crypts are localized at the intervillus region, and formed

as the result of epithelial invaginations towards the basolateral side

of the epithelium. Infancy is a critical period to establish the

proliferative potential of the crypts, and thus the maintenance of the

structural and functional homeostasis in the intestine. Rodent

studies have revealed that crypt structures form during the first few

days after birth, and continue to develop during the next several

weeks. Recently, Cummins et al. [1] found that crypt fission (also

called branching, which is a process of physiologic mechanism of

crypt reproduction) is present predominantly during infancy, but

not during later developmental stages, further supporting the

significance of infancy for crypt development.

Growth factors are known to be present in breast milk [2,3,4],

and have been investigated in their capacities to enhance intestinal

growth. Transforming growth factor alpha, hepatocyte growth

factor [5], and epidermal growth factor [6] are able to significantly

stimulate crypt cell proliferation as measured by 3H-thymidine

incorporation assay. Crypt cell migration and cell proliferation

increased after mucosal injury in rat crypt IEC-6 cell in response

to insulin like-growth factor 1 [7]. In addition, tyrosine

phosphorylation of MAPK, MAPK-dependent increase in p21

(waf1/cip1), c-Myc, and c-Fos expression were found to be

upstream events in growth factor induced crypt cell proliferation

[6,8,9]. This intricate cellular crosstalk occurred during intestinal

cell growth, and is likely to involve several signaling pathways

mediated via transcription factors, extracellular matrix compo-

nents, and cytokines. Understanding the molecular mechanisms

regulating crypt proliferation may help the discovery of more

targeted strategies to promote intestinal growth as well as defining

the pathologies of a number of human gastrointestinal diseases,

including infection, irritable bowel syndrome, and colorectal

cancer associated with aberrant patterns in crypt cell proliferation

[10,11].

MicroRNAs (miRNAs) are a new class of small non-coding RNAs

emerged over the past several years, functioning as critical

regulators of gene expression. MiRNAs are 19–25 nucleotides in

length, highly conserved across species, and have different

complementarity with their corresponding mRNAs. MiRNAs

negatively regulate gene expression post-transcriptionally by

repressing translation or targeting mRNA degradation [12].

MiRNAs have been shown to play crucial roles in biological

processes, including the cell cycle and apoptosis [13,14]. Our recent

data revealed that miR-30e is a downstream target of beta-catenin
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during intestinal crypt cell differentiation [15]; Hino et al. showed

that miR-194 expression was induced by HNF-1alpha during

intestinal epithelial cell differentiation [16], suggesting active roles

for miRNAs during intestinal development. Despite these findings,

very few mechanistic studies have been performed to examine

functional roles of miRNAs in intestinal cell proliferation.

The objective of this study was to use isolated mouse small

intestinal crypt cells to observe functional expression of miRNAs

during the IGF-1 induced intestinal crypt cell proliferation, and to

identify individual miRNAs associated signaling molecules in-

volved in this process.

Materials and Methods

Mouse intestinal crypt cell culture
This study complied with the Guide for the Use and Care of

Laboratory Animals and the protocol was approved by the

Institutional Animal Care and Use Committee at University of

California, Davis, which is accredited by the American Association

for the Accreditation of Laboratory Animal Care (AAALAC).

Virgin 5–6 weeks old C57BL/6 mice were obtained from Charles

River Laboratories and fed control chow diet upon arrival. Mice

were maintained in stainless-steel hanging cages on a 12:12-h

light-dark cycle. Female mice were mated overnight, and the day

pups were born were considered postnatal day (PD) 0. Animals

aged PD10 were killed by decapitation.

Small intestine crypt cell isolation was performed according to

the method of Sato et al. [17] with modifications. Briefly, small

intestine was quickly isolated and the attached fat was removed.

The longitudinally opened small intestine was washed with cold

16PBS (all PBS was DEPC treated, unless otherwise noted), then

transferred to a 50 ml tube with cold PBS. The intestine was

washed until the supernatant was clear. The intestine was further

washed with 2 mM EDTA in PBS at 4uC for 45 min. The small

intestine was resuspended with new PBS, supernatant was

discarded, this step was repeated and the crypt enriched portion

of fractions 2–4 was used.

The crypt fraction was diluted with Advanced DMEM/F12

(ADF) and centrifuged at 12006 g for 5 min. The pellets were

resuspended in 15 ml ADF and collected in a 50 ml falcon tube

after passing through a 70 mm cell strainer (Fisher). The tube was

centrifuged at 6006 g for 2 min to remove single cells. The ADF

wash was repeated 3 times. The cell pellets were resuspended with

crypt culture media (Advanced DMEM/F12, GlutaMax 1:100,

Hepes 10 mM, Penicillin/Streptomycin 1:100, N2 supplement

1:100, B27 supplement, retinoic acid free 1:50, mouse recombi-

nant EGF 50 ng/ml), mouse recombinant noggin 100 ng/ml,

human recombinant R-spondin1 500 ng/ml, and N-Acetylcyste-

ine 1 mM). The number of crypts was calculated using Trypan

Blue exclusion assay.

IGF-1 treatment
Crypt cells were seeded at 50% confluency per well in 6-well

plate prior to treatment with 20 ng/ml IGF-1 (R&D Systems), and

the control group was treated with 16 PBS alone. Cells were

collected as follows: 24 h after treatment for BrdU Cell

Proliferation ELISA (Roche) and immunoblotting analysis; total

RNAs were collected every 3 h during a 24 h treatment period for

miRNA analysis.

Cell culture
IEC-6 cells were maintained as described by Liao and

Lönnerdal [15]. HEK293 cells were maintained as described in

[18].

miR-103 mimic or LNA inhibitor transfection was performed as

previousely described [18]. For immunoblotting analysis, IEC-6

cells were seeded at 50% confluency per well in 6-well plate the

day prior to transfection with 50 nM miR-103 inhibitor

(Dharmacon). Cells were collected 48 h after transfection; for

BrdU incorporation assay, IEC-6 cells were seeded at 50%

confluency per well in 96-well plate 6 h prior to transfection with

50 nM miR-103 mimic (Dharmacon); 24 h after transfection, the

cells were treated with 20 ng/ml IGF-1, and cell proliferation

assay was performed 24 h after IGF-1 treatment.

Bioinformatics analysis
The mature sequence of miR-103 (59-AGCAGCAUUGUA-

CAGGGCUAUGA-39) was retrieved from the miRBase Sequence

Database, release 14 (http://microrna.sanger.ac.uk/sequences/),

and mRNA 39UTRs of CCNE1, CDK2, and CREB1 from

human and mouse were aligned with miR-103 sequence using the

ClustalW program (http://www.ebi.ac.uk/Tools/clustalw/index.

html).

The miR-103 gene targets were predicted from the MicroCosm

Targets Version 5 (http://www.ebi.ac.uk/enright-srv/microcosm/

cgi-bin/targets/v5/search.pl), and the 1040 resulted genes were

loaded onto the Ingenuity Pathways Analysis software (IPA version

7.6, http://www.ingenuity.com). Core Analysis was performed to

examine biological networks potentially associated with these

miRNAs. Futhermore, Target Scan version 5.1 (www.targetscan.

org) was used to scan for seed matches between the miR-103 seed

region and the predicted gene.

MicroRNA array
RNA integrities were examined on Bioanalyzer for quality

control at the University of California, Davis Genome Center. For

analyzing miRNA expression, miRNA microarray was performed

at the J. David Gladstone Institute Genomics Core facility,

University of California, San Francisco (http://www.gladstone.

ucsf.edu/gladstone/php/?sitename = genomicscore).

300 ng of each sample was labeled with Cy5/Cy3 using

miRCURY LNA microRNA array Power Labeling kit (Exiqon).

Hybridization SureHyb chamber kit and Gasket slide kit (Agilent)

were used to hybridize the labeled RNA for 18 h to Exiqon

miRCURY LNA miRNA array V.11.0 (miRBase Sequence

Database, http://microrna.sanger.ac.uk/sequences, release 11.0).

This array contains 9360 probes, 3300 of which represent 825

human miRNAs with 4 duplicate probes per miRNA, additional

1400 probes for miRNA in mouse or rat and 472 probes for miRNA

in human/mouse viruses. In addition, there is a variety of control

and other probes: 1640 empty, 476 spike_control, 28 negative

controls, 12 U6-snRNA, 60 hsa_SNORD, 1728 miRPlus, 4

5SrRNA, and 240 Hy3. For each group, 3 arrays were run, and

1 array was dye swapped. Arrays were scanned on an Axon

GenePix 4000B scanner, and GPR files containing fluorescent ratios

(sample/control) were generated using GenePix Pro 6.0 software.

Vector construction
A 532 bp fragment of the human CCNE1 mRNA 39UTR

(corresponding to nt 1406–1937 of the Entrez PubMed transcript

BC035498) was PCR amplified from a pOTB7 vector containing

CCNE1 full length cDNA (Open Biosystems); a 1426 bp fragment

of the human CREB1 mRNA 39UTR (corresponding to nt 1180–

2606 of the Entrez PubMed transcript BC095407) was PCR

amplified from a pBluescriptR vector containing CREB1 full

length cDNA (Open Biosystems); The PCR products were cloned

into pGL3-control luciferase reporter vector (Promega) via an XbaI

restriction site, immediately downstream of the luciferase gene; a
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38 bp fragment of the human CDK2 mRNA 39UTR (corre-

sponding to nt 1531–1568 of the Ensembl transcript BC093646)

was synthesized (Genscript Inc. USA), and the gene was then

directly annealed to pGL3-control luciferase reporter vector at the

XbaI restriction site.

A 530 bp fragment of the mouse CCNE1 mRNA 39UTR

(corresponding to nt 1426–1955 of the Entrez PubMed transcript

NM_007633.2) was PCR amplified from a pCMV-SPORT6.1

vector containing mouse CCNE1 full length cDNA (imaGenes); a

1160 bp fragment of mouse CDK2 mRNA 39UTR (corresponding

to nt 1227–2386 of the Entrez PubMed transcript BC005654) was

PCR amplified from pCMV-SPORT6 vector containing mouse

CDK2 full length cDNA (Open Biosystems); a 899 bp fragment of

mouse CREB1 mRNA 39UTR (corresponding to nt 1143–2041 of

the Entrez PubMed transcript BC021649) was PCR amplified from

pCMV-SPORT6 vector containing mouse CREB1 full length

cDNA (Open Biosystems). The PCR products were cloned into

pGL3-control luciferase reporter vector (Promega) via an XbaI

restriction site, immediately downstream of the luciferase gene.

Luciferase assay
For luciferase assays, HEK293 cells were seeded at 70%

confluency per well in 96-well plate 6 h prior to transfection with

4 ng/ml luciferase expression construct and 12.5–80 nM miR-103

mimic (Dharmacon). Mock transfected cells were transfected with

luciferase expression construct alone. cel-miR-67 (Dharmacon)

served as a negative control for miR-103 mimic. Luciferase activity

was measured 24 h after transfection using the Dual Glo

Luciferase Assay System (Promega), and pGL4.73[hRluc/SV40]

vector (Promega) served as internal control.

Real-time Q-PCR
Total RNA from cultured mouse small intestinal crypt cells was

isolated using miRNeasy Mini Kit (Qiangen) and diluted to 2 mg/

ml in DEPC-treated nuclease free water (Ambion Inc.).

For miR-103 assay, cDNA was generated from 2 mg RNA using

TaqManH MicroRNA Reverse Transcription Kit (Applied

Biosystems) according to the manufacturer’s protocol. The mature

miR-103 gene specific stem-loop RT primer for reverse transcrip-

tion was designed according to miRNAs sequences listed in the

Sanger miRBase (http://microrna.sanger.ac.uk/sequences/). The

pri-miR-103 assay kit was purchased from Applied Biosystems.

The primers used for b-actin were forward 59-ACTGCTCTGGC-

TCCTAGCAC-39, reverse 59-ACATCTGCTGGAAGGTG-

GAC-39. The RT reaction and PCR reaction were performed as

previously described [18].

Each sample was analyzed in triplicate and normalized to

snoRNA202 for mature miR-103 and b-actin for pri-miR-103 using

the following equation: DCtGENE = CtGENE-CtsnoRNA202/b-actin. The

fold change, relative to the control group was calculated using the

following equation: 2(DDCtGENE) where DDCtGENE =DCtGENE of

snoRNA202/b-actin - DCtGENE of each well.

Immunoblotting analysis
Mouse intestinal crypt cells before and after IGF1 treatment

were homogenized in RIPA buffer (25 mM Tris-HCl pH 7.6,

150 mM NaCl, 1% NP-40, 1% Sodium deoxycholate and 0.1%

SDS) containing 16 complete EDTA-free protease inhibitor

(Roche). 50 mg proteins were electrophoresed through 10%

polyacrylamide gel, transferred onto nitrocellulose membrane at

350 mA for 60 min, and blocked overnight in 16 PBS/0.1%

Tween-20 (PBST) with 5% non-fat milk at 4uC.

Bands were detected using Super Signal Femto chemilumines-

cent reagent (Pierce) and quantified using the Chemi-doc gel

quantification system (Bio-Rad). All data were normalized to

mouse b-actin.

Data analysis
GPR files were read into R/Bioconductor [19] using the marray

package. GenePix flagged spots were removed from subsequent

analysis, and only unflagged human, mouse and rat probes were

used for normalization and subsequent analysis. M (log2 ratios) of

Cy5 to Cy3 signals were calculated for each array, and normalized

by print tip loess normalization [20,21] using only unflagged spots.

For each miRNA with more than 1 unflagged probe, the median

of normalized M of the replicate probes was taken as its summary

value for the miRNA in each array. The summarized M of the

samples/array of each experiment was then used in moderated t-

statistics and p-value calculation using the limma package in R/

Bioconductor [22,23] with adjustment for false discovery rate

using the Benjamini-Hochberg method [24].

All other data were analyzed by Prism (Prism GraphPad Software).

The difference between treatment group and control were tested by

two-tailed Student’s t test. Data are shown as means 6 SEM of three

independent experiments. Differences were considered significant

when P,0.05.

Results

IGF-1 stimulates proliferation of mouse small intestinal
crypt cells

By adapting the crypt culture protocol from Sato et al. [17], we

were able to isolate mouse small intestinal crypt cells. The cells

Figure 1. Mouse small intestinal crypt cells express PCNA. PCNA
expression was analyzed by immunoblotting. 50 mg total proteins from
extracted mouse small intestinal crypt cells and cultured rat intestinal
crypt cell line IEC-6 were loaded. PCNA was expressed in both cell types
and with significantly higher abundance in mouse small intestinal crypt
cells (P,0.01) than in IEC-6 cells. b-actin served as a loading control.
Values are means 6 SEM run in triplicates.
doi:10.1371/journal.pone.0012976.g001
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attach to the culture dish about 3 h after seeding. PCNA is highly

expressed in the isolated crypt cells (Figure 1), and rat crypt IEC-6

cells served as a reference for PCNA expression. During 24 h of

treatment, IGF-1 stimulated crypt cell proliferation rate

(100.0%637.1% vs 178.9%612.5%, P,0.05) by the BrdU

incorporation assay (Figure 2).

Identification of microRNAs differentially regulated
during IGF-1 stimulated crypt cell proliferation

We generated a microarray containing 1293 nonredundant

human, rodent, and virus miRNA species to determine expression

levels of mature miRNAs purified from mouse small intestinal

crypt cells before and after 20 ng/ml IGF-1 treatment. The raw

data are deposited in Gene Expression Omnibus (GEO), with

accession number GSE20133. Among all screened individual

miRNAs, 44 miRNAs were significantly regulated, including 18

significantly down-regulated, and 26 significantly up-regulated

upon IGF-1 treatment (Figure 3).

miR-103 is directly involved in IGF-1 stimulated mouse
intestinal cell proliferation

MA plot showed that miR-103 was the most substantially

reduced miRNA during IGF-1 stimulated crypt cell proliferation

(Mean log2 ratio of 21.176) (Figure 4A). Kinetic analysis by real-

time Q-PCR confirmed the presence of mature miR-103

Figure 2. IGF-1 stimulates mouse small intestinal crypt cell
proliferation. Crypt cells in 96-well plate were treated with 20 ng/ml
IGF-1; the control group was grown in the crypt cell growth medium
alone. After treatment for 24 h, rate of cell proliferation was measured
by Brdu incorporation assay. IGF-1 significantly stimulated proliferation
of the crypt cells (P,0.05). Values are means 6 SEM run in triplicates;
asterisks indicate significant differences between IGF-1 treatment and
control groups.
doi:10.1371/journal.pone.0012976.g002

Figure 3. Forty-four miRNAs were significantly correlated with mouse crypt cell proliferation upon IGF-1 treatment. Hierarchical
clustering analysis was performed using Euclidian distance. Each row represents relative levels of expression for a significantly regulated single
microRNA and each column represents the relative expression level of a single replicate relative to control (P,0.01). Colors on the figure represent
the scaled fold-change between samples within a gene. Control group was set to 0.
doi:10.1371/journal.pone.0012976.g003

Intestine Cell Grow Regulation
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(Figure 4B) and pri-miR-103 (Figure 4C) in small intestinal crypt

cells, and also revealed that during the first 6 h of IGF-1

treatment, expression of mature miR-103 and pri-miR-103 was

rapidly reduced to 39% and 16% of initial levels, respectively

(P,0.01). Mature miR-103 then rebounded to 57% of the level

prior to treatment (P,0.01), while pri-miR-103 expression was

maintained at ,25% of the level prior to treatment (P,0.01).

Furthermore, IGF-1 stimulated cell proliferation in IEC-6 cells

was significantly inhibited by overexpression of miR-103

(211%617% vs 140%65%, P,0.05) (Figure 5).

Identification of miR-103 target genes in mouse small
intestinal crypt cells

We retrieved the predicted 1040 target genes of miR-103 from

the miRBase target database, and loaded them onto the Ingenuity

Pathway Analysis software (IPA version 7.6). We were then able to

identify cellular pathways affected by IGF-1 treatment of crypt

cells. Interestingly, among the 5 top ranked molecular networks,

‘‘cell cycle, cell death’’ had the highest score; Remarkably, among

the 5 top ranked biofunctions, ‘‘cellular growth and proliferation’’

involved 147 molecules, 1/3 of the total number of molecules.

CCNE1 as a predicted target was the top ranked molecule with

the lowest exponential value of 8.49E-09. We then used Target

Scan to screen the target genes, focusing on the cell cycle and cell

death regulation. Importantly, we identified CCNE1, CDK2, and

CREB1 as critical components during the cell cycle process. We

then manually aligned the mRNA 39UTR and the miR-103 seed

region (Figure 6A), which were found to be highly matched for

both human and mouse genes.

We explored whether miR-103 could affect the identified gene

targets through interaction with the mRNA 39UTR. In HEK293

cells, co-transfection with miR-103 mimic could repress the

luciferase activity generated by luciferase vectors containing the

mRNA 39UTRs of CCNE1, CDK2, CREB1 of human (Figure 6B)

and mouse (Figure 6C) origin in a dose dependent manner, clearly

indicating direct binding between the miRNA sequence and the

genes. In comparison, the negative control miRNA, cel-miR-67,

did not result in any significant reduction of luciferase activity. As

Figure 4. miR-103 expression analysis in IGF-1 stimulated mouse small intestinal crypt cells. (A) microrarray analysis of total miRNA
expression in crypt cells after stimulation with IGF-1 for 24 h. The MA plot shows the averaged and background-subtracted fold change on a log2
scale (Y axis) and average expression intensity (X axis) of each miRNA on both channels for Cy-3 labeled control and Cy-5 labeled treated cells and
their dye-swaps. Each dot or triangle represents one miRNA probe. Arrow indicates miR-103 probe, which is 44.26% of relative control intensity over
the course of 24 h. (B, C) real-time Q-PCR analysis of mature miR-103 (B) and pri-miR-103 expression (C) during 24 h IGF-1 treatment in crypt cells.
Data were normalized to snoRNA-202 levels for mature miR-103 and b-actin for pri-miR-103. Values are means 6 SEM run in triplicates, letters indicate
significant differences between time points.
doi:10.1371/journal.pone.0012976.g004

Figure 5. miR-103 is directly involved in IGF-1 stimulated crypt
cell proliferation. IEC-6 cells in 96-well plate were transfected with
50 nM miR-103 mimic before treated with 20 ng/ml IGF-1. The control
group was cultured in growth media or treated with IGF-1 alone. Cell
proliferation was measured by BrdU incorporation assay. Values are
means 6 SEM run in triplicates. Letters indicate significant differences
between IGF-1 treatment and control groups.
doi:10.1371/journal.pone.0012976.g005
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expected, in IEC-6 cells, miR-103 knock down by a LNA

oligonucleotide resulted in marked up-regulation of the aformen-

tioned gene products (Figure 6D) (1.4360.13 vs 1.0060.26 for

CCNE1, P,0.05; 1.6360.13 vs 1.0060.13 for CDK2, P,0.01;

1.6260.10 vs 1.0060.25 for CREB1, P,0.05), presumably

because of a decrease in miR-103 mediated mRNA inhibition or

degradation.

CCNE1, CDK2, and CREB1 are directly involved in mouse
intestinal cell proliferation stimulated by IGF-1

To examine whether the miR-103 targets are involved in IGF-1

stimulated mouse intestinal cell proliferation, immunoblotting

analyses were performed on the crypt cells before and after IGF-1

treatment. As shown in Figure 7A, IGF-1 significantly upregulated

CCNE1, CDK2, and CREB1 protein expression. In addition,

IGF-1 stimulated cell proliferation of IEC-6 cells was significantly

inhibited by siRNA of these genes (Figure 7B).

Discussion

IGF-1 is a 7.5 kD polypeptide consisting of 70 amino acids, and

found to be present in human milk [25]. In the gastrointestinal

tract, the IGF-1 signaling pathway is initiated by the interaction

between cell surface IGF-1 receptors, which are most abundant at

the basolateral side of the crypt. IGF-1 is a potent stimulator of

intestinal crypt cellular growth, and has been used as a therapeutic

approach to facilitate the intestinal repair process in gastrointes-

tinal disorders, such as enteritis and IBD [26]. However, few

investigations have examined the molecules and signaling

pathways involved in the crypt growth under normal conditions.

MiRNAs are a class of small regulatory molecules which critically

affect mRNA translation in a sequence specific manner. It has

been shown that miRNAs control the expression of genes related

to cellular development; however, to date miRNA expression in

small intestinal proliferative unit crypts has not been studied and

its role in crypt proliferation remains to be determined. In this

Figure 6. CCNE1, CDK2, and CREB1 are direct targets of miR-103 in mouse small intestinal crypt cells during IGF-1 stimulation. (A)
sequence alignment between miR-103 seed region and the seed matches on CCNE1, CDK2, and CREB1 mRNA 39UTR region. The analyses were
performed using the miRBase target database. The line indicates conserved seed match (A–T, C–G) in human and mouse, whereas the dot indicates
seed match in one of the two species. (B, C) miR-103 directly binds and represses CCNE1, CDK2, and CREB1 mRNA through 39UTR. pGL3-control
luciferase vectors containing the mRNA 39UTR of respective genes of human (B) or mouse (C) origin were co-transfected with the indicated amount of
miR-103 mimic in HEK293 cells, and luciferase activity was analyzed 24 h post-transfection. The structurally unrelated miRNA cel-miR-67 served as
negtive control. (D) CCNE1, CDK2, and CREB1 protein expression were examined in IEC-6 cells after transfection with 50 nM miR-103 inhibitor.
Scramble (scr) miRNA transfected cells served as control. Values are means 6 SEM run in triplicates, and letters indicate significant differences
between treatment groups and control.
doi:10.1371/journal.pone.0012976.g006
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study, we successfully cultured mouse intestinal crypt cells during a

24 h period and confirmed targeting of the CREB1 transcription

factor, and CCNE1/CDK2 by miR-103 during cell cycle

progression, implicating a role for miRNAs in intestinal growth.

There are some limited reports on intestinal epithelial miRNA

expression. Takada et al. [27] showed high abundance of miR-143

and miR-194 in mouse small intestine and Hino et al. [16,28]

further showed induction of miR-194 by HNF-1 during

differentiation of intestinal epithelial Caco-2 cells. We used a

sensitive model for stimulating intestinal crypt cell proliferation by

a growth factor, and obtained not only the first extensive mouse

intestinal crypt cell miRNA profiles, but also the differentially

expressed miRNA species during cell proliferation. Our screening

identified a total of 233 microRNAs from mouse small intestinal

crypt cells, and showed that crypt cells have dramatically different

miRNA profiles upon IGF-1 stimulation. We performed real-time

Q-PCR analysis to monitor the expression of some of these

intestinal miRNAs, from which we confirmed two down-regulated

miRNAs, miR-103 and miR-17. No statistically significant

regulations were found for miR-143 or miR-194.

The miR-103 family is found in 23 species, and comprised of 2

isoforms: miR-103-1 located on human chromosome 5q34 and

miR-103-2 located on human chromosome 20p13 [29,30,31].

Interestingly, the long arm of chromosome 5 (5q) is a region

associated with the risk of developing the gastrointestinal disorders

of Crohn’s disease and IBS (Genetics Home Reference, http://

ghr.nlm.nih.gov/). miR-103 has also been shown to stimulate

adipogenesis that accelerates fat cell proliferation, and is down-

regulated in obesity [32].

Remarkably, among predicted gene targets for miR-17 were

WEE1, CCNA1, E2F5, MCM4, RAD51, and CABLES1, which

are critically involved in cell cycle progression. For example,

WEE1 is a key cell cycle regulator by the inhibiting Cdc2 at the

G2/M transition, coordinating cell cycle and cell sizes; a decrease

in WEE1 leads to smaller daughter cells and an increase in WEE1

prevents cells from entering mitosis [33]. CCNA1 belongs to the

cyclin family, and binds to important cell cycle regulators such as

E2F, Rb, CDK2 and p21, but its abundance in the intestine is low

[34]. Ingenuity Pathway Core Analysis of miR-17 showed that cell

cycle, DNA replication, recombination, repair, and cancer scored

34, being the second highest identified network. The G2/M

transition of the cell cycle had a P-value of 7.81-E02, being one of

the most significantly affected cellular processes.

In this report, we examined whether miR-103 can bind and

affect the predicted target mRNAs through mRNA 39UTR

interactions. Accordingly the full-length mRNA 39UTRs of

CCNE1, CDK2 and CREB1 were individually cloned into a

reporter vector, downstream of a firefly luciferase cDNA. The

human homologue of the mRNA 39UTR was used, and

computational approaches (Figure 6A) predicted that there is an

8-mer seed match between miR-103 and mouse CREB1/CDK2,

while there is a 7-mer seed match between miR-103 and the

human homologue; there is a 7-mer seed match between miR-103

and mouse CCNE1 mRNA 39UTR, and an 8-mer seed match

between miR-103 and the human homologue. As seen in

Figures 6B and Figure 6C, in HEK293 cells, all vectors containing

the 39UTRs of CCNE1, CDK2, and CREB1 displayed dose-

dependent light emission reduction upon co-transfection with

increasing miR-103 mimic, indicating the presence of a direct

binding site for miR-103. The CCNE1 vector displayed a more

sensitive response to the miR-103 mimic, possibly because of

higher percentage seed match to the human homologue.

Immunoblotting of IEC-6 cells demonstrated that CCNE1,

CDK2, CREB1 are induced at the protein level upon miR-103

inhibition, further supporting an effect of miR-103 regulation on

these genes.

CCNE1 is a member of the cyclin family which is characterized

by a dramatic periodicity in protein expression throughout the cell

cycle [35]. CDK2, CDK4, and CDK6 are the active kinases

controlling G1/S transition in mammals. CCNE1 forms a

complex with CDK2 and functions as a serine/threonine kinase

regulatory subunit, which is indispensible for cell cycle G1/S

progression, peaking at the G1-S phase boundary. [36,37]. Direct

functional evidence for CCNE1 is provided by the microinjection

Figure 7. CCNE1, CDK2, and CREB1 are directly involved in IGF-1 stimulated crypt cell proliferation. (A) immunoblotting analyses of
CCNE1, CDK2, and CREB1 protein in mouse small intestinal crypt cells with or without IGF-1 treatment for 24 h. Data were normalized to b-actin.
Values are means 6 SEM run in triplicates, asterisks indicate significant differences between control and IGF-1 treated cells. (B) CCNE1, CDK2, and
CREB1 proteins were knocked-down by siRNA in IEC-6 cells before treated with IGF-1. Cell proliferation was measured 24 h after IGF-1 treatment.
Values are means 6 SEM run in triplicates, letters indicate significant differences between time points.
doi:10.1371/journal.pone.0012976.g007
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of anti-cyclin E antibodies into fibroblasts during G1 which

resulted in cell cycle arrest [38]. It should be noted that other

microRNAs potentially regulating CCNE1 protein expression

were also significantly changed, including down-regulation of

miR-141, miR-16, miR-15a, miR-352, miR-15b and up-regula-

tion of miR-518e, miR-29a, miR-192, and miR-29b, implicating a

regulatory network fine-tuning the cell cycle checkpoints.

Among the mRNA targets of miR-103 was also the transcrip-

tion factor CREB1 gene, which binds as a homodimer to cAMP

responsive elements within the DNA sequence [39]. Activation of

CREB1 induces the early response genes, and late response genes

during the early G1 phase of cell cycle [40,41]. Remarkably, upon

IGF-1 treatment, CREB1 also showed up-regulation in the

TranSignal Cell Growth Protein DNA Array (Panomics Inc.),

which includes AP1, c-Myb, CREB (miRBase predicted miR-103

target), E2F-1, EGR, Ets, FKHR, Myc-Max, NE-E1 (YY1), NF-

kB(miRBase predicted miR-103 target), OCT-1, p53, Pax-2, Pax-

3, Pax-6, PPAR-c, Smad SBE, Sp1, SRE, and Stat3. In

immunoblotting analysis, the phosphorylated-CREB1 protein

was also up-regulated, indicating functional activation during

miR-103 inhibition.

An improved understanding of miRNA signatures during

intestinal epithelial cell proliferation should ultimately lead to the

discovery of drugs better suited to treat diseases due to abberant

cellular growth, such as inflammatory diseases and cancer. The

present study determined the global microRNA expression in

mouse crypt cells, and confirmed functional aspects of miR-103,

which could be a suitable candidate for developing novel

therapeutic interventions.
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