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Tuberculosis (TB) remains a serious public health problem despite the great scientific 
advances in the recent decades. We have previously shown that aggressive forms of TB 
caused by hypervirulent strains of Mycobacterium tuberculosis and Mycobacterium bovis 
are attenuated in mice lacking the P2X7 receptor, an ion channel activated by extracellular 
ATP. Therefore, P2X7 receptor is a potential target for therapeutic intervention. In vitro, 
hypervirulent mycobacteria cause macrophage death by a P2X7-dependent mechanism 
that facilitates bacillus dissemination. However, as P2X7 receptor is expressed in both 
bone marrow (BM)-derived cells and lung structural cells, several cellular mechanisms 
can operate in  vivo. To investigate whether the presence of P2X7 receptor in 
BM-derived cells contributes to TB severity, we generated chimeric mice by adoptive 
transfer of hematopoietic cells from C57BL/6 or P2X7−/− mice into CD45.1 irradiated 
mice. After infection with hypervirulent mycobacteria (MP287/03 strain of M. bovis), 
P2X7−/−>CD45.1 mice recapitulated the TB resistance observed in P2X7−/− mice. These 
chimeric mice showed lower lung bacterial load and attenuated pneumonia compared 
to C57BL/6>CD45.1 mice. Lung necrosis and bacterial dissemination to the spleen and 
liver were also reduced in P2X7−/−>CD45.1 mice compared to C57BL/6>CD45.1 mice. 
Furthermore, an immature-like myeloid cell population showing a Ly6Gint phenotype 
was observed in the lungs of infected C57BL/6 and C57BL/6>CD45.1 mice, whereas 
P2X7−/− and P2X7−/−>CD45.1 mice showed a typical neutrophil (Ly6Ghi) population. This 
study clearly demonstrates that P2X7 receptor in BM-derived cells plays a critical role in 
the progression of severe TB.

Keywords: tuberculosis, hypervirulent mycobacteria, P2X7 receptor, bone marrow-derived cells, mouse models

inTrODUcTiOn

Nearly a quarter of the global population harbors bacteria of the Mycobacterium tuberculosis 
 complex, resulting in an estimated 10.4 million new cases of active tuberculosis (TB) in 2015 
(1,  2). Infection typically occurs when an individual inhales aerosolized droplets containing 
the mycobacteria (3). In the pulmonary alveoli, the mycobacteria may be ingested by alveolar 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00435&domain=pdf&date_stamp=2017-04-13
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00435
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:caiocesarbonfim@usp.br
mailto:eduardo.amaral@nih.gov
mailto:relima@usp.br
https://doi.org/10.3389/fimmu.2017.00435
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00435/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00435/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00435/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00435/abstract
http://loop.frontiersin.org/people/381042
http://loop.frontiersin.org/people/409055
http://loop.frontiersin.org/people/191677
http://loop.frontiersin.org/people/191677
http://loop.frontiersin.org/people/83322
http://loop.frontiersin.org/people/175190
http://loop.frontiersin.org/people/275499
http://loop.frontiersin.org/people/236258


2

Bomfim et al. P2X7 Receptor in Severe TB

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 435

macrophages that recruit inflammatory cells (4). Surviving 
bacilli multiply within the macrophage and, in most cases, are 
trapped inside primary granulomas. The equilibrium between 
host defense and the mycobacteria leads to latent infection. 
Active TB can develop through progression of recently acquired 
infection (primary disease) or reactivation of latent infection. 
Around 10% of active TB cases are due to progressive primary 
TB, which is an aggressive form of the illness that affect mostly 
immunodeficient patients and children under 5  years (5). 
The rates of latent TB reactivation range from 3 to 10% per 
lifespan in immunocompetent patients and increase markedly 
in immunodeficient patients (6–8). By promoting a progressive 
decline in cell-mediated immunity, co-infection with human 
immunodeficiency virus (HIV) greatly enhances TB incidence 
and severity. HIV co-infection was reported in 1.2 million (11%) 
of the people who developed TB in 2014 (1). Therefore, TB 
is the leading cause of death among individuals with acquired 
immunodeficiency syndrome (9, 10).

Severe TB cases are distinguished by the fast increase of 
granulomatous infiltrates that result in tuberculous pneumonia 
and, eventually, in hematogenous bacillus dissemination, such 
as in the miliary form of the disease. A hallmark of the serious 
illness is the existence of pulmonary caseous granulomas in 
which a central necrotic lesion contains many extracellular 
mycobacteria (11). Intense necrotic death of macrophages 
seems to result from the failure of host immune response to 
control bacillus growth. Consequently, the respiratory function 
is affected by the extensive tissue injury and causes the patient 
death. Therefore, many efforts have been made to elucidate 
how macrophages die following mycobacterial infection (12). 
One of the main difficulties to understand the pathogenesis 
of severe TB was the lack of animal models that develop 
pulmonary necrotic granulomas, as these lesions are unusual 
in murine models of TB, such as infection with mycobacteria 
of the virulent H37Rv strain. Therefore, our research group 
has established murine models in which C57BL/6 mice are 
infected with a low dose of hypervirulent mycobacteria 
(13,  14). Hypervirulent Beijing 1471 M. tuberculosis strain 
and MP287/03 Mycobacterium bovis strain induce extensive 
pulmonary inflammation, necrosis, high bacillus dissemina-
tion, and mouse death (13). These experimental models were 
used to determine whether the recognition of damage signals 
modulates the disease.

During necrotic cell death, ATP is released in the extracellular 
environment (15–17). Extracellular ATP (eATP) is a damage 
signal that is recognized by many cell types through different 
P2 purinergic receptors. Among them, the P2X7 receptor leads 
to release of proinflammatory cytokines and induces cell death 
(18). This molecule is a ligand-gated ion channel that is activated 
by high eATP concentrations, a characteristic of extensive tissue 
injury (18, 19). P2X7 engagement causes changes in intracel-
lular ion balance that promotes the NLRP3 inflammasome 
activation and secretion of active IL-1β and IL-18, as well as 
cell death by pyroptosis (20). Furthermore, the stimulation of 
P2X7 receptor induces the opening of large pores in the plasma 
membrane, which allows the free flow of macromolecules. The 
duration and intensity of the stimulus establish whether P2X7 

receptor activation promotes cell necrosis or apoptosis (21). By 
examining TB progression in mice deficient in P2X7 receptor 
that were infected with H37Rv, Beijing 1471, and MP287/03 
bacilli, we demonstrated that the crucial role of P2X7 receptor 
in the aggressive forms of the disease (13). These mice showed 
increased resistance to infection evidenced by diminished bacte-
rial load in the lungs, liver, and spleen. The lack of P2X7 receptor 
also caused reductions of inflammatory cellular infiltrate and 
tissue necrosis in the lung, which corroborated our hypothesis 
of the involvement of damage signals in the pathogenesis of 
severe TB.

To determine the mechanism involved in the deleterious role 
of P2X7 receptor in severe TB, we performed in vitro experiments 
using bone marrow (BM)-derived macrophages. We observed 
that eATP induces the P2X7-mediated killing of intracellular 
H37Rv bacilli and the P2X7-mediated release of viable hyper-
virulent Beijing 1471 and MP287/03 bacilli (13). Although this 
finding suggests that P2X7 signaling in infected macrophages 
facilitates the dissemination of hypervirulent mycobacteria, 
several other mechanisms might also operate in  vivo because 
this receptor is expressed in many BM-derived cells and 
structural cells of the lungs, such as vascular endothelial cells, 
alveolar epithelial type I cells, and fibroblasts (22–25). Therefore, 
in the present study, we sought to investigate in  vivo whether 
P2X7 receptor in BM-derived cells contributes to TB severity. 
Clarifying this issue may help understand the pathophysiology 
of aggressive forms of TB and give the theoretical background to 
develop new therapeutic approaches to ameliorate the outcome 
of the disease.

resUlTs

P2X7 receptor in BM-Derived cells 
increases lung Weight, lung relative 
Mass, and cellularity in severe TB
To determine whether P2X7 receptor in BM-derived cells is 
responsible for the deleterious role of this receptor in severe 
TB, hematopoietic cells from C57BL/6 and P2X7−/− mice were 
transferred into irradiated CD45.1 mice (Figure  1A). After 
90  days, chimeric C57BL/6>CD45.1 and P2X7−/−>CD45.1 
mice showed high levels of BM-derived cell reconstitution in 
the blood and lungs (over 95% of the CD45+ cells) (Figure 1B). 
These chimeric mice were then infected intratracheally (i.t.) 
with ~100 MP287/03 bacilli. We used this mycobacterial strain 
because it is more aggressive than Beijing 1471 strain, evidencing 
more clearly the effects of P2X7 receptor (13). Recapitulating 
the observations in infected C57BL/6 and P2X7−/− mice, the 
lung tuberculous nodules were visually more numerous and 
protuberant in C57BL/6>CD45.1 mice than in P2X7−/−>CD45.1 
mice at 28  days post-infection (p.i.) (Figure  2A). Accordingly, 
lung weight, lung relative mass, and cellularity were higher 
in infected C57BL/6 and C57BL/6>CD45.1 mice compared 
to P2X7−/− and P2X7−/−>CD45.1 counterparts, respectively 
(Figures 2B–D). In addition, the number of CD45+ cells was also 
higher in C57BL/6>CD45.1 mice than in P2X7−/−>CD45.1 mice 
(Figure 2E).
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FigUre 1 | generation and infection of chimeric c57Bl/6>cD45.1 and P2X7−/−>cD45.1 mice. (a) Schematic illustration shows the experimental protocol. 
Bone marrow (BM) cells from C57BL/6 and P2X7−/− mice were adoptively transferred to lethally irradiated CD45.1 mice. Ninety days later, chimeric mice were 
infected i.t. with approximately 100 MP287/03 bacilli. The lungs were harvested 28 days after infection. (B) Contour plots show CD45.1 and CD45.2 expression in 
blood cells and lung CD45+ cells from chimeric mice at 90 days post-transfer.
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P2X7 receptor in BM-Derived cells 
enhances lung Pathology, lung Bacterial 
Burden, and Bacterial Dissemination to 
the liver and spleen in severe TB
Consistent with lung morphology, the histological analysis of 
hematoxylin–eosin (HE) stained tissue sections revealed a more 
severe disease in infected mice expressing the P2X7 receptor 
in BM-derived cells (Figure 3A). On day 28 p.i., C57BL/6 and 
C57BL/6>CD45.1 mice showed intense pulmonary inflamma-
tion with intra-alveolar spaces containing widespread cellular 
infiltrates accompanied by necrotic tissue injury. In contrast, 
limited cellular infiltrates and no sign of necrosis were observed 
in infected P2X7−/− and P2X7−/−>CD45.1 mice. Accordingly, 
the areas of alveolar space were significantly lower in infected 
C57BL/6 and C57BL/6>CD45.1 mice compared to infected 
P2X7−/− and P2X7−/−>CD45.1 mice (Figure  3B). In addition, 
Ziehl–Neelsen staining revealed the massive presence of acid-
alcohol-resistant bacillus (BAARs) in the lungs of infected 
C57BL/6 and C57BL/6>CD45.1 mice, whereas less bacilli 
were observed in P2X7−/− and P2X7−/−>CD45.1 counterparts, 
respectively (Figure 3C). Compatibly, the numbers of colony-
forming units (CFUs) were higher in the lungs of infected mice 
expressing the P2X7 receptor in BM-derived cells (Figure 4A). 
Moreover, infected C57BL/6 and C57BL/6>CD45.1 mice 
showed more bacillus dissemination to the liver and spleen 
than P2X7−/− and P2X7−/−>CD45.1 counterparts (Figure  4B). 
These results confirm the important role of P2X7 receptor in 

BM-derived cells in defining the increased resistance of P2X7−/− 
mice to severe TB.

P2X7 receptor in BM-Derived cells leads 
to enrichment of ly6gint cells into the 
lungs during severe TB
As a hallmark of severe TB is the presence of massive neutro-
phil infiltrates in the lungs (26–28), we investigated whether 
the absence of P2X7 receptor in BM-derived cells influences 
the pulmonary myeloid cell populations in MP287/03-infected 
chimeric mice. On day 28 p.i., C57BL/6 and C57BL/6>CD45.1 
mice showed higher numbers of CD11b+ cells compared to 
P2X7−/− and P2X7−/−>CD45.1 mice, respectively (Figures 5A,B). 
Furthermore, an immature-like cell population expressing 
intermediate levels of Ly6G predominated in infected C57BL/6 
and C57BL/6>CD45.1 mice, whereas infected P2X7−/− and 
P2X7−/−>CD45.1 mice presented a typical neutrophil Ly6Ghigh 
population (Figures  5C–E). These data indicate that P2X7 
expression in BM-derived cells contributes to TB severity, which 
was characterized by the predominance of immature-like myeloid 
cells infiltrating the lungs.

DiscUssiOn

We have previously shown the deleterious role of P2X7 receptor 
in severe TB caused by Beijing 1471 and MP287/03 bacilli (13). 
In vitro, these hypervirulent mycobacteria induce macrophage 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 2 | lung gross pathology in chimeric and non-chimeric mice on day 28 p.i., c57Bl/6, P2X7−/−, c57Bl/6>cD45.1, and P2X7−/−>cD45.1 mice 
were infected with MP287/03 bacilli. Non-infected mice were used as controls. (a) Representative images of the right lungs are shown (bar scales correspond to 
1 cm). (B) Right lung weights and (c) lung relative masses (circles) were evaluated. The lung relative masses were calculated by the ratios of the mean values of the 
lung weights in the indicated groups and the control group. (D) Numbers of total cells in the lungs are shown. Significant differences were observed for the indicated 
groups (*p < 0.05 and ***p < 0.001). The data are representative of three separate experiments with three to five mice each (means ± SEM). (e) Numbers of CD45+  
cells in the lungs are shown.
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FigUre 3 | lung histopathology in chimeric and non-chimeric mice on day 28 p.i. c57Bl/6, P2X7−/−, c57Bl/6>cD45.1, and P2X7−/−>cD45.1 mice 
were infected with MP287/03 bacilli. Non-infected mice were used as controls. (a) Images show representative lung sections stained with hematoxylin–eosin 
method (100 × magnification; bar scales correspond to 100 µm). (B) Morphometric quantification of lung sections is shown. (c) Images show stained with Ziehl–
Neelsen method (200 × magnification; bar scales correspond to 100 µm). Significant differences were observed for the indicated groups (***p < 0.001). The data are 
representative of three separate experiments with three to five mice each (means ± SEM).

5

Bomfim et al. P2X7 Receptor in Severe TB

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 435

death by a P2X7-dependent mechanism that facilitates bacil-
lus release. Based on these findings, we proposed that the fast 
intracellular multiplication of hypervirulent mycobacteria causes 

widespread destruction of infected macrophages. Consequently, 
high amounts of eATP activate the P2X7 receptor and facilitate 
the development of the necrotic process by cooperating with 
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FigUre 4 | Bacterial loads in the lungs, spleen, and liver of chimeric and non-chimeric mice on day 28 p.i. c57Bl/6, P2X7−/−, c57Bl/6>cD45.1, and 
P2X7−/−>cD45.1 mice were infected with MP287/03 bacilli. Numbers of colony-forming units (CFUs) in the lungs (a), spleen, and liver (B) are shown. 
Significant differences were observed for the indicated groups (*p < 0.05, **p < 0.01, and ***p < 0.001). The data are representative of three separate experiments 
with three to five mice each (means ± SEM).
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mycobacterial components exhibiting the membrane-lysing 
activity. This process leads to a vicious cycle that exacerbates 
pneumonia, lung damage, and bacillus dissemination.

In vivo, various cell populations can contribute to the deleteri-
ous role of P2X7 receptor in severe TB, as this receptor is expressed 
in many BM-derived cells (i.e., monocytes, macrophages, 
neutrophils, and T cells) and lung structural cells (i.e., alveolar 
epithelial type I cells, lung endothelial cells, and fibroblasts) 
(19, 22–25, 29, 30). By analyzing chimeric C57BL/6>CD45.1 
and P2X7−/−>CD45.1 mice infected with MP287/03 bacilli, we 
show here that the absence of P2X7 receptor in BM-derived cells 
recapitulates the TB progression observed in mice lacking this 
receptor. According to all parameters analyzed in this study, 
P2X7−/−>CD45.1 mice developed a less severe TB compared to 
C57BL/6>CD45.1 mice. Infected mice lacking the P2X7 receptor 
in BM-derived cells showed lower lung bacterial load accom-
panied by attenuated pneumonia and no sign of lung necrosis. 
Bacterial dissemination to spleen and liver was also reduced in 
P2X7−/−>CD45.1 mice compared to C57BL/6>CD45.1 mice. 
Furthermore, a typical Ly6Ghigh neutrophil population infiltrated 
the lungs of infected P2X7−/−>CD45.1 mice, whereas an imma-
ture-like myeloid cell population displaying a Ly6Gint phenotype 
predominated in infected C57BL/6>CD45.1 mice.

These results are in line with our model in which P2X7 
receptor of infected macrophages is decisive to aggravate the 
disease (11, 12). Yet, the participation of other BM-derived cell 
population is still an open possibility. Although neutrophils play 
an important role in host defense against bacterial infections, 
their involvement in TB is controversial (27, 28, 31). The excessive 
accumulation of neutrophils in the lungs is very harmful and 
usually associated with tissue damage during severe TB (27, 31). 
In addition, immature myeloid cells, mainly neutrophil precur-
sors, are the main population infiltrating the lungs at advanced 
TB stages (32, 33). Myeloid cells with an immature phenotype 
can behave like myeloid-derived suppressor cells and make the 
disease worse by suppressing the immune response (32–34). 

This population has a CD11b+GR1int phenotype and expresses 
intermediate levels of Ly6G (32). Therefore, the accumulation of 
Ly6Gint cells in the lungs of MP287/03-infected mice could be a 
secondary consequence of the excessive tissue damage resulting 
from P2X7 signaling.

Recently, it has been shown that neutrophils express the P2X7 
receptor, which once activated by ATP, leads to K+ efflux and, 
consequently, to NLRP3 inflammasome activation and IL-1β 
secretion (35). However, the detrimental effect of P2X7 receptor 
during severe TB appears to be independent of NLRP3 inflamma-
some. The absence of NLRP3, ASC, and caspase-1 does not change 
TB progression in MP287/03-infected mice (data not shown). 
Moreover, differently from macrophages, P2X7 engagement does 
not induce neutrophil lysis (35). Therefore, it is unlikely that P2X7 
receptor mediates lung injury by inducing neutrophil death. 
Alternatively, it has been shown that P2X7 activation induced by 
antibacterial protein LL-37 leads to suppression of spontaneous 
apoptosis in neutrophils (36). As neutrophil apoptosis limits the 
release of proinflammatory mediators and cytotoxic metabolites 
(37), it is possible that, in severe TB, prolongation of neutrophil 
life span mediated by P2X7 receptor could amplify the proinflam-
matory response and secondarily promote tissue injury.

In conclusion, this study helps to improve the knowledge 
concerning the critical role of P2X7 receptor in severe TB by 
demonstrating the importance of P2X7 receptor in BM-derived 
cells. This finding brings us a step forward in understanding the 
pathophysiology of aggressive forms of TB and reinforces the 
P2X7 receptor as a potential target for new therapeutic approaches 
to ameliorate the disease outcome.

MaTerials anD MeThODs

Mice
Specific pathogen-free C57BL/6, P2X7−/− (B6.129P2-P2rx7tm1 
Gab/J), and CD45.1 (B6.SJL-Ptprca Pepcb/BoyJ) male mice (The 
Jackson Laboratory, USA; generated by Pfizer Inc.) were bred 
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FigUre 5 | Phenotypic profile of lung neutrophils in chimeric and non-chimeric mice on day 28 p.i. c57Bl/6, P2X7−/−, c57Bl/6>cD45.1, and 
P2X7−/−>cD45.1 mice were infected with MP287/03 bacilli. Non-infected mice were used as controls. (a) Contour plots show the gate strategy used to 
analyze lung neutrophils. (B) CD11b+ cell numbers in the lungs are shown. (c) Contour plots show Ly6G expression and side scatter in lung CD11b+ cells.  
(D) Expression of Ly6G molecule and (e) numbers of Ly6G+ cells in the lungs  are shown. The cell numbers in C57BL/6 and C57BL/6>CD45.1 mice were not 
calculated (ND, not done), as lung CD11b+ cells express intermediate levels of Ly6G. Significant differences were observed for the indicated groups (*p < 0.05 and 
***p < 0.001). The data are representative of three separate experiments with three to five mice each (means ± SEM).
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at the Animal Facility of the Biomedical Science Institute, USP. 
Six- to eight-week-old mice were infected and maintained in 
microisolator cages at the Biosafety Level 3 Mice Facilities at 
the Faculty of Pharmaceutical Sciences, USP, under controlled 
temperature and humidity and were fed ad  libitum.

Mycobacteria
Dr. José Soares Ferreira Neto (Veterinary Medicine Institute, 
USP) provided the bovine M. bovis isolate (MP287/03—SB0295 
spoligotyping). Mycobacteria were cultured in Middlebrook 7H9 
medium (Difco, BD Biosciences, USA) with 0.4% sodium pyru-
vate (Sigma-Aldrich, USA), 0.05% Tween 80 (Sigma-Aldrich), 
and 10% ADC (albumin–dextrose–catalase; Difco). Frozen 
aliquots of 108 bacilli/ml, at –80°C, were thawed and cultured in 
complete medium for 7 days at 37°C. The bacilli were sonicated 
for 1  min, homogenized and maintained for 10  min at rest to 
prevent bacterial clumps, which were monitored by microscopic 
examination. The bacterial concentrations were determined by 
spectrophotometry at 600 nm.

cFU counting
The mycobacterial burden was quantified by sequential dilutions 
and the culture of tissue homogenates (lung, spleen, and liver) in 
Middlebrook 7H10 medium (Difco) with 0.4% sodium pyruvate 
and 10% OADC (oleic acid–albumin–dextrose–catalase; Difco). 
Three weeks after incubation at 37°C, the CFU numbers were 
determined.

Mouse infection
After anesthetizing mice with xylazine (Vetbrands, Brazil; 15 mg/
kg) and ketamine (Vetbrands, 100 mg/kg), a volume of 60 µl of the 
mycobacterial suspension (~100 bacilli) was introduced in the 
trachea through a short midline incision, which was then sutured 
with sterile silk (38).

lethal irradiation and BM reconstitution
Bone marrow cells were harvest from femur of C57BL/6 or 
P2X7−/− mice by flushing with PBS. A single-cell preparation 

was obtained by carefully cycling through a 26-gauge needle. 
Recipient CD45.1 mice were irradiated with a dose of 12 Gy from 
a 137Cs source. After irradiation, 2 × 107 BM cells from C57BL/6 
and P2X7R−/− mice in a volume of 200 µl PBS were transferred 
i.v. under anesthesia. The chimeric mice were housed for at least 
12  weeks before infection and were fed with water containing 
antibiotic (0.1 mg/ml of ciprofloxacin) in the first 4 weeks after 
BM transplantation.

Macroscopic and Microscopic analysis of 
the lungs
Lung relative mass was calculated (infected mouse lung weight/
control mouse lung weight). The superior lobes of the right 
lungs were fixed with 10% buffered formalin, photographed, and 
embedded in paraffin. Serial 4–5 µm sections were stained with 
HE dye to analyze the tissue alterations and by the Ziehl–Neelsen 
method to detected BAARs. The samples were examined with a 
Leica microscope (Germany), and images were captured with a 
Coolpix P995 Nikon camera (Japan).

Morphometric analysis of lung Tissue
The reduction in the percentages of pulmonary intralveolar space 
was determined as described elsewhere (13, 39). Eight random 
images of each lung HE-stained section (100× magnification) 
were analyzed using the ImageJ software (National Institutes of 
Health, USA).

cell Phenotypic analysis of lung 
infiltrates
The left lungs were dissected and digested with Collagenase type 
4 (Sigma-Aldrich; 0.5  mg/ml) at 37°C for 40  min. A syringe 
plunger (BD Bioscience) was used to disperse the cells. Cell 
suspensions were then filtered with a cell strainer (Corning 
Inc., USA) and incubated with ACK lysing Buffer (Thermo 
Fisher Scientific) at room temperature for 1  min to deplete 
erythrocytes. Cells (1  ×  106) were stained using appropriate 
combinations of FITC-, PercP-, Pecy7-, and APC-labeled 
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monoclonal antibodies to CD11b (M1/70), CD45.1 (A20), 
Ly6G (1A8) (BD Pharmingen, USA), and CD45.2 (104) 
(eBioscience). Cells were fixed with 2% paraformaldehyde 
and analyzed by flow cytometry (FACSCanto, BD Biosciences) 
using the FlowJo software.

statistical analysis
Data were statistically analyzed by Mann–Whitney test with the 
GraphPad Prism 5 software (GraphPad, USA) and were consid-
ered significantly different when p < 0.05 (5%).

eThics sTaTeMenT

All procedures were in accordance with the national regula-
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