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Abstract

Motivation: The analysis of longitudinal datasets and construction of gene regulatory networks (GRNs) provide a
valuable means to disentangle the complexity of microRNA (miRNA)–mRNA interactions. However, there are no
computational tools that can integrate, conduct functional analysis and generate detailed networks from longitudinal
miRNA–mRNA datasets.

Results: We present TimiRGeN, an R package that uses time point-based differential expression results to identify
miRNA–mRNA interactions influencing signaling pathways of interest. miRNA–mRNA interactions can be visualized
in R or exported to PathVisio or Cytoscape. The output can be used for hypothesis generation and directing in vitro
or further in silico work such as GRN construction.

Availability and implementation: TimiRGeN is available for download on Bioconductor (https://bioconductor.org/
packages/TimiRGeN) and requires R v4.0.2 or newer and BiocManager v3.12 or newer.

Contact: k.patel5@ncl.ac.uk or daryl.shanley@ncl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MicroRNAs (miRNAs) are single-stranded functional RNAs,
around 16–22 nucleotides long which target specific mRNAs for
degradation or translational repression; thus affecting protein levels
(Selbach et al., 2008). Targeting is achieved by complementary bind-
ing between the 30UTR of the target mRNA and a 7–8 nucleotide se-
quence found on the 50end of the miRNA, known as the seed
sequence (Bartel, 2004). There is increased clinical interest in
miRNAs for several reasons: (i) miRNAs can be tested in animal
models to understand human diseases and conditions. An example is
miR-140-5p which is upregulated during chondrogenesis and down-
regulated during osteoarthritis (Barter et al., 2015; Miyaki et al.,
2010). (ii) miRNAs can be secreted via exosomes into surrounding
blood, extracellular matrix and urine (Chaturvedi et al., 2015; Chen
et al., 2017; Leidinger et al., 2013). Their presence in body fluids
provides valuable noninvasive biomarkers to assess the state of diffi-
cult to access tissues such as tumors, brain and bone. (iii) Lastly,
miRNAs have potential as therapeutic agents as they modulate ex-
pression of specific mRNAs (Schwarzenbach et al., 2014).

However, in the laboratory, miRNAs are difficult to study, pri-
marily because a single miRNA can regulate many mRNAs and a

single mRNA can be regulated by multiple miRNAs. miRNA–
mRNA interactome studies report over 18 000 interactions in
HEK293 cells and over 34 000 interactions in human hepatoma cells
(Helwak et al., 2013; Moore et al., 2015). A complementary strat-
egy is to use a computational approach. The analysis of longitudinal
miRNA–mRNA expression data, construction of gene regulatory
networks (GRNs) and subsequent dynamic modeling, is a particular-
ly useful means to gain a better understanding of miRNA–mRNA
interactions (Ooi et al., 2018; Proctor et al., 2017; Qin et al., 2015).
GRNs are useful tools for integrating multiomic data on mechanistic
schematics. Yet, currently there is no computational tool that can
handle longitudinal miRNA–mRNA datasets and reduce the volume
of data to an extent where GRN construction is possible. This is pre-
sented in Table 1.

Many existing tools (Table 1) have particular strengths, but none
satisfy the criteria necessary to bridge longitudinal multiomic data
and GRN creation. anamiR, miRIntegrator, MAGIA2, Sigterms and
SpidermiR have substantial miRNA–mRNA integration capabilities
but cannot handle longitudinal datasets (Bisognin et al., 2012; Cava
et al., 2017; Creighton et al., 2008; Diaz et al., 2017; Wang et al.,
2019). Web-based tools such as miRNet, miRTarVisþ and ToppmiR
have excellent visualization capabilities but also cannot analyze
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longitudinal datasets (Fan and Xia, 2018; L’Yi et al., 2017; Wu
et al., 2014). DREM2 and miARMa-seq handle longitudinal data-
sets, but do not reduce the volume of data enough for GRN gener-
ation (Andrés-León et al., 2016; Schulz et al., 2012). miRComb can
use longitudinal data to generate miRNA–mRNA interactions net-
works, but the networks lack detail on upstream or downstream in-
formation, making the output insufficient for GRN generation
(Vila-Casadesús et al., 2016). Furthermore, several tools have not
been actively maintained so their usability may be diminished.

There is clearly a need for a tool that can integrate, functionally
analyze and generate detailed networks from longitudinal miRNA–
mRNA datasets, which can then be used to identify GRNs. Here, we
present the R/Bioconductor package TimiRGeN, which uses differ-
ential expression (DE) data as input to generate small miRNA–
mRNA interaction networks. Results from TimiRGeN can be
exported to Cytoscape or PathVisio for further bioinformatic ana-
lysis (Kutmon et al., 2015; Smoot et al., 2011). The TimiRGeN
package thereby provides a much-needed means to generate hypoth-
eses from longitudinal multiomic datasets. To demonstrate the capa-
bilities of the package several datasets were analyzed (see Section 2),
including a comprehensive RNAseq time series miRNA–mRNA folic
acid (FA)-induced mouse kidney injury dataset (Fig. 1) (Craciun
et al., 2016; Pellegrini et al., 2016).

2 Materials and methods

FA data from GSE61328 (miRNA) and GSE65267 (mRNA) were
downloaded using the fastqc-dump function from SRA toolkit and
fastq files were checked with FastQC (Andrews, 2010; Leinonen
et al., 2011). Cutadapt removed adapter sequences from miRNA
fastq files, and then the trimmed fastq files were processed with
mir2deep (mapper, quantifier and miRDeep2 functions) to produce
mature miRNA data which could be imported into R (Friedlander
et al., 2012; Martin, 2011). Salmon quant aligned and quantified
the mRNA fastq files, and tximport imported the output of Salmon
into R (Patro et al., 2017; Soneson et al., 2015). Mouse transcrip-
tome GRCm38.cdna.all was indexed for miRNA processing with
Bowtie build and mRNA processing with Salmon index
(Cunningham et al., 2019; Langmead and Salzberg, 2012). In R,
limma was used for DE analysis (Ritchie et al., 2015). The
makeContrasts function performed time point-based DE. The zero
time point was contrasted against each subsequent time point (1, 2,
3, 7 and 14 days after FA injection). Results were analyzed with the
TimiRGeN R package. For the FA kidney injury dataset, the com-
bined mode of analysis found the ‘Lung fibrosis’ WikiPathway

(WP3632) to be consistently enriched during days 3, 7 and 14 of the
time course. The ‘Lung fibrosis’ pathway was analyzed for potential
miRNA–mRNA interactions. Twenty interactions were kept be-
cause they were found in at least two databases and had Pearson
correlations lower than �0.5. Results were exported to create a dy-
namic miRNA integrated Lung fibrosis signaling pathway in
PathVisio. CellDesigner was then used to create an SBML formatted
GRN (Funahashi et al., 2008). A second mouse kidney injury data-
set generated by Unilateral Ureter Obstruction (UUO) was down-
loaded from GSE118340 (miRNA) and GSE118339 (mRNA)
(Pavkovic et al., 2017). UUO and FA datasets were processed and
analyzed using the same methods. A 10 time point longitudinal
miRNA–mRNA breast cancer dataset was downloaded and proc-
essed as is described in Supplementary Data. This dataset underwent
two separate analysis with TimiRGeN. Once where DESeq2 was
used for pairwise DE and a second time where DESeq2 performed
whole time course DE with the LRT method (Baran-Gale et al.,
2016; Love et al., 2014). A microarray hypoxia dataset was down-
loaded from GSE47534 and also put through TimiRGeN analysis
(Camps et al., 2014). The lumi and AgiMicroRna packages were
used for processing and limma for pairwise DE (Du et al., 2008;
López-Romero, 2011). Microarray platforms GPL6884 and
GPL8227 were downloaded and gene IDs extracted to create a list
of probes for enrichment analysis. Scripts and data for reproducibil-
ity are linked to in Supplementary Data.

3 Results

3.1 Time point and miRNA specific analysis
Pairwise miRNA and mRNA DE data (Log2FC and adjusted P-values)
from each time point can be used as input for TimiRGeN. The tool
works on RNAseq and microarray data, and it has two modes of ana-
lysis. The combined mode analyses miRNA and mRNA data from the
same time point together, and here each gene from a time point can be
filtered for significance independent of all other time points. The separ-
ate mode analyses miRNA and mRNA data independent of each other.
Separate mode analysis allows for a miRNA or mRNA from a time
point to be filtered for significance independent of all other time points
and gene types (miRNA or mRNA). TimiRGeN uses WikiPathways for
functional analysis, and most are curated by either entrez gene IDs or
ensemble gene IDs so TimiRGeN provides both for the user. Neither of
these annotation types can distinguish between �3p or �5p miRNAs,
thus TimiRGeN also provides adjusted IDs, in case a miRNA–mRNA
interaction network is generated with both the �3p and �5p versions
of a miRNA.

3.2 Filtering data with time-based functional analysis
TimiRGeN offers two functional analysis methods: time-dependent
pathway enrichment and temporal pathway clustering analysis.
Both use the rWikiPathways package an API for the WikiPathways
database to find signaling pathways of interest (Slenter et al., 2018).

3.2.1 Time-dependent pathway enrichment method

Overrepresentation analysis from clusterProfiler is applied to time series
data (Yu et al., 2012). Hypergeometric tests are performed to contrast
the number of genes found in common between each time point (after
filtering for significantly differentially expressed genes) and each species
specific WikiPathway. This produces a list of enriched pathways for
each time point (Fig. 1A). Alternatively, if the separate mode of analysis
is applied, enrichment analysis is performed for each time point per
gene type. The background/universe used to perform overrepresentation
analysis can be adjusted by the user e.g. probes in a microarray or all
known genes within a cell type.

3.2.2 Temporal pathway clustering method

Temporal pathway clustering (Fig. 1B) utilizes Mfuzz (Kumar and
Futschik, 2007). Supervised soft clusters are created based on tem-
poral patterns which stem from the number of genes found in each
time point (after filtering for significance) and each species specific

Table 1. miRNA–mRNA integration tools

Tool name Availability Time Funct analysis Reduction Updated

anamiR Bioc X �:Kegg, React,þ � 2018

DREM2 Install � �:GO X 2020

MAGIA2 Online X �:DAVID � 2012

miARMa-seq Install � �:GO, Kegg X 2019

miRComb SF � �:GO, Kegg � 2020

miRIntegrator Bioc X �:Kegg, React � 2016

miRNet Online X �:GO, Kegg X 2021

miRTarVisþ Online X X � 2020

Sigterms SF X �:GO � 2009

SpidermiR Bioc X X � 2020

ToppMiR Online X �:GO � 2021

Note: Comparison of miRNA–mRNA integration tools: several tools are

available as R packages that can be downloaded from Bioc (Bioconductor) or

SF (SourceForge). Other tools can be installed locally or are available online.

Some tools are capable of handling time series datasets. Several can perform

funct (functional) analysis, usually utilizing GO, Kegg, React (Reactome),

DAVID or others (þ) and a few tools can reduce the volume of data. Also

shown is when each tool was last updated.
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WikiPathway. This will show global trends within the dataset.
Pathways are assigned fitness scores for each cluster, from 0 to 1,
and these can be filtered to find highly correlating pathways in clus-

ters of interest. If the separate mode is used, temporal pathway clus-
tering is performed for each gene type individually.

3.3 Filter miRNA–mRNA interactions from a signaling

pathway of interest
After a signaling pathway has been selected for further analysis, the
TimiRGeN pipeline will extract each mRNA that is found in com-
mon between the selected pathway and the input mRNA data. Each

of these mRNAs are assumed to be potential targets of every
miRNA in the input data. This results in a miRNA–mRNA inter-

action matrix which can be used to filter out miRNA–mRNA inter-
actions that are not likely to occur by using correlations and

miRNA–mRNA interaction databases TargetScan, miRDB and
miRTarBase (Agarwal et al., 2015; Chen and Wang, 2020; Huang
et al., 2020). Correlations are calculated for changes over time
(Log2fc or average expression) between a given miRNA and a given
mRNA. The default method is Pearson, but users can also select be-
tween Spearman or Kendall. Since miRNAs negatively regulate

mRNAs, highly negative correlation values from miRNA–mRNA
pairs could be used to identify miRNA–mRNA interactions that are
likely regulate the selected pathway. Users can define a correlation
threshold to filter for miRNA–mRNA interactions. The default set-
ting for maximum correlation is �0.5. Three miRNA target data-
bases are also usable to filter for miRNA–mRNA interactions. This

includes two predictive target databases (TargetScan and miRDB)
and one functional database (miRTarBase) which has had all func-
tional support labeled as ‘weak’ removed. Predictive databases
TargetScan and miRDB were selected because, although they have

Fig. 1. Pipeline of the TimiRGeN R package: The FA miRNA–mRNA data are input and filtered for significantly expressed genes for each time point. From here, one of two

methods can be used to find WikiPathways of interest. (A) Time-dependent pathway enrichment to find enriched pathways at each time point. The enriched pathways are

ranked in descending order of adjusted P-values on bar plots. Results from day 1 and day 14 are shown. Or (B) temporal clustering where global trends of the pathways over

time are clustered. Two clusters are shown here. Each line is a pathway and the color represents how well a pathway fits into a cluster. Ranking from highest to lowest are:

red, orange, yellow. miRNA–mRNA interactions within a selected signaling pathway can be predicted by filtration of miRNA–mRNA pairs using databases and correlation.

(C) Filtered miRNA–mRNA pairs can be viewed in R. Nodes are pink for miRNAs or blue for mRNAs and edges are color coded by correlation over time. (D) Behavior of

genes within the miRNA–mRNA interaction network can be viewed across the time course and genes which pass a threshold (>1.5 in this example) are highlighted. (E) The

genes can also be hierarchically clustered to identify trends. (F) Expression changes within the clusters can be plotted. These line plots include a gray line (data points) and a

red line (smooth spline). (G) A selected miRNA–mRNA pair (mmu-miR-181c-5p and Plau) can be analyzed using cross-correlation analysis. (H) The selected mRNA (red) and

miRNA (blue) can also be displayed over the time course. The data are scaled and interpolated over a spline and the correlation is displayed. (I) Regression analysis can be per-

formed on a selected miRNA or mRNA. Plau was selected, so its expression over time is predicted based on the chosen miRNAs that target it. In this example mmu-miR-181c-

5p is selected to predict the behavior of Plau. Expression values of Plau are displayed as red dots and the predicted expression of Plau is displayed as a dashed blue line. R2 and

P-value are shown. (J) Regression can also be performed between a miRNA–mRNA pair. The OR (odds-ratio) between the two time series can be calculated, along with the

95% CI (confidence intervals). Correlation, R2, P-value, OR and CI are rounded to 2 decimal places. Network data can be exported to PathVisio or Cytoscape
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differences in their prediction methods, they share usage of 30UTR-
seed site complementarity and seed site conservation to predict
miRNA–mRNA interactions (Peterson et al., 2014). Comparisons
between different miRNA–mRNA prediction methods find that
30UTR-seed site complementarity identify the most true positive
miRNA–mRNA interactions (Mazière and Enright, 2007; Zhang
and Verbeek, 2010). Interactions found or not found in the three
databases will be represented as 1 or 0, respectively. Users have the
option to choose which combination of databases they wish to mine
information from and they can choose the number of databases
which an interaction needs to be mined from to be filtered. The de-
fault setting for the minimum number of databases needed to filter a
miRNA–mRNA interaction is 1. Once correlation and databases
have been used to filter for miRNA–mRNA interactions which may
be affecting the signaling pathway of interest, they can be displayed
in an internal R network (Fig. 1C). Resulting genes found in the
miRNA–mRNA interaction network can be viewed over the time
course. Here, genes that pass a user-defined threshold can be high-
lighted (Fig. 1D). The genes can also be sorted into hierarchical clus-
ters shown by a dendrogram, from which clusters can be plotted to
show the behavior of the genes (Fig. 1E and F). A heatmap, which is
compatible with the dendrogram, can also be generated
(Supplementary Figure S1).

3.4 Longitudinal miRNA–mRNA pair analysis
The TimiRGeN R package has a suite of longitudinal analysis
approaches for analyzing predicted miRNA–mRNA interacting
pairs. This includes several correlation- and regression-based meth-
ods which are commonly used to analyze longitudinal datasets
(Ding and Bar-Joseph, 2020). Cross-correlation analysis is a useful
method to determine similarity between two time series (Fig. 1G). If
the time series is of sufficient length, the metric can be used to iden-
tify delays and further filter for miRNA–mRNA interacting pairs
with interesting dynamics (Jung et al., 2011; Lakshmipathy et al.,
2007). miRNA–mRNA pairs can also be plotted in a time series line
plot. This plot can be scaled and interpolated over a spline (Fig.
1H). Two types of regression analysis can also be performed. First, a
linear model is generated from a selected gene (mRNA or miRNA)
and any number of its predicted binding partners. The combination
of miRNA–mRNA interactions is left for the user to define. The lon-
gitudinal behavior of the selected gene is predicted based on the
binding partners used in the linear model. The predicted simulation
and the gene data are plotted along with the R2 value and P-value
(Fig. 1I). This type of regression prediction is useful in cases where a
mRNA is targeted by multiple miRNAs or if a miRNA targets mul-
tiple mRNAs. Next, a linear model can be created from a single
miRNA–mRNA pair. The odds-ratio is calculated from the regres-
sion coefficient. This measures the likelihood of one gene influencing
the behavior of another gene and has previously been used as a met-
ric to determine miRNA–mRNA relationships (Jayaswal et al.,
2009). 95% confidence intervals are calculated which give a range
where there is a 95% certainty of the mean of the data being within
the range (Fig. 1J) (Szumilas, 2010). Selecting a miRNA–mRNA
pair to investigate can be made easier by plotting a heatmap which
orders the interacting pairs by descending correlation
(Supplementary Figure S2). Statistics generated from correlation and
regression analyses may be overestimations if too few time points
are found within the input data. Thus, the tool will generate an error
if fewer than three time points are detected and warnings if fewer
than five time points are detected.

3.5 Output of the TimiRGeN package and exportation of

data from R
TimiRGeN is an open-ended tool that exports to networking soft-
ware PathVisio and Cytoscape for further in silico analysis. The
TimiRGeN R package produces two data files for upload onto
PathVisio. A file which includes a single result type, e.g. Log2FC,
from each time point and gene IDs. This can be uploaded into
PathVisio to show how the genes in a signaling pathway of interest

change over the time course. Also a file which contains all filtered
miRNAs can be uploaded into PathVisio. The second file requires
the user to install the MAPPbuilder app in PathVisio (Kutmon et al.,
2015). With this, changes over time in a miRNA integrated signaling
network of interest can be visualized to show how the miRNAs may
be influencing the signaling pathway. This type of display is ideal
for bottom-up GRN construction (Supplementary Figure S3).
Filtered miRNA–mRNA interactions can also be exported to
Cytoscape for improved visualization and alternative analysis via
Cytoscape apps (Smoot et al., 2011). The enhanced graphics of
Cytoscape are especially useful to visualize large numbers of
miRNA–mRNA interactions (Supplementary Figure S4).

3.6 Data from nonpairwise DE
The FA kidney injury dataset had pairwise DE performed using the
zero time point as the denominator. This type of pairwise analysis is
recommended for time series datasets with <8 time points; however,
longer time series datasets may be more suitable for DE without
using the pairwise approach e.g. over a cubic spline, maSigPro or
the LRT method with DESeq2 (Conesa et al., 2006; Spies et al.,
2019). In these cases, users are recommended to filter out signifi-
cantly differentially expressed genes from averaged count or expres-
sion data, and to use this as input for TimiRGeN. Pathway
enrichment can be used to identify the most enriched pathways from
the whole time course or temporal clustering can first cluster genes
based on temporal behavior. From here, genes can be sorted based
on clusters, and then pathway enrichment can be used to identify
enriched pathways from each temporal cluster. An alternative pipe-
line is shown in Supplementary Figure S5 and this is explained in
Section 5 of the vignette.

3.7 Datasets with multiple interventions
More complex datasets may include interventions other than time. In
these cases, TimiRGeN should be used for each individual time series
and then the results can be contrasted between different interventions.
This requires the same signaling pathway to be explored in each time
series. As an example, the ‘Lung fibrosis’ pathway was analyzed in the
FA and UUO datasets. A pipeline is shown in Supplementary Figure
S6 and Section 6 of the vignette provides detail.

3.8 Hypothesis generation with TimiRGeN
To demonstrate the tools ability to generate biologically relevant
hypotheses, the FA mouse kidney injury dataset was analyzed with
TimiRGeN (Fig. 1). Findings from the analysis were used to hy-
pothesize how of FA can induce fibrosis. A GRN was constructed to
formalize the hypotheses (Fig. 2). Investigation of these results can
be used to ratify the miRNA–mRNA interactions predicted by
TimiRGeN and make a stronger case for experimental validation.
FA injection is known to cause acute injury conditions in the kid-
neys, resulting in a reversible chronic kidney disease (CKD) like con-
dition (Craciun et al., 2016; Pellegrini et al., 2016). During the
14 day time course, a number of different processes occur, such as
inflammatory response, scar tissue forming, wound healing, cyto-
kine activity (Leask and Abraham, 2004). TimiRGeN analysis high-
lights several of these processes and GRNs were generated to
represent how miRNAs may be influencing fibrosis factors (Fig. 2)
and scar tissue forming by collagen synthesis (Supplementary
Figures S7–S10). The GRN presented in Figure 2 indicates that Igf1
acts as a miRNA sponge. Many of the presented miRNA-Igf1 inter-
actions have been reported, including miR-18a, miR-98, miR-365
and miR-26b (Hu et al., 2013; Liu et al., 2016, 2017; Sun et al.,
2019). let-7c-5p has been reported to target Igf1, and TimiRGeN
predicted other let-7 family genes let-7e-5p and let-7g-5p also target
Igf1 (Liu et al., 2018). Finally, miR29 family members are predicted
to target Igf1, and research indicates that Igf1 is a miR-29 family
sponge (Gao et al., 2016). It is unknown why Igf1 may be a miRNA
sponge, but Igf1 is known to induce collagen production, which
contributes to kidney fibrosis and CKD (Hung et al., 2013).
Exploration of Igf1 as a miRNA sponge in kidney injury conditions
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could be beneficial for therapeutics for CKD. Overall, this case study

highlights that the TimiRGeN R package can be used to identify bio-
logically relevant miRNA–mRNA interactions from potentially tens-

of-thousands of possible miRNA–mRNA interactions. The ability to
reduce the volume of big multiomic data is an important feature of
TimiRGeN and one which could lead to making miRNA research

easier and faster for users. Further analysis on a breast cancer dataset
is also found in Supplementary Figures S11–S16.

4 Conclusion

As recognized in Bar-Joseph et al. (2012), generation of complex
transcriptomic datasets will continue, so computational biologists

will need more sophisticated and up-to-date software to analyze
these datasets (Bar-Joseph et al., 2012). We have presented a novel

R/Bioconductor package which aims to help researchers find direc-
tion when working with large longitudinal multiomic datasets.
Overall, TimiRGeN is a useful new tool which could become a part

of miRNA–mRNA data analysis pipelines.

Funding

K.P., I.M.C. and D.Y. are supported by the Dunhill Medical Trust [R476/

0516]. D.P.S. is supported by Novo Nordisk Fonden Challenge Programme:

Harnessing the Power of Big Data to Address the Societal Challenge of Aging

[NNF17OC0027812]. C.P., D.Y. and S.C. by the MRC and Versus Arthritis

as part of the Medical Research Council Versus Arthritis Centre for

Integrated Research into Musculoskeletal Ageing (CIMA) [MR/R502182/1].

Conflict of Interest: none declared.

References

Agarwal,V. et al. (2015) Predicting effective microRNA target sites in mam-

malian mRNAs. eLife, 4, e05005.

Andrés-León,E. et al. (2016) miARma-Seq: a comprehensive tool for miRNA,

mRNA and circRNA analysis. Sci. Rep., 6, 25749.

Andrews,S. (2010) FastQC: a quality control tool for high throughput se-

quence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Baran-Gale,J. et al. (2016) An integrative transcriptomics approach identifies

miR-503 as a candidate master regulator of the estrogen response in MCF-7

breast cancer cells. RNA, 22, 1592–1603.

Bar-Joseph,Z. et al. (2012) Studying and modelling dynamic biological proc-

esses using time-series gene expression data. Nat. Rev. Genet., 13, 552–564.

Bartel,D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and func-

tion. Cell, 116, 281–297.

Barter,M.J. et al. (2015) Genome-wide microRNA and gene analysis of mesen-

chymal stem cell chondrogenesis identifies an essential role and multiple tar-

gets for miR-140-5p. Stem Cells, 33, 3266–3280.

Bisognin,A. et al. (2012) MAGIA2: from miRNA and genes expression data

integrative analysis to microRNA-transcription factor mixed regulatory cir-

cuits. Nucleic Acids Res., 40, W13–W21.

Camps,C. et al. (2014) Integrated analysis of microRNA and mRNA expres-

sion and association with HIF binding reveals the complexity of microRNA

expression regulation under hypoxia. Mol. Cancer, 13, 28.

Cava,C. et al. (2017) SpidermiR: an R/bioconductor package for integrative

analysis with miRNA data. Int. J. Mol. Sci., 18, 274.

Chaturvedi,P. et al. (2015) Differential miRNA expression in cells and matrix

vesicles in vascular smooth muscle cells from rats with kidney disease. PLoS

One, 10, e0131589.

Chen,Y. and Wang,X. (2020) miRDB: an online database for prediction of

functional microRNA targets. Nucleic Acids Res., 48, D127–D131.

Chen,C. et al. (2017) Urinary miR-21 as a potential biomarker of hypertensive

kidney injury and fibrosis. Sci. Rep., 7, 1–9.

Craciun,F.L. et al. (2016) RNA sequencing identifies novel translational bio-

markers of kidney fibrosis. J. Am. Soc. Nephrol., 27, 1702–1713.

Conesa,A. et al. (2006) maSigPro: a method to identify significantly differen-

tial expression profiles in time-course microarray experiments.

Bioinformatics, 22, 1096–1102.

Creighton,C.J. et al. (2008) A bioinformatics tool for linking gene expression

profiling results with public databases of microRNA target predictions.

RNA, 14, 2290–2296.

Cunningham,F. et al. (2019) Ensembl 2019. Nucleic Acids Res., 47,

D745–D751.

Diaz,D. et al. (2017) MicroRNA-augmented pathways (mirAP) and their

applications to pathway analysis and disease subtyping. Pac. Symp.

Biocomput., 390–401.

Ding,J. and Bar-Joseph,Z. (2020) Analysis of time-series regulatory networks.

Curr. Opin. Syst. Biol., 21, 16–24.

Du,P. et al. (2008) lumi: a pipeline for processing Illumina microarray.

Bioinformatics, 24, 1547–1548.

Fan,Y. and Xia,J. (2018) miRNet-functional analysis and visual exploration

of miRNA-target interactions in a network context. In: Stechow,L.V. and

Delgado,S.A. (Eds.) Computational Cell Biology. Methods in Molecular

Biology. Vol. 1819, Humana Press, New York, NY, pp. 215–233.

Friedlander,M.R. et al. (2012) miRDeep2 accurately identifies known and

hundreds of novel microRNA genes in seven animal clades. Nucleic Acids

Res., 40, 37–52.

Fig. 2. miRNAs influencing antifibrosis factor Tnfa and profibrosis factor Igf1: This GRN shows how FA may be downregulating let-7c-5p, let-7e-5p, let-7g-5p, miR-18a-5p,

miR-26b-5p, miR-29a-3p, miR-29c-3p, miR-365-3p and miR-98-5p, which are all predicted to target profibrosis factor Igf1. Also this GRN indicates how FA may upregulate

miR-27a-3p, which is predicted to target antifibrosis factor Tnfa. Reduction of Tnfa will increasing levels of profibrosis factor Tgfb

3608 K.Patel et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab377#supplementary-data
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Funahashi,A. et al. (2008) CellDesigner 3.5: a versatile modeling tool for bio-

chemical networks. Proc. IEEE, 96, 1254–1265.

Gao,S. et al. (2016) IGF1 30UTR functions as a ceRNA in promoting angio-

genesis by sponging miR-29 family in osteosarcoma. J. Mol. Histol., 47,

135–143.

Helwak,A. et al. (2013) Mapping the human miRNA interactome by CLASH

reveals frequent noncanonical binding. Cell, 153, 654–665.

Hu,Y. et al. (2013) MicroRNA-98 induces an Alzheimer’s disease-like disturb-

ance by targeting insulin-like growth factor 1. Neurosci. Bull., 29, 745–751.

Huang,H. et al. (2020) miRTarBase 2020: updates to the experimentally vali-

dated microRNA-target interaction database. Nucleic Acids Res., 48,

D148–D154.

Hung,C.F. et al. (2013) Role of IGF-1 pathway in lung fibroblast activation.

Respir. Res., 14, 102.

Jayaswal,V. et al. (2009) Identification of microRNAs with regulatory poten-

tial using a matched microRNA-mRNA time-course data. Nucleic Acids

Res., 37, e60.

Jung,D.E. et al. (2011) Differentially expressed microRNAs in pancreatic can-

cer stem cells. Pancreas, 40, 1180–1187.

Kumar,L. and Futschik,M.E. (2007) Mfuzz: a software package for soft clus-

tering of microarray data. Bioinformation, 2, 5–7.

Kutmon,M. et al. (2015) PathVisio 3: an extendable pathway analysis tool-

box. PLoS Comput. Biol., 11, e1004085.

Lakshmipathy,U. et al. (2007) MicroRNA expression pattern of undifferenti-

ated and differentiated human embryonic stem cells. Stem Cells Dev., 16,

1003–1016.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with

Bowtie2. Nat. Methods, 9, 357–359.

Leask,A. and Abraham,D.J. (2004) TGF-B signaling and the fibrotic response.

FASEB J., 18, 816–827.

Leidinger,P. et al. (2013) A blood based 12-miRNA signature of Alzheimer

disease patients. Genome Biol., 14, R78.

Leinonen,R. et al. (2011) The sequence read archive. Nucleic Acids Res., 39,

D19–D21.

Liu,H. et al. (2016) MicroRNA-26b is upregulated in a double transgenic

mouse model of Alzheimer’s disease and promotes the expression of

amyloid-B by targeting insulin-like growth factor 1. Mol. Med. Rep., 13,

2809–2814.

Liu,C. et al. (2017) miR-18a induces myotubes atrophy by down-regulating

IgfI. Int. J. Biochem. Cell Biol., 90, 145–154.

Liu,G.-X. et al. (2018) Hsa-let-7c controls the committed differentiation of

IGF1-treated mesenchymal stem cells derived from dental pulps by targeting

IGF-1R via the MAPK pathways. Exp. Mol. Med., 50, 1.
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