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ABSTRACT

Single cell RNA-sequencing (scRNA-seq) technol-
ogy, a powerful tool for analyzing the entire tran-
scriptome at single cell level, is receiving increas-
ing research attention. The presence of dropouts is
an important characteristic of scRNA-seq data that
may affect the performance of downstream analyses,
such as dimensionality reduction and clustering.
Cells sequenced to lower depths tend to have more
dropouts than those sequenced to greater depths.
In this study, we aimed to develop a dimensionality
reduction method to address both dropouts and the
non-negativity constraints in scRNA-seq data. The
developed method simultaneously performs dimen-
sionality reduction and dropout imputation under
the non-negative matrix factorization (NMF) frame-
work. The dropouts were modeled as a non-negative
sparse matrix. Summation of the observed data ma-
trix and dropout matrix was approximated by NMF.
To ensure the sparsity pattern was maintained, a
weighted �1 penalty that took into account the de-
pendency of dropouts on the sequencing depth in
each cell was imposed. An efficient algorithm was
developed to solve the proposed optimization prob-
lem. Experiments using both synthetic data and real
data showed that dimensionality reduction via the
proposed method afforded more robust clustering re-
sults compared with those obtained from the existing
methods, and that dropout imputation improved the
differential expression analysis.

INTRODUCTION

Since single-cell RNA sequencing (scRNA-seq) technology
was first reported by Tang et al. in 2009 (1), it has received
increasing attention. Unlike bulk RNA-seq, scRNA-seq is a
powerful tool that can capture the transcriptome-wide cell-
to-cell variations (2–4), and thus can be used in a range
of areas such as investigation of the cellular heterogeneity
within cell populations and complex tissues (5–7), charac-
terization of the organ development of early embryonic cells
(8) and exploration of the transcriptomic diversity of hu-
man brains (9). Several efficient sequencing protocols, such
as Smart-seq, Drop-seq, CEL-seq, SCRB-seq and the com-
mercial device 10× chromium3′ have been developed.

An important characteristic of scRNA-seq data is its high
proportion of zero entries, which primarily derive from two
different sources. First, a proportion of genes that are not
expressed in a single cell give true zero expression entries.
Second, mRNA transcripts that are present in low concen-
trations in a single cell may be lost during the reverse tran-
scription and amplification steps, meaning that these tran-
scripts are undetectable in the following sequencing steps.
This is denoted as ‘dropout’ phenomenon. Such dropout
entries cannot be distinguished from true zero expression
entries, which makes the analysis of scRNA-seq data more
challenging.

Although the traditional methods developed for anal-
ysis of bulk RNA-seq data can still be applied to anal-
ysis of scRNA-seq data, the performance of these meth-
ods is greatly affected by the presence of dropouts. Re-
cently, several statistical models and computational algo-
rithms have been developed for analyzing scRNA-seq data
from different perspectives including imputation of the
dropouts, differential expression analysis, dimensionality
reduction and clustering (10–25). These methods can be di-
vided into two groups, based on whether the dropouts are
explicitly modeled. Traditional methods developed for bulk
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RNA-seq data analysis do not consider the dropout phe-
nomenon. For example, the commonly used dimensional-
ity reduction methods such as Principal Component Anal-
ysis (PCA) and t-Distributed Stochastic Neighbor Embed-
ding (tSNE) enable easy visualization of the data, but do
not consider the existence of missing values (26,27). A re-
cently published dimensionality reduction and visualization
method that uses Uniform Manifold Approximation and
Projection (UMAP) to consider the nonlinear relations be-
tween the cells also does not consider the dropouts (28).
Some clustering methods proposed for scRNA-seq data use
multiple kernels to capture the relations between the cells
on different scales. Although the dropouts are not explic-
itly considered in the models, good clustering results can
be obtained (16,21,24). Several recent methods take the
dropouts into account, modeling them as random variables
generated from a Bernoulli distribution or as missing val-
ues in the data matrix (12–14,17,23,25,29–30). Recently, a
dropout imputation method that uses deep learning has
been proposed (DeepImpute) (11). Using such methods, the
dropouts are typically imputed first, and then the available
methods (such as those developed for bulk RNA-seq data)
are used for further analysis. A comparison of the current
algorithms for imputation is presented in a previous report
(25). The existing methods for differential expression anal-
ysis primarily consider the dropouts as random variables
and are developed on a model-based framework (15,31–32).
However, compared with imputation methods, few meth-
ods explicitly model the dropouts in dimensionality reduc-
tion and clustering (18–19,22). Zero-Inflated Factor Analy-
sis (ZIFA), the first dimensionality reduction method that
considers dropouts, is a probabilistic generative model in
which the real data are generated from a low-dimension
latent space via linear combinations and the zero entries
are generated from a Bernoulli distribution. An iterative
EM algorithm is then applied for statistical inference. The
ZIFA algorithm does not consider the true domain of the
counts, because the counts cannot be less than zero (22).
Clustering through Imputation and Dimensionality Reduc-
tion (CIDR) is an scRNA-seq data dimensionality reduc-
tion and clustering method that also considers dropout im-
putation before the dimensionality reduction step via Prin-
cipal Coordinate Analysis (PCoA). However, its imputa-
tion value is dependent on the pairwise cells, and is not
fixed, which means that further analysis using the imputed
data is difficult (18). On other work, Lin et al. (19) devel-
oped a probabilistic clustering model for the joint analysis
of scRNA-seq and single cell ATAC-Seq data with consid-
eration of the randomness from dropout and data integra-
tion.

In this study, we develop a dimensionality reduction
method termed Constrained Robust Non-negative Ma-
trix Factorization (CRNMF) for scRNA-seq data analy-
sis. Non-negative Matrix Factorization (NMF) has been
successfully applied in many fields for dimensionality re-
duction, feature selection and clustering. As scRNA-seq
data are non-negative, and have an approximately low-rank
structure because of the gene expression similarities be-
tween cells of the same type, it is reasonable to develop the
model under the NMF framework. Shao and Hofer previ-
ously applied NMF to classify the cells and obtained good

results, but did not consider dropouts (33). In this study,
the dropouts in the data were modeled as a sparse matrix,
with the nonzero entries corresponding to imputed values
for the dropout events. Due to the variations in sequenc-
ing depth across the cells, the proportion of dropouts also
varied across different cells. Thus, we used a weighted �1
penalty to take account for the sequencing variations. We
formulated the model as an optimization problem with con-
straints and developed an efficient algorithm to solve it. Us-
ing this model, dropout imputation was implemented simul-
taneously with dimensionality reduction. The performance
of our proposed method was demonstrated by both simula-
tion studies and real data analysis.

MATERIALS AND METHODS

Given the count matrix for n cells and p genes, we normal-
ized the count matrix by the library size of each cell and
took log (1 + x) to obtain the matrix Xp × n, where each Xij
denoted the expression level of gene i in the jth cell. We then
developed our method based on X, as follows.

Given the fact that scRNA-seq data are non-negative and
the data matrix is likely of low rank because of the similar
gene-expression patterns in the same cell types, NMF is a
natural choice to do dimensionality reduction. In the stan-
dard NMF method, X is approximated by the product of
two non-negative matrices, i.e. Xp × n ≈ Wp × rHr × n, Wij ≥
0, Hij ≥ 0 and r < p, n is the number of reduced dimensions.
W and H can be obtained by multiplicative iterations (34).
When a dropout occurs, the corresponding entry becomes
zero in the observed X. To recover the value of the dropouts,
we define a matrix Sp × n, where Sij > 0 when the ijth entry
is a dropout and Sij = 0 otherwise. The data matrix with
dropout recovery can then be written as X + S, which can
be approximated by WH, i.e. X + S ≈ WH. As the zero en-
tries include both dropouts and true zero expressions, and
the exact position of all the dropouts is not known, we can
reasonably assume that S is a sparse matrix. We let � = {(i,
j), Xij = 0, 1 ≤ i ≤ p, 1 ≤ j ≤ n}, and �c = {(i, j), Xij > 0, 1
≤ i ≤ p, 1 ≤ j ≤ n}. The dropout set is then a subset of the
index set �. Thus, we formulate the optimization model as
follows:

min
W,H,S

1
2
‖X + S − WH‖2

F + λ‖S‖1

s.t. Wi j ≥ 0, Hi j ≥ 0,

Si j

{≥ 0, if (i, j ) ∈ �,
= 0, if (i, j ) ∈ �c,

(1)

where ‖ · ‖F and ‖ · ‖1 are the Frobenious norm and element-
wise �1 norm of a matrix, respectively. The �1 norm penalty
is imposed to encourage the sparsity of S, and � is the pa-
rameter to control the sparsity level of S. Figure 1 gives
an illustrative example of this method. After applying this
method, we can obtain cell expression in a lower dimension
(as shown in H), and obtain the estimated dropouts as S
with the recovered data matrix being X + S.

In the scRNA-seq data, the sequencing depth varies be-
tween cells. The cells undergoing deeper sequencing are ex-
pected to have fewer dropouts than those undergoing shal-
lower sequencing. Ideally, we should impute more for the
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Figure 1. Illustration of the CRNMF model.

cells with low sequencing depths and less for those with
greater sequencing depths. To account for the variations in
sequencing depth, we propose to add a weight �j to each
single cell j, which is a parameter related to the sequenc-
ing depth, the magnitude of which increases with sequenc-
ing depth increasing. We denote μ = (μ1, μ2, · · · , μn). The
model is now presented as:

min
W,H,S

1
2
‖X + S − WH‖2

F + λ

n∑
j=1

μ j‖Sj‖1

s.t. Wi j ≥ 0, Hi j ≥ 0,

Si j

{≥ 0, if (i, j ) ∈ �,
= 0, if (i, j ) ∈ �c,

(2)

where Sj is the jth column of S. The model (1) is called
unweighted Constrained Robust NMF (CRNMF), and the
model (2) is called weighted CRNMF.

To solve the optimization problems (1) and (2), we alter-
natively update W, H and S. When S is fixed, the optimiza-
tion problem has the traditional NMF framework, and we
can iteratively use multiplicative update to obtain W and H.
When W and H are fixed, the problem becomes �1 regular-
ized optimization problem, and S can be solved element-
wisely. The algorithm for (2) is summarized in Algorithm
1.

Algorithm 1: Weighted CRNMF
Input: scRNA-seq data matrix: X, parameter: �, �, the

rank of matrix W, H: r;
Initialization: S(0) = 0;
Repeat until convergence

(1) Fix S, given W(0), H(0), solve W, H;
Hij = Hij(WT(X + S))ij/((WTWH)ij + 10−9);
Wij = Wij((X + S)HT)ij/((WHHT)ij + 10−9);
Repeat until convergence

(2) Fix W, H, solve S;
Si j = (Sof tλμ j ((WH − X)i j ))+, (i, j ) ∈ �,
Sij = 0, (i, j) ∈ �c,
where
Softy(x) := sgn(x)(|x| − y)+, (x)+ = max (x, 0).

Output: W, H, S.
Having obtained W, H and S, we can consider H as the

r-dimensional representation of the cells and then use k-
means or other traditional methods to perform clustering.
We can also perform dropout imputation by adding S to

X, and considering X + S as the observed data for further
analysis, including differential expression analysis.

The parameters μ, r and � in the model (2) must be pre-
specified. Each �j should depend on the sequencing depth

of the jth cell. We let μ j =
∑p

i=1 Xi j

median{∑p
i=1 Xi j ,∀ j} . If the

value
p∑

i=1

Xi j for cell j is the median of {
p∑

i=1

Xi j ,∀ j}, �j = 1

and with the increase of sequencing depth, the value of �j
increases. This is in consistent with the fact that the more
deeply sequenced cells are expected to have fewer dropouts.
For unweighted CRNMF, each �j is 1. For the parame-
ter r, as the rank of WH should be r and WH approxi-
mates X, a good choice of r is the rank of X. Although a
cross-validation-based method can be applied to choose r,
for simplicity, we estimate r from the singular values of X
(35). The small singular values should correspond to the
noise in X, thus, we choose r as the number of singular val-
ues of proper scale. Suppose the singular values of X are:
d1 ≥ d2 ≥ ··· ≥ dn, then we set the default value of r as:
r = mini {| di −di−1

di−1−di−2
| < δ, | di−1−di−2

di−2−di−3
| < δ}. Here � is set to be

chosen by the users, and should be close to 1. This ensures
that the singular values less than r should be little-changed,
and thus can be considered as noise. In our analysis, we set �
to be 1.05. As we have used �j to scale the depth differences
between different cells, a stable region was obtained for �,
which gave similar results. Our experiments showed that a
good choice for the value of � was ∼1.5. A more accurate
� can be chosen based on the clustering results using cross
validation (36). If (WH)ij − Xij > ��j, we impute the entry
(i, j) with (WH)ij − Xij − ��j; otherwise, we simply consider
it to be the true zero expression. By choosing �, we provide
a threshold that differentiates between the dropouts and the
true zero expressions. To reduce the effect of initialization in
the proposed method, we consider the initial value of W, H
based on singular value decomposition (SVD), as described
in a previous study (37).

RESULTS

To evaluate the performance of our proposed method, we
first compared the performance of the weighted CRNMF
with that of three existing dimensionality reduction meth-
ods and then with the performance of the unweighted
CRNMF and original NMF.

For the first comparison, the following three dimension-
ality reduction methods were selected: PCA, CIDR (18)
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and Single-cell Interpretation via Multi-kernel LearRning
(SIMLR) (24). PCA is a commonly used dimensionality
reduction method that does not consider dropouts. CIDR
performs dimensionality reduction with dropout imputa-
tion, wherein the imputation of dropouts depends on the
pairwise distances between each cell pair, and they are not
fixed. Thus it is difficult to use the imputed dropouts in
the downstream analysis. CIDR has shown better dimen-
sionality reduction performance than ZIFA (22), which was
not considered in our study. SIMLR integrates different
kernel-based similarities to visualize the cells without con-
sidering the dropouts (24). It also performs dimensional-
ity reduction before visualization and clustering. We ap-
plied all of these four methods to both simulated datasets
and real biological datasets for dimensionality reduction.
To illustrate their performance, we performed k-mean clus-
tering. The results were judged according to three crite-
ria: Adjusted Rand Index (ARI), ACCuracy (ACC) and
Normalized Mutual Information (NMI). For CIDR and
SIMLR, we ran the R packages cidr and SIMLR, to ob-
tain a lower-dimensional representation of the cells. To
see the performance of dropout imputation, we compared
CRNMF with DeepImpute, a recently developed dropout
imputation method that uses deep learning. DeepImpute
has shown more stable results than the existing methods
(11). We used the package DeepImpute from Github for
this comparison and for simplicity used ‘CRNMF’ to de-
note the weighted CRNMF.

Simulation study

We first evaluated the performance of CRNMF using syn-
thetic datasets. To generate the scRNA-seq data, we directly
used the R package: splatter, which simulates scRNA-
seq data and demonstrates good consistency with the
real datasets (38). We simulated three settings, depending
on the dropout types. The parameters were set as fol-
lows: nGenes=10 000, nCells=500, group.prob=(0.05,
0.10, 0.25, 0.60), mean.shape=2, mean.rate=0.3,
de.prob=(0.1, 0.1, 0.05, 0.05), de.facLoc=(0.5, 1, 0,
1.5) and de.downProb=(0.3, 0.3, 0.5, 0.5). The dropout
types include ‘experiment’, ‘cell’ and ‘batch’, wherein
‘experiment’ is the global dropout and uses the same
parameters for every cell; ‘cell’ uses a different set of
parameters for each cell; and ‘batch’ uses the same param-
eters for every cell in each batch. For each dropout type,
we varied the parameters describing the distribution of
dropouts and applied three different parameter settings.
Table 1 shows the dropout parameters. In the dropout
type ‘cell’, ‘1.00 : 2.00’ indicated that the dropout.mid was
from 1.00 to 2.00 with an equal step size for 500 cells, and
‘(1.00, 2.00)’ in the dropout type ‘batch’ indicated that the
dropout.mid was 1.00 and 2.00 in the two batches. Other
parameters were set as default. We also added the ratio of
zeros in each dataset in the table.

We first show the results for dimensionality reduction.
The number of cell types was set to be the true number of
clusters. For CRNMF, CIDR and SIMLR, the parameters
were set as default. The number of reduced dimensionality
value of PCA was set to be the same as that of CRNMF,
which was obtained from SVD. Figure 2 shows the clus-

Table 1. Summary of the dropout parameters in the simulated datasets

dropout.type Setting dropout.mid dropout.shape
Rate of
zeros

Experiment 1 1.20 −1.00 76.24%
2 1.80 82.11%
3 2.40 86.97%

Cell 1 1.00 : 2.00 −0.60: −1.20 77.84%
2 1.25 : 2.25 78.80%
3 1.50 : 2.50 79.47%

Batch 1 (1.20, 1.50) ( − 0.60, −1.20) 78.88%
2 (1.00, 2.00) ( − 0.60, −1.00) 81.04%
3 (1.00, 2.00) ( − 0.60, −1.20) 83.01%

In the dropout type ‘cell’, ‘1.00 : 2.00’ means the dropout.mid is from 1.00
to 2.00 with equal step size for 500 cells, and ‘(1.00, 2.00)’ in the dropout
type ‘batch’ means the dropout.mid is 1.00 and 2.00 in the two batches.

Figure 2. Clustering results for the cells after dimension reduction in the
simulated datasets.

Figure 3. Dimension reduction for the simulated datasets ‘cell 3’ and
‘batch 3’.

tering results. CRNMF performed quite well when the ra-
tio of zeros was not very high. In the setting ‘experiment’,
CRNMF performed the best among all the three consid-
ered settings. In the setting ‘cell’, CRNMF performed the
best in the first two cases, whereas SIMLR performed the
best in the third case. We checked the detailed results of
CRNMF. The selected parameter is r = 5 using the de-
fault setting. When we set the parameter as 6, the values
of ARI, ACC, and NMI were close to 1. Figure 3A shows
the dimensionality reduction results of CRNMF when r =
6. The pattern of the sixth feature in Figure 3A disappeared
when the parameter r was 5 because of the small size of the
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Figure 4. Correlation and MSE between the imputed data matrix X + S
and the true data matrix in the simulation study.

first group, and thus the clustering results were not good
enough. In this case, it performs similar to PCA and CIDR.
In the dropout type ‘batch’, CRNMF performed similar to
that in the dropout type ‘cell’, i.e. it performed the best in
the first two settings, and SIMLR performed the best in the
third setting. We further checked the dimensionality reduc-
tion results for CRNMF. Figure 3B shows the transposition
of H after dimension reduction. The features from 3 to 6
clearly show the cluster pattern, whereas the second feature
explains the batch effect of the dataset. If this column is re-
moved in the clustering step, ARI, ACC and NMI will have
values very close to 1. In this case, if we can know the cell
numbers of each batch in advance, we may first remove the
batch effect and then perform the clustering.

To assess the performance of CRNMF in dropout impu-
tation, we first computed the correlation and mean squared
error (MSE) between the imputed data matrix X + S and
the true data matrix, which was recorded in the simulation.
For comparison, we performed dropout imputation using
DeepImpute and computed these values as well. The results
in Figure 4 show that CRNMF provided higher correlations
and lower MSEs. We then performed differential gene ex-
pression analysis for the data with imputation of the possi-
ble dropouts, i.e. X + S, using limma (39,40). Parameters of
all algorithms in limma were set to the default values. We
calculated both precision and accuracy to measure the re-
sults as we knew the true differentially expressed (DE) genes
in the simulations. To compute the precision, the genes with
adjusted P-values less than 10−3 were considered to be DE
genes. Precision was defined as the ratio between the de-
tected true DE genes and the total number of detected DE
genes. In addition, we selected the genes with the smallest
adjusted P-values and the number of selected DE genes was
the same as that of the true DE genes. The detection accu-
racy was defined as the ratio between the detected true DE
genes and the total number of true DE genes. The results
in Figure 5 show that CRNMF generated similar results to
those generated by DeepImpute. The false positive rate of
DE gene detection is also calculated and shown in the Sup-
plementary Materials.

Real data analysis

We applied weighted CRNMF and other three methods in-
cluding PCA, CIDR and SIMLR to analysis of eight real

Figure 5. Precision and accuracy for DE gene detection in the simulated
datasets after dropout imputation.

biological datasets, the cell types of which have been de-
scribed in their respective original publications. The key in-
formation of these datasets is summarized in Table 2. After
dimensionality reduction using the above mentioned four
methods, we applied k-means to perform clustering. For the
evaluation and fair comparison, we tuned the parameter
corresponding to the number of reduced feature dimension-
ality in all four methods to obtain the maximum ARI. Other
parameters were set as default. The number of cell types was
known beforehand. In the following experiments, each data
matrix was normalized by the library size of each cell and
was taken log (1 + x) to obtain the matrix Xp × n. We also
conducted the experiments with data matrix normalization
using deconvolution and sctransform (41,42). The results
are put in the Supplementary Materials.

Human brain scRNA-seq dataset (‘Darmanis’). We used
the same dataset as used by Lin et al. (18), which com-
prises 420 cells with eight cell types (9,18). The methods
CRNMF, PCA, CIDR and SIMLR were applied for di-
mensionality reduction, and all the cells were visualized in
the lower-dimensional space using UMAP. The visualiza-
tion results are shown in Figure 6A, and the clustering re-
sults are shown in Figure 6B. CIDR and CRNMF per-
formed similarly well in both visualization and clustering,
with the margins between different cell types being large,
aside from a few wrongly assigned cells. When PCA was
applied, the resulting separation of different cell types was
poor. In the case of SIMLR, although the margins be-
tween different cell types were large, some cell types were
mixed.

In the real datasets, the underlying number of true
dropouts were unknown, thus it was not easy to compare
the performance of dropout imputation. Therefore, we per-
formed DE analysis of the dataset after dropout imputation
and clustered the cells based only on the detected DE genes.
Better detection of DE genes was expected to provide bet-
ter clusters. We directly applied the R package limma to the
imputed data X + S using CRNMF and DeepImpute, and
set the adjusted P-value 10−2 as the cut-off for DE-gene se-
lection. Figure 7A shows the visualization of the cells with
all DE genes using UMAP. The DE genes detected from
the data imputed using CRNMF had much better sepa-
rated cell clusters, indicating that dropout imputation using
CRNMF improved DE gene detection.
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Table 2. Summary of the eight real datasets

Reference Protocol Data size Rate of zeros Cell types

Darmanis et al. (9) SMARTer 22 085 × 420 81.40% 8
Deng et al. (43) Smart-Seq(2) 22 431 × 268 60.29% 6
Segerstolpe et al. (44) Smart-Seq 25 525 × 1099 73.35% 9
Klein et al. (45) inDrop 24 175 × 2717 65.76% 4
Baron et al. (46) inDrop 20 125 × 1937 90.44% 14
Tabula Muris-Tongue (47) 10× 23 433 × 3101 87.53% 11
Tabula Muris-Limb (47) 10× 23 433 × 4536 93.42% 15
Butler et al. (48) 10× 32 738 × 2638 97.40% 8

Mouse preimplantation embryos scRNA-seq dataset
(‘Deng’). This dataset comprises 268 cells of six cell
types (43) corresponding to different stages of mouse
preimplantation development. After applying CRNMF,
we obtained the lower-dimensional representation of cells
H and the possible dropouts S. Figure 6B shows the
clustering results after dimensionality reduction using the
four methods. CRNMF demonstrated better clustering
results than SIMLR in terms of ARI and NMI and similar
results in terms of ACC, all of which were much better than
those obtained by the other two methods. Visualization of
the cells with lower-dimensional representation is shown
in Figure 6A. There were overlaps between the cell types
‘8cell’ and ‘16cell’ in all methods. In PCA and SIMLR,
there were more overlaps between the cell types ‘blast’ and
‘16cell’.

We performed DE analysis of this dataset after dropout
imputation using CRNMF and DeepImpute, similar to the
analysis performed on the previous dataset. A visualiza-
tion of the cells composed of all DE genes is shown in Fig-
ure 7B. The figure shows that the DE genes detected in the
dataset after dropout imputation using CRNMF provide
better separation of the cells. This result also indicates that
dropout imputation using CRNMF helps DE gene detec-
tion.

Human pancreatic islets in type 2 diabetes (‘Segerstolpe’).
Next, we evaluated human pancreatic islet cells exhibiting
type 2 diabetes using our method (44). Before the analysis,
we filtered the low-quality cells and cell clusters of fewer
than 10 cells, yielding 1099 cells of 9 cell types. The cluster-
ing results using the four methods are shown in Figure 6B.
CRNMF gave the best clustering results.

DE analysis was also conducted for this dataset after im-
putation using CRNMF and DeepImpute. Figure 7C shows
the visualization of the cells with all of the selected DE
genes. Some cell types were divided into different types
when imputing the dropouts using DeepImpute. The DE
genes selected from the dataset imputed using CRNMF
showed much better separation of cells. This result also in-
dicates that dropout imputation using CRNMF provided
better DE gene detection.

Mouse embryonic stem cell scRNA-seq dataset (‘Klein’).
This dataset comprises 2717 mouse embryonic stem cells in
four cell types (45) corresponding to the days after leukemia
inhibitory factor withdrawal. Figure 6A shows the visual-
ization of the cells after dimensionality reduction, and Fig-
ure 6B shows the clustering results, where CRNMF per-

formed the best, followed by PCA, consistent with the vi-
sualization results in Figure 6A.

To evaluate the effect of dropout imputation on this
dataset, we performed DE analysis after dropout im-
putation. Figure 7D shows the visualization of the cells
with all of the selected DE genes. The DE genes selected
after dropout imputation using CRNMF provided a
very good cluster structure. The DE genes with dropout
imputation using DeepImpute provided some mixed
clusters.

Human pancreatic islets scRNA-seq dataset (‘Baron’). Of
the four donors included in this study, the scRNA-seq data
of donor 1 was selected, which comprises 1937 cells in 14 cell
types (46). The cells were sequenced using inDrop, which re-
vealed that ∼90.00% entries in the data matrix were equal to
zero. Figure 6B shows the comparison of clustering results
after dimensionality reduction using the four methods. The
results show that CRNMF performed similarly to PCA and
had the highest NMI of the four methods. SIMLR showed
the highest ARI and ACC in this dataset.

In the DE analysis, the DE genes detected from the
dataset after imputation using CRNMF and DeepImpute
showed similar clustering results. The visualization is shown
in Figure 7E, wherein CRNMF gave a little better separa-
tion between the clusters.

Mouse organs’ scRNA-seq from Tabula Muris (‘Tongue’ and
‘Limb’ ). Two scRNA-seq datasets for tongue and limb
generated using 10× from Tabula Muris (47) were down-
loaded. For tongue, we chose the batch ‘Tongue-10X P4 0’,
which comprises 3101 cells in 11 cell types, and for limb,
4536 cells from two batches were combined together for
analysis. Both datasets have very high proportion of zero
entries. Figure 6B shows the clustering results after dimen-
sionality reduction. CRNMF performed similarly to PCA
and CIDR in ‘Tongue’, while it performed much better than
the other three methods in ‘Limb’. Visualization of the cells
from ‘Limb’ in the lower-dimensional space also revealed
that CRNMF performed much better than the other three
methods.

In the DE analysis, the DE genes detected from the
‘Tongue’ after imputation using CRNMF and DeepImpute
showed similar clustering results. The visualization is shown
in Figure 7F, wherein no clearly visible differences can be
observed between the clusters. The DE genes detected from
the ‘Limb’ after imputation using CRNMF gave much bet-
ter cell type separation than those using DeepImpute. The
visualization is shown in Figure 7G.
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Figure 6. Comparison of the dimensionality reduction results: (A) UMAP visualization of the cells after dimensionality reduction using the corresponding
methods; (B) clustering results using k-means for cells represented in a lower dimension.
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Figure 7. Visualization of the cells with all the DE genes detected in the
dataset after dropout imputation using CRNMF and DeepImpute.

Figure 8. Sequencing depth of the eight real datasets.

Human peripheral blood mononuclear cells from 10X Ge-
nomics (‘PBMC’). We downloaded a dataset of Periph-
eral Blood Mononuclear Cells (PBMC) studied in (48). This
dataset includes 2638 cells from 8 cell types. After filtering
the genes that have zero expression in all the cells, there are
a total of 16 579 genes. Figure 6B shows the clustering re-
sults after dimensionality reduction. CRNMF achieved the
highest NMI, and SIMLR achieved the highest ARI and
ACC. The visualization of the cells in the 2D space shows
that CRNMF gave better distributed clusters.

A visualization of the cells composed of all the selected
DE genes in the two-dimensional space is shown in Figure
7H. Though some clusters were mixed together in both fig-
ures, it is clear that dropout imputation using CRNMF gave
much better separation of the cell types.

Evaluation of NMF-based methods

Next, we compared the performance of weighted CRNMF
with that of unweighted CRNMF and original NMF using
the abovementioned eight real datasets to identify the ef-
fects of imputing the dropouts and adding the weights into
the model.

To determine how the sequencing depth affects dimen-
sionality reduction and clustering for NMF-based meth-
ods, we first plotted the average sequencing depth for each
dataset in Figure 8. For each dataset, the sum of the fre-
quency of all genes was divided by the total number of genes
to obtain an approximate measure of the sequencing depth.
Among all of the datasets, the sequencing depth of ‘Deng’
was the greatest, having the largest variation, followed by
that of ‘Segerstolpe’.

We further applied weighted CRNMF, unweighted
CRNMF and original NMF to the eight real datasets to
perform dimensionality reduction and compared their k-
means clustering results. We set the same stopping criterion
and the same rank of W and H, which was chosen using
our proposed method. After following the same procedure,
we obtained the clustering results as shown in Figure 9.
These results indicate that when the sequencing depth had
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Figure 9. Comparison of clustering results comparison of NMF-based methods in the eight real datasets.

Figure 10. Clustering results of NMF-based methods by downsampling 80% of the cells 30 times in the eight real datasets.

large variation, weighted CRNMF performed much better
than original NMF and unweighted NMF. In both ‘Deng’
and ‘Segerstolpe’, weighted CRNMF was superior in han-
dling deep sequenced data. In the case of shallow sequenced
cells, these three methods performed similarly in terms of
clustering, while CRNMF also simultaneously imputed the
dropouts.

To further evaluate the stability of these three meth-
ods, we downsampled the cells at 80% 30 times, and per-
formed the same procedure as mentioned above to com-
pare the clustering results. The results in Figure 10 show
that weighted CRNMF provided the best results for all
datasets and that it exhibited more advantages than the
other two methods with the increased variation in the se-
quencing depth. For example, using weighted CRNMF, un-
weighted CRNMF and original NMF, the median of ARI
was 0.864, 0.753 and 0.527 in ‘Deng’, whereas it was 0.964,
0.960 and 0.955 in ‘Klein’, respectively. Although the ARIs
were closer in ‘Baron’ using all of the three methods, the re-
sults using weighted CRNMF were a little better than those
of the other two methods.

The computational complexity of CRNMF depends on
the number of cell n, genes p and the reduced dimension-
ality r. Usually the number of genes varies little, and r is
not large, thus the computational time variation across dif-
ferent datasets mainly depends on n. We implemented the
program in a MacBook Pro with 3.1GHz double-core Intel
Core i5 processor and 8GB 2133 MHz LPDDR3 memory
to evaluate the computational time of CRNMF. Given r in
the model, computation of dataset ‘Deng’ takes 11 seconds
only, while it takes 578 s for the dataset ‘Limb’. The corre-
lation between the computational time and the cell number
n is 0.92. This shows that CRNMF can be applicable in real
data analysis.

CONCLUSION AND DISCUSSION

The dropout phenomenon creates more challenges for di-
mensionality reduction in scRNA-seq data analysis. Sev-
eral methods that consider the dropouts in dimensional-
ity reduction have been proposed. However, as our exper-
iments on different datasets indicated, these methods are
not robust, and their performance varies across datasets.
Although many reasons may exist for this finding, we con-
sidered two possible reasons. First, the dropout imputa-
tion usually does not consider the cell-to-cell variation in
sequencing depth. Deeper sequencing could lead to fewer
dropouts, whereas shallower sequencing could result in
more dropouts. Second, the non-negativity of the count
data is not considered.

In this study, we developed a dimensionality reduction
model based on NMF. We modeled the dropouts using
a sparse matrix, and the sparsity was ensured using a
weighted �1 norm, which was related to the sequencing
depth. By adding weights, the tuning parameter controlling
the sparsity of the dropout matrix became very stable. The
rank of the matrices in NMF could be chosen according
to the singular values of the observed data matrix, which
was also very stable. Extensive data analysis showed that
more robust clustering results were achieved after dimen-
sionality reduction using CRNMF. In particular, in the real
data clustering, CRNMF achieved the best results for five of
the eight datasets based on three criteria and also achieved
the highest NMI in the last three datasets. In addition to
performing dimensionality reduction, CRNMF simultane-
ously imputes the dropouts. Comparison with the updated
dropout imputation method showed that CRNMF enables
better DE gene analysis.

In the scRNA-seq data analysis, one important yet diffi-
cult problem is rare cell type detection. When the features of
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the rare cell types are not highly distinguishable, the current
CRNMF may not be able to detect them. This is because
adding such information in the low rank approximation
may not reduce much of the objective function. Besides the
dimensionality reduction step, detection of rare cell types
also depends on the clustering methods. Due to the small
sample size of rare cell types, the commonly used clustering
methods, such as k-means, may not be able to group these
cells together. To improve rare cell type detection, we will
add the known marker gene information of each cell type
in the model to increase the differentiation between differ-
ent cell types. This is left as one of our future works.

As shown in the data analysis, one limitation of the
CRNMF method is that it may consider the strong batch
effects as the features in dimensionality reduction. How to
model or learn the batch effect before implementing our al-
gorithm is a challenge for future work.
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