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Cancers, including lymphomas, develop in complex tissue environments where malignant
cells actively promote the creation of a pro-tumoral niche that suppresses effective anti-
tumor effector T cell responses. Research is revealing that the tumor microenvironment
(TME) differs between different types of lymphoma, covering inflamed environments, as
exemplified by Hodgkin lymphoma, to non-inflamed TMEs as seen in chronic lymphocytic
leukemia (CLL) or diffuse-large B-cell lymphoma (DLBCL). In this review we consider how
T cells and interferon-driven inflammatory signaling contribute to the regulation of anti-
tumor immune responses, as well as sensitivity to anti-PD-1 immune checkpoint blockade
immunotherapy. We discuss tumor intrinsic and extrinsic mechanisms critical to anti-
tumor immune responses, as well as sensitivity to immunotherapies, before adding an
additional layer of complexity within the TME: the immunoregulatory role of non-
hematopoietic stromal cells that co-evolve with tumors. Studying the intricate
interactions between the immune-stroma lymphoma TME should help to design next-
generation immunotherapies and combination treatment strategies to overcome complex
TME-driven immune suppression.
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INTRODUCTION

There is a clinical need to identify novel treatments for lymphoid malignancies (1). Effective
immunotherapy promotes the killing of cancer cells by cytotoxic T cells. Immune checkpoint
blockade has demonstrated that reinvigorating anti-tumor immune activity can induce durable
responses across multiple cancer types and serves as an illustrative example of therapeutically
targeting the tumor microenvironment (TME) (2). The most promising clinical responses to PD-1
blockade have been seen in classical Hodgkin lymphoma (cHL) and primary mediastinal B cell
lymphoma (PMBL) with up to 87% overall response rate (ORR) detected in relapsed/refractory
(R/R) cHL (3). However, the efficacy of anti-PD-1 immunotherapy in non-Hodgkin lymphomas
(NHLs) including diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) has been
more modest (4). Unexpectedly, no activity was seen in a trial of anti-PD-1 therapy for R/R chronic
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lymphocytic leukemia (CLL) although PD-L1-PD-1-mediated T
cell dysfunction has been described (5–7). This clinical
experience suggests that profound immunosuppressive barriers
operate within the TME.

The current immuno-oncology era is directing attention
towards the relevance of studying the composition and
function of the immune TME, together with genomic analysis.
In this review, we discuss the current understanding concerning
the role of T cells and inflammatory signaling (“inflamed” versus
“non-inflamed” immune TMEs) in generating both endogenous
anti-tumor immune responses, as well as sensitivity to
immunotherapy. We describe how cancer immunology has
been the subject of intense research in the solid tumor field but
has been comparatively ill-defined in the lymphomas. We
highlight tumor intrinsic and extrinsic mechanisms of
resistance in generating an effective anti-tumor immune
response, before introducing an understudied area of
lymphoma research—the role of non-hematopoietic stromal
cell types in regulating anti-tumor immunity, that could also
represent a targetable obstacle that immune cells face in the
cancer-immunity cycle.
THE IMMUNE TME AND
ANTI-TUMOR IMMUNITY

It is known that the immune system can paradoxically both inhibit
andpromote tumordevelopment throughadynamicprocesswhere
complex interactions between malignant cells and the immune
system determine the fate of tumors, termed cancer
immunoediting, which progresses through three phases:
elimination, equilibrium, and escape (8, 9). During the
elimination phase, the immune system recognizes and eradicates
transformed cells; however, some tumor clones can avoid
elimination leading to the equilibrium phase during which tumor
growth iskept incheck (10).However, chronic inflammationaswell
as evolutionary pressure from immune cells, can allow tumor sub-
clones to escape immune surveillance, leading to tumor outgrowth
anddisease (10).Although cancer immunoediting has beendefined
using murine models, next generation technology is now in a
position to shed light on the relevance of these concepts for
human patients and clinical observations (11).

The immune composition of the TME is a major determinant
of tumor progression through these phases and includes innate
(natural killer cells, macrophages, neutrophils, mast cells and
dendritic cells), and adaptive (T and B cells) immune cells. The
composition of the TME in B cell lymphomas that arise in
secondary lymphoid tissues, can vary from resembling normal
reactive lymph nodes with germinal centers as seen in FL, to
tumor effacement as exemplified by CLL and DLBCL (12). In
common with solid cancers, malignant cells actively influence
the composition of the TME and educate surrounding immune
and stromal cells that can acquire pro-tumorigenic and
immunomodulatory activity.

Particular cell types of the innate and the adaptive immune
system can function in a tumor-promoting or inhibitory way
Frontiers in Oncology | www.frontiersin.org 2
with neutrophils, M2-polarized tumor-associated macrophages
(TAMs), TH2 CD4+ T cells and TRegs generally considered as
pro-tumor cells, whereas, M1-macrophages/TAMs, TH1 CD4

+ T
cells and cytotoxic CD8+ T cells are associated with anti-tumor
functions (13). Importantly, in a significant proportion of cancer
patients, including the lymphomas, there is evidence of an active
anti-tumor immune response directed against tumor-specific
(neoantigens) (14, 15) or tumor-associated antigens (16).
However, although acute inflammatory signals can stimulate
adaptive immunity, chronic inflammation can be antagonistic
and promote immune suppression. Numerous studies in solid
cancer have shown that an activated adaptive immune response
involving effective antigen presentation and interferon (IFN)
signaling, as well as sufficient numbers of T cells in the TME,
is associated with a favorable prognosis (13, 17, 18).

T Cells and Anti-Tumor Immunity
The crucial role of T cell lymphocytes as the main regulators and
effectors in anti-tumor immunity has been well established.
Seminal studies have revealed the role of immune surveillance
and the vital contribution made by adaptive immune cells in
suppressing the formation of tumors (19–21). Murine models
have shown that tumor killing is mainly mediated by cytotoxic
CD8+ T cells in both solid (13) and B cell lymphomas (22).
Elegant studies using the transgenic Eµ-TCL1 mouse model of
CLL have shown that CD8+ T cells play an important role in
controlling disease development in an IFNg-dependent manner
(23). CD8+ T cells, following successful priming, recognize
antigens presented by tumor cells on their surface in
complexes with HLA class I molecules and kill their targets,
primarily via the release of cytotoxic molecules such as perforin
and granzymes (24, 25). While the anti-tumor role of CD8+ is
generally accepted, the role of CD4+ T cells in cancer immunity is
controversial. TH1 CD4+ T cells, via the secretion of pro-
inflammatory cytokines such as IFNg and IL-2, can activate
antigen presentation and costimulatory function on antigen-
presenting cells (APCs), promote the effector differentiation of
CD8+ T cells and enhance their migration (26). However, as
mentioned above, some subsets of CD4+ cells can exhibit pro-
tumor functions. TH2-polarized CD4+ T cells secrete cytokines
that can limit CTL differentiation and proliferation such as IL-10
and IL-4, while CD4+ TRegs (FOXP3+) have significant
immunosuppressive functions through various mechanisms
and their pro-tumor role has been described in both solid
tumors and lymphomas (13, 27–29). In CLL, in vitro and
xenograft murine models have demonstrated a pro-tumor
effect of the CD4+ T cell compartment in patients, with
correlations of CD4+ subset counts and clinical outcome
supporting this role (28, 30). However, research using Eµ-
TCL1-based murine models has suggested a more complex role
of CD4+ T cells with some studies showing an anti-tumor
function (31), while others demonstrating a dispensable role
(23). Such differences likely reflect differences in the assay
systems used, and the degree to which they model complex
immune TMEs, as well as highlighting the divergent role of TH1
versus TH2-polarized CD4+ T cell subsets and their plasticity.
Interestingly, CD4+ T cells specific for immunoglobulin-derived
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neoantigens in mantle cell lymphoma (MCL) were shown to
express granzyme B and possess cytolytic function against
autologous tumor cells following their engagement and
expansion (14, 15), as previously described for granzyme B+

tumor-reactive CD4+ T cells in solid cancer (32). However,
despite their crucial roles in controlling tumor growth, T cells
become dysfunctional due to exhaustion in the chronically
inflamed TME. T cell exhaustion is characterized by low
proliferative capacity and limited effector function, due to
chronic tumor antigen exposure (33, 34). This, in combination
with a multitude of additional mechanisms covered later in this
review, allow some tumors to escape both endogenous and
therapy-mediated anti-tumor responses.

The Importance of Type I and II IFNs
in the Immune TME
Numerous studies have established the important role of the type
II IFN, IFNg as a key player in host anti-tumor immunity
through direct anti-tumor and indirect immunoregulatory
actions (19, 35–39). IFNs can suppress tumors directly by
triggering pro-apoptotic signaling or inhibiting their
proliferation, while increasing MHC expression (40), antigen
presentation (41) and promoting tumor immunogenicity, a
critical process for effective tumor recognition and elimination
by the immune system (19). IFNg strongly promotes
inflammatory responses and has been shown to augment the
function of tumor-infiltrating immune cells including CD4+ TH1
cells, CD8+ T cells, dendritic cells and macrophages, while
suppressing TH2 cells and Tregs (20, 39). Despite its pleiotropic
effects, it has been demonstrated that IFNg-expressing T cells
play a dominant role in mediating effective anti-tumor
activity (42).

Although the majority of studies have used solid tumor
models, the importance of IFNg in anti-tumor immunity has
also been shown in B cell malignancy models. Effective
lymphoma immune surveillance using murine models was
shown to be mediated by tumor-specific CD4+ T cells and
associated with proinflammatory cytokines, particularly those
that promote a TH1 phenotype including IFNg, IL-2, and IL-12
(43). As discussed above, a non-redundant role of IFNg-
expressing CD8+ T cells in suppressing CLL progression was
demonstrated using a murine transgenic model (23). Recent
work has revealed that a subset of DLBCL harboring a T cell-
inflamed TME (discussed later in this review) expressed a
number of inflammatory and effector cytokine pathways
including IFNg and TNFa (44). Moreover, a TH1 cytokine
profile including type II IFN T cell responses has been
associated with a favorable prognosis and response to
traditional chemotherapy, the immunomodulatory drug
lenalidomide and anti-PD-1 immunotherapy in NHL patients
(44–48).

Type I interferons (including IFNa and IFNb) can be
produced by all nucleated cells and act on both tumor and
immune cells (38, 49). Even though some decades-old studies
had suggested an anti-tumor activity for IFNa/b, only recently,
their role in the elimination of tumor cells and immunoediting
Frontiers in Oncology | www.frontiersin.org 3
has started to be elucidated (50, 51). Several studies have
established their direct anti-tumor effect which is mediated
through growth inhibition and/or induction of apoptosis by
the regulation of the cell cycle (G1 phase arrest) and activation
of both intrinsic and extrinsic apoptotic pathways (TRAIL, FAS
and FASL among others) (52, 53). Moreover, type I IFNs have
been shown to increase both HLA class I and tumor antigen
expression and consequently, increase immune recognition and
successful generation of an anti-tumor response (54, 55).

In addition to direct effects on tumor cells, there is substantial
evidence showing that type I IFNs mainly function through
stimulating anti-tumor immune responses that is relevant for
both natural and therapy-induced immunity. The autocrine and
paracrine circuits within the immune TME that are triggered by
type I IFN show similarity with IFNg signaling but they do not
overlap completely (50, 56). Type I IFN deficient dendritic cells
(DCs) in murine TME models have been correlated with
ineffective T cell priming (57, 58). In common with IFNg, the
ability of type I IFN to promote immune-mediated anti-tumor
activity is also through their effects on T cells. More specifically,
type I IFNs have been reported to play an important role in TH1
CD4+ T cell polarization as well as promoting the survival and
effector function of CD8+ cytotoxic T cells by increasing
granzyme expression (51, 59, 60). In addition, type I IFNs have
been shown to negatively regulate the numbers and activity of
TRegs (61) and myeloid-derived suppressor cells (MDSCs) (62).

Remarkably, in the context of hematological malignancies,
one of the earliest studies indicating a role of type I IFNs in
promoting immune-mediated anti-tumor responses was
reported in a mouse lymphocytic leukemia model (63). Recent
work has demonstrated that avadomide, a cereblon E3 ligase
modulator (CELMoD), can induce IFN signaling in DLBCL B
cells that triggered tumor apoptosis (64). In addition, the
immunomodulatory drug lenalidomide has been shown to
induce IFNb signaling in DLBCL that promotes tumor cell
death (65). In contrast, lenalidomide and avadomide have anti-
proliferative effects on CLL cells that are likely a direct effect of
IFN signaling induction but does not induce direct tumor B cell
apoptosis (66, 67). Interestingly, the fusion of IFNa to anti-CD20
antibody induced a superior anti-lymphoma effect than anti-
CD20 alone by direct and potent killing of type I IFNa receptor-
positive lymphoma cells (68). It was further demonstrated that
an important additional mechanism of action of tumor-directed
antibodies, in addition to direct anti-tumor effects, was the
induction of type I IFN in the TME that activated DC cross-
presentation and T cell activation (69). This work highlights the
potential of next-generation Ab-based immunotherapy (Ab–IFN
fusion) (70) to induce direct anti-tumor effects and reconnect
suppressed innate and adaptive immune responses in the TME
(69). However, it is worth noting that earlier work in CLL has
described conflicting data regarding a pro-survival effect when
treating CLL cells with recombinant type I (71–73) or type II
IFNs (74), that may be associated with studies using peripheral
blood-derived CLL cells, rather than tissue culture or in vivo
models that mimic activated CLL TME biology (75). Recently,
impaired IFN signaling in CLL B cells (loss of IFN regulatory
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factor 4, IRF4 using a murine model or its reduced expression in
human CLL cells) has been linked to downregulated antigen
presentation and co-stimulatory molecules that prevented the
generation of activated, exhausted T cell responses and was
associated with accelerated disease progression. In addition to
this tumor immune evasion mechanism, T cells from treatment
naïve CLL patients have been shown to express deregulated IFN
type I and II signaling genes compared to healthy age-matched
control T cells (67), in keeping with impaired IFN signaling in T
cells representing a common immune defect in cancer (76).
Together these recent findings provide evidence that reduced
IFN signaling in the CLL TME could contribute the development
of an immunosuppressive/non-inflamed TME.

Inflamed Versus Non-Inflamed Immune
TMEs
Analysis of solid cancer tumors including colorectal, melanoma,
and ovarian cancer among others has established the prognostic
significance of the type, density, and localization (immune
contexture) of immune cells that reside within the TME for
predicting a patient’s overall survival (77–80). The prognostic
power of these variables is so powerful that they led to the
development of a new scoring system termed the ‘immunoscore’,
which has been internationally validated for colorectal
carcinomas (CRC) (81). The immunoscore is based on the
quantification and localization of CD3+ and CD8+ lymphocytes
within tumors and their invasive margin and evidence so far
suggests that this alternative scoring system is a more robust
classification system for CRC for predicting survival than the
classical tumor-node-metastasis staging system (81, 82). This
was the first attempt of cancer classification/stratification
through a system which was not tumor-based but rather
immune-based, leading to a basic distinction of TMEs as T cell
inflamed (or hot) that contain high numbers of infiltrated T cells,
versus non-inflamed (or cold) phenotypes that are non-
infiltrated (3, 18).

Transcriptome profiling studies have revealed additional
molecular characteristics of T cell inflamed TMEs including
the number of tumor-infiltrating T cells and the expression of
IFN-inducible activated T cell biology gene signatures including
granzymes, chemokines, PD-L1, as well as tumor mutational
burden and neoantigen load (83, 84). In contrast, non-inflamed
TMEs are generally characterized by low or absent infiltration of
CD8+ cytotoxic T cells, low frequency of neoantigen expression,
and a paucity of IFN signaling (18, 85). It should be noted that
solid cancer and B cell lymphoma subtype TMEs fall into a
spectrum of T cell inflamed to non-inflamed phenotypes
reflecting expected heterogeneity, and can include “excluded”
phenotypes where understudied stromal cells may present a
barrier to infiltrating T cells (18). Applying the concept of
inflamed versus non-inflamed TME phenotypes to lymphoma
is challenging due to two major characteristics of these cancers.
First, lymphomas are cancers of immune cells and as a
consequence, tumor cells can regulate immunological functions
themselves, making the tumor-immune cell interaction
significantly more complex than solid tumors. Secondly, the
Frontiers in Oncology | www.frontiersin.org 4
origin and residence of malignant cells in most B cell
lymphomas are secondary lymphoid organs that serve as sites
of immune cell surveillance. Therefore, the presence of T cell
subsets or inflammatory signatures in the TME may also
represent active non-tumor immune responses. For example,
cytomegalovirus causes a marked expansion of virus-specific T
cells in CLL patients (86). However, the role of Epstein–Barr
virus (EBV) in the pathogenesis of some lymphomas may also be
a source of antigens for tumor T cell recognition (87). Regardless,
a classification of lymphomas based on inflamed versus non-
inflamed immune landscapes (‘immune contexture’) and
responsiveness to immune checkpoint blockade has been
described (3).

In the current era of immunotherapy, the characterization of
tumors according to their immune landscape is more relevant
than ever (88), as IFNg-expressing T cell inflamed tumors have
shown increased sensitivity to anti-PD-1 therapy with both
predictive and prognostic significance (83, 89–91). PD-1 has
been shown to be a negative regulator of pre-existing immune
responses in tumors, thus blocking the interaction of PD-1 with
its ligands (PD-L1 or PD-L2) prevents this inhibitory signaling
and allows tumor-specific T cells to remain activated and kill
tumor cells. Pre-clinical studies in solid cancer have suggested
that anti-PD-1 therapy cannot function in the absence of primed
tumor antigen-specific CD8+ cytotoxic T cells which express
high levels of PD-1 (exhausted phenotype) (2, 92, 93). However,
high-dimensional correlative analysis of circulating immune cells
from melanoma patients receiving anti-PD-1 immunotherapy
has revealed a more complex role of the T cell compartment
during therapy. In particular, higher numbers of PD-1+,
CTLA-4+, IL-17A+, IFNg+ activated memory CD4+ and CD8+

T cells including granzyme B+ CD4+ T cells were detected after
therapy and in responding patients (94). Interestingly, the
frequency of classical CD14+ HLA-DR+ monocytes prior to
therapy was found to be a strong predictor of response,
thought to reflect myeloid expansion triggered by IFNg
produced by activated tumor-specific and infiltrated T cells in
patients who are more likely to become responders.

Inflamed lymphomas such as cHL tumors have shown
increased sensitivity to anti-PD-1 blockade therapy and are
characterized by an unusually high immune cell infiltrate, an
inflammatory PD-L1+ TME, a high mutational burden (95) and
genetic alterations that facilitate cancer immunoediting escape
including aberrant MHC class I molecule expression (96).
Intriguingly, the majority of T cells that infiltrate HL tumors
are IFNg-expressing TH1-polarized CD4+ T cells (96, 97), which
is again at odds with the concept that PD-1 inhibition works
solely through the reactivation of MHC class I-restricted CD8+ T
cells (98), given that cHL is sensitive to this immunotherapy.
Indeed, recent immune monitoring studies have shown that
circulating cytotoxic granzyme B+, PD-1+ CD4+ T cells, as well
as PD-1+ differentiated effector CD8+ T cells are detected in HL
patients. Interestingly, only CD4+ T cell receptor (TCR) diversity
at baseline and during therapy correlated with responses to anti-
PD-1 therapy (99). Additionally, the study identified an IFN-
experienced circulating CD68+ CD4+ Granzyme B+ innate
March 2021 | Volume 11 | Article 626818

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Apollonio et al. Immune-Stroma Microenvironment in Lymphoma
effector subset in patients who responded to therapy. This
correlative data highlights the potential cytotoxic anti-tumor
capability of specific CD4+ T cell subsets that is relevant for
both solid cancers (94) and lymphomas (99–102). It is also
interesting to note that the presence of a baseline T cell
inflamed TME has correlated with improved responses to
other therapies including adoptive cell therapy in solid cancer
models (103), that may have relevance for CAR T therapy in
lymphoma (104), and the CELMoD avadomide which induced
higher responses in immune-rich DLBCL TMEs (105). However,
although a proportion of DLBCL (44) and FL tumors (106, 107)
exhibit features of T cell inflamed TMEs, the immune landscape
of the NHLs is more heterogenous with most harboring a cold or
non-inflamed environment, and are typically resistant to anti-
PD-1 therapy. A recent phase 2 study of anti-PD-1 in R/R
DLBCL following autologous transplant reported an ORR of
10%, although some patients did show encouraging disease
stabilization and durable responses (108). Non-inflamed
lymphomas are thought to contain fewer infiltrating immune
cells, particularly T cells, that can predict poor survival in DLBCL
(109). Sparse infiltration of immune cells is linked to lymphoma
intrinsic oncogenic pathways that prevent the recruitment or
retention of immune cells in TME lymphoid tissues or
downregulate APC capability (110). Interestingly, non-
inflamed lymphomas typically lack genetic aberrations that
facilitate immune escape (111). We have recently demonstrated
that CLL lymph nodes show salient features of non-inflamed
tumors including sparse numbers of CD8+ T cells relative to
reactive non-malignant tissues and low PD-L1 expression in the
TME, as well as profound T cell functional exhaustion (67).
TUMOR INTRINSIC AND EXTRINSIC
MECHANISMS THAT INFLUENCE
RESPONSE TO IMMUNOTHERAPY

It is now clear that distinct mechanisms may confer sensitivity
and resistance to different types of immunotherapy in tumors
that show a large degree of heterogeneity in their immune TMEs,
falling within the extremes of the inflamed versus non-inflamed
classification. The key factors that shape the TME include tumor
immunogenicity, oncogenic pathways, and genetic alterations
that regulate T cell infiltration and function (3, 112). The
sculpting of the immune TME is inherently interconnected
with the cancer immunoediting process. Available evidence
from studies of patients treated with immune checkpoint
blockade drugs suggests that immunoediting takes place not
only during tumor progression but, at least in some form, also in
response to therapy (9). Several factors of immune escape and
resistance to immunotherapy (innate or acquired) that have been
characterized to date, can be broadly divided in tumor-intrinsic
and tumor-extrinsic mechanisms (113, 114). While the bulk of
evidence regarding the role of these processes in regulating anti-
tumor immunity and response to immunotherapy comes from
solid tumor research, recent studies are revealing similar
mechanisms operative in the lymphomas.
Frontiers in Oncology | www.frontiersin.org 5
Tumor Cell-Intrinsic Mechanisms That
Shape the Immune TME
Tumor intrinsic mechanisms generally include genetic
aberrations that can affect antigen recognition and influence
immune function and immune contexture in TMEs including
neoantigen load (Figure 1). HLA class I and II are required for
the display and presentation of tumor-associated antigens and
consequently an effective adaptive anti-tumor response. Several
studies have reported HLA class I and II molecule loss or
downregulation in lymphomas through genetic, epigenetic or
transcriptional mechanisms. Intriguingly, acquisition of
recurrent genetic alterations in genes encoding antigen
presentation machinery appears to be a shared characteristic of
T cell inflamed lymphomas such as cHL (115) and a subset of
DLBCLs (44). This likely represents a critical cancer
immunoediting escape mechanism used by lymphoma cells to
evade the effector activity of lymphoma-specific CD8+ and CD4+

T cells. Impaired or loss of expression of HLA class I molecules is
frequently detected in HL and DLBCL but has not been reported
or is extremely rare in indolent lymphomas such as MCL,
marginal zone lymphoma and CLL (16, 115–118). The most
common mechanism leading to this altered HLA expression is
caused by mutations and deletions in the b2-microglobulin gene,
although direct genetic alterations of the HLA I genes have also
been reported (115, 117, 119). HLA class II molecule
downregulation is also observed in HL and DLBCL and
mediated mainly at a transcriptional level through inactivating
mutations CIITA, as well as homozygous deletions of
chromosome 6p21.3 (116, 136–139).

Another mechanism contributing to immune evasion in
lymphoma is the genetic overexpression of PD-L1, that is also
a common feature of checkpoint blockade-sensitive T cell
inflamed TMEs including cHL and PMBL (3). Upregulated
expression of PD-1 ligands has been found to be driven by
genetic alterations driving amplification of structural variations
(SVs) of the chromosome region 9p24.1 which contains the loci
for PD-L1, PD-L2 and JAK2 (termed the PDJ amplicon) (120–
122). PD-L1 expression is less prevalent in DLBCL, but PD-L1
gene alterations have also been detected in a subset of DLBCLs,
particularly the non-germinal center B cell (GCB) subtypes,
harboring T cell inflamed phenotypes with high numbers of
infiltrating T cells, downregulated HLA expression and
upregulation of inflammatory NF-kB, TNFa and IFNg gene
pathways (44, 120, 140). Recurrent SVs in the 3′ UTR of the
PD-L1 gene, which are thought to stabilize PD-L1 transcripts
leading to increased protein expression, have also been uniquely
described in DLBCL (141).

As mentioned earlier, type I and II IFNs are important
mediators of both innate and adaptive anti-tumor immune
function and are key players in cancer immunoediting.
Importantly, defective IFN signaling in tumor cells has
emerged as a major tumor-intrinsic resistance mechanism
during immune checkpoint blockade therapy (114, 142, 143).
Loss-of-function mutations in IFNg receptor signaling pathway
genes JAK1 and JAK2 have been seen in melanoma patients who
developed late relapses after initial successful anti-PD-1 therapy
March 2021 | Volume 11 | Article 626818
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(144), as well as patients with primary resistance to this
immunotherapy (145). Mutations in IFNg-related genes were
also observed in non-responsive patients following anti-CTLA-4
checkpoint therapy (146). This loss of IFNg receptor signaling
allows the tumor to evade the effects of IFNg produced by anti-
tumor T cells that would reduce tumor antigen presentation
capability, decrease the expression of IFN-associated
chemoattractants and promote insensitivity to the anti-
proliferative and pro-apoptotic effects of IFNg in tumor cells.
Several studies have found evidence of deregulation of tumor-
intrinsic IFN signaling in lymphoma but this has not yet been
directly linked to immunotherapy resistance. Suppression of type I
interferon by STAT3 has been described in non-GCB DLBCL,
with inhibition of STAT3 activity using ruxolitinib inducing a
synergistic growth inhibition effect when combined with the IFN-
inducing immunomodulatory drug lenalidomide (147). Evidence
for a CLL cell-intrinsic IFN signaling defect was described earlier
in this review with low expression of IRF4 associated with inferior
prognosis and associated studies supporting a novel tumor
Frontiers in Oncology | www.frontiersin.org 6
immune evasion mechanism (148). This IFN signaling defect
reduced expression of tumor genes required to activate T cells
including antigen processing and presentation, that could
contribute to resistance to immunotherapies in this disease.

In addition to altering intrinsic tumor cell properties,
oncogenic signaling has been found to contribute to the
immune contexture of inflamed and non-inflamed TMEs.
Genetic aberrations affecting MYC, p53 and NF-kB among
other genetic events can dictate the immune landscape (84,
149). Importantly, pathways including WNT-b-catenin and
MAPK signaling, as well as those associated with loss of
PTEN, have all been implicated in driving intrinsic resistance
to immune checkpoint blockade in solid tumors (114). Recent
genomic studies in DLBCL have revealed associations between
alterations in oncogenes or tumor suppressors including PTEN,
EZH2 and TP53 and reduced expression of genes linked to
immune cell activation (150). However, mechanistic data on
how oncogenic alterations promote a non-inflamed immune
TME or immunotherapy resistance in lymphomas is currently
FIGURE 1 | The immune TME in B cell malignancies. Tumor intrinsic and tumor extrinsic mechanisms associated with noninflamed/cold ( ) or inflamed/hot ( )

TMEs in B cell malignancy. The key factors that shape the TME include tumor immunogenicity, oncogenic pathways and genetic alterations that regulate T cell
infiltration and function. Note: the timeline or sequence of events during the evolution of the altered pro-tumor, yet immunoprivileged TME is a current topic in the
field. Emerging evidence from patients treated with immune checkpoint blockade drugs suggests that cancer immunoediting takes place not only during tumor
progression but also in response to therapy (e.g. the acquisition of mutations that contribute to ‘defective IFN signaling’) (8–11). Several factors of immune escape
and resistance to immunotherapy (innate or acquired) that have been characterized to date, can be broadly divided in tumor-intrinsic and tumor-extrinsic
mechanisms. Tumor intrinsic mechanisms generally include genetic aberrations that can affect antigen recognition (‘loss/reduction of HLA-I/-II molecules’) (16, 115–
119) and influence immune function (‘PD-L1/2 upregulation’) (120–122) and immune contexture in TMEs (‘oncogenic pathway deregulation’) including neoantigen
load (83, 84). Tumor cell extrinsic factors that regulate anti-tumor immunity, immune evasion or resistance to immunotherapy involve non-tumor cellular and
molecular components within the immune TME including ‘upregulation of inhibitory immune checkpoints’ (linked to chronic IFN signaling) (123–125), the ‘recruitment
of TAMs, MDSCs, TRegs’ and stromal cells, as well as ‘deregulated cytokines and EVs’ (126–130), ‘ineffective T cell priming’ and ‘T cell exclusion’ (131–135).
(Created with Biorender.com).
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lacking. Double hit GCB DLBCLs withMYC, BCL2, and/or BCL6
gene rearrangements have been shown to contain low number of
infiltrating T cells (111). These lymphomas are enriched for
EZH2 activating mutations that have recently been shown to
underlie acquired deficiency in MHC I and II expression and low
T cell infiltrates in murine lymphoid TMEs (110). Interestingly,
MYC has been shown to regulate the anti-tumor immune
response in murine models of T cell acute lymphoblastic
leukemia (ALL) and liver cancer by inducing the expression of
CD47 and/or PD-L1 immune checkpoint molecules and
recruiting TAMs, while excluding T cells among other
mechanisms (151–153). However, it should be noted that the
ability of oncogenes like MYC to control the recruitment and
function of immune cells in tumors can be counteracted by other
genetic aberrations as has been seen using the Eµ-MYC
lymphoma model (149, 154), that highlights the complexity of
defining the roles of oncogenic alterations in modulating
immune cell landscapes both within and between complex
molecular lymphoma subtypes. Conversely, oncogenes and
tumor suppression genes can equally foster an inflammatory
immune TME. One notable example in solid cancer is NF-kB
that controls cell survival and proliferation, but also production
of inflammatory cytokines (149). In common, recurrent genetic
modifications that lead to NF-kB activation have been described
in inflamed lymphomas including cHL, PMBL and a subset of T
cell-rich DLBCLs that contain PD-L1 SVs and downregulated
HLA expression (44, 155, 156). In addition, oncogenic NOTCH
signaling has been implicated in the regulation of inflammatory
DLBCLs that harbor genetic immune escape mechanisms
including inactivating CD70 and FAS mutations (157–159).
Overall, further studies involving pre-clinical murine models
will be required to define the how specific oncogenic signaling
pathways contribute to tumor-immune cell interactions and T
cell recruitment in lymphoma TMEs.

Several studies have shown that tumor neoantigens can
function as targets for anti-tumor T cells and there is a
positive correlation between tumor mutational burden and
response to immune checkpoint blockade across cancers (160–
162). In particular, deficiency in DNA repair mechanisms has
been found to be the main driver of genomic instability and has
been associated with response to immunotherapy (163).
Interestingly, mutations that lead to DNA mismatch repair
defects and microsatellite instability, as well as APOBEC
mutational signatures have been identified in PD-1 blockade
sensitive ‘‘inflamed’’ lymphomas such as cHL and PMBL;
however, these seem more rare in other B cell malignancies
(164–166). On the other hand, low tumor immunogenicity with
low frequency of neoantigen generation as is seen in CLL, is
linked to reduced intrinsic sensitivity to immune checkpoint
blockade (5, 167). However, recent antigen-presentation
profiling work is revealing that B cell lymphomas including
CLL can present immunoglobulin neoantigens (15), with
preferential MHC-II presentation that has implications for
promoting the cytolytic TH1 differentiation of neoantigen-
specific CD4+ T cells with immunotherapy, as has been
demonstrated in solid cancer (168).
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Recent studies have demonstrated that metabolically active
tumor cells chronically deprive the TME of essential nutrients
that affect T cell effector function and promote the creation of a
tolerogenic TME [metabolic reprogramming in the lymphomas
has been reviewed elsewhere (169–171)].

Tumor Cell Extrinsic Mechanisms That
Shape the Immune TME
Tumor cell extrinsic factors that regulate anti-tumor immunity,
immune evasion or resistance to immunotherapy involve non-
tumor cellular and molecular components within the immune
TME including inhibitory immune checkpoints, TAMs, MDSCs,
TRegs and stromal cells (Figure 1). Although tumor extrinsic
components have been linked to cold or non-inflamed TMEs and
response to therapy, it should be noted that their roles in cancer
immunology are highly dynamic and context dependent,
including the nature and duration of the driving forces
implicated. For example, cytokines within immune TMEs
including IL-10 (131), IL-6 (132) and TGFb (133) or
extracellular vesicles (EVs) (134, 135) are known to have
complex, context-dependent effects on both immune and
cancer cells. Although there is evidence that these secreted
factors have relevant immunomodulatory activity in B cell
malignancies including CLL (172–176) and FL (177), our
understanding of the hierarchy and cooperation required
between cytokines and chemokines or EVs and their cellular
sources for the licensing of immune evasion or the promotion of
anti-tumor immune responses is currently ill-defined.

Type I and II IFNs can act as double-edged swords in cancer,
promoting both feedforward immune activation responses
described earlier, as well as feedback inhibitory mechanisms.
Importantly, persistent IFN signaling in cancer, in common with
chronic virus infection, can be immunosuppressive by inducing
PD-L1, IDO and LAG-3 in the immune TME (123–125). Indeed,
prolonged type I and II IFN-driven expression of multiple
immune checkpoint ligands, receptors and inhibitory pathways
linked to exhaustion including PD-1, LAG-3 and TIM-3, have
been shown to be upregulated on T cell subsets during adaptive
or acquired resistance to immune checkpoint therapy (125, 178,
179). It is plausible that combination checkpoint inhibition may
be able to bypass negative feedback and multiple inhibitory
receptors as has been demonstrated using a CLL murine model
with dual anti-PD-1 and LAG-3 blockade (180). Interestingly,
CD8+ CAR T cells co-expressing PD-1 with either LAG-3 or
TIM-3 were associated with poor responses in CLL, whereas
patients who had complete and durable remissions were infused
with CAR T cells containing lower frequencies of these exhausted
phenotypes. Moreover, the clinical effectiveness of CAR T cells in
CLL was increased when co-stimulatory receptor CD27+ was
expressed on CAR T cells that may reflect a less exhausted and
functionally competent T cell phenotype (‘intrinsic T cell
fitness’) (181). This data supports the relevance of multiple
inhibitory pathways induced by IFN signaling that could
hinder CAR T therapy and promote therapy resistance.

TAMs are an important subset of terminally differentiated
myeloid cells that regulate anti-tumor immunity and response to
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therapy in many cancers including lymphoma (126, 127). Early
work demonstrated that TAMs promoted chemotherapy
resistance in cHL and in DLBCL in the pre-rituximab
treatment era (182, 183). However, TAMs have been shown to
mediate antibody-dependent cellular phagocytosis of rituximab
engaged malignant B cells, highlighting therapeutic context.
Studies have demonstrated the capability of TAMs to directly
suppress T cells through PD-L1 expression, as well as the
production of cytokines such as IL-10 and TGF-b or enzymes
that can limit effector activity (126). Interestingly, inflamed cHLs
harbor high numbers of PD-L1+ TAMs, that presumably
represent an active immune evasive strategy elicited within the
TME to suppress lymphoma-specific PD-1+ CD4+ T cells (184).
In addition, it has been shown that lymphoma cells can
upregulate expression of the membrane anti-phagocytic
protein CD47 that allows them to escape elimination by
TAMs. Combining anti-CD47 blocking antibody with
rituximab has elicited synergistic anti-tumor activity in pre-
clinical models and early clinical results have been promising
(185, 186). These studies highlight the potential to harness anti-
lymphoma TAM activity that could be combined with immune
checkpoint blockade therapy to re-educate their pro-tumor,
immunosuppressive activity and optimize immunotherapy. In
addition, MDSCs have also emerged as potentially important
regulators of immune responses, through the production of
several immunosuppressive factors (ARG1, NO, PGE2) (187),
and their presence in solid cancer TMEs correlates with
decreased efficacy of immunotherapies including checkpoint
blockade and adoptive T cell therapy (128, 129). However, a
role in contributing to immunotherapy resistance in B cell
malignancy has not been defined to date (188). Notably, in
CLL it has been demonstrated that MDSCs, characterized by a
CD14+HLA-DRlo phenotype, can be induced by malignant B
cells in vitro to suppress T cell effector function and promote
TReg-differentiation mediated by upregulation of indoleamine
2,3-dioxygenase (IDO) (189).

TRegs comprise a subtype of CD4+ cells which are mainly
defined by the expression of FOXP3 and play an important role
in maintaining self-tolerance (190). TRegs suppress effector T cells
by secretion of inhibitory cytokines including IL-10 and TGFb,
as well as direct cell contact. Indeed, many murine studies of
solid cancer have shown that the depletion of TRegs cells from the
TME can enhance or restore anti-tumor immunity (130). Studies
in CLL using the TCL1 transgenic model indicated that partial
depletion of TRegs numbers did not impact on CLL disease
progression but did result in enhanced CD8+ T cell functional
capacity (191). Increased numbers of circulating Tregs have been
found in CLL patients and correlated with disease progression
(192, 193), and lymph node tissue was shown to harbor twice the
number of these suppressive cells than the peripheral blood
compartment (194). Most immune checkpoint molecules
including PD-1 and CTLA-4 are expressed on TRegs but the
effects of checkpoint inhibitors on this T cell subset and
treatment response remain unclear. Intriguingly, studies have
suggested that anti-PD-1 immunotherapy might enhance the
immunosuppressive function of TRegs (130, 195), whereas anti-
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CTLA-4 inhibitors might deplete these cells (196). It is possible
that TRegs cells may coincide with lymphoma-specific T cells,
indicating a potentially immune-responsive tumor. Correlative
studies to determine the impact of TRegs on clinical outcomes for
lymphoma patients receiving immunotherapies should be
informative, as well as the development of targeted treatment
approaches to deplete these cells in order to activate anti-tumor
immunity (130).
STROMA CELLS AS A KEY TUMOR
CELL EXTRINSIC MECHANISM THAT
REGULATE IMMUNE RESPONSES
IN THE TME

Emerging evidence has now demonstrated that the creation of a
“cold” TME requires the coordinated intervention of several
other non-immune cell types that co-evolve with the tumor.
Cancer-reprogrammed stromal cells [endothelial cells (ECs) and
fibroblasts] acquire altered features that promote tumor
progression and contribute to immunosuppression (197). This
is achieved by a plethora of tightly orchestrated mechanisms
influencing both spatial organization and function of immune
subsets within the TME.

Evidence That Stromal Cells Regulate
Anti-Tumor Immunity in Solid Tumors
Extensive studies of tumor-associated endothelial cells (TECs) in
solid cancer are highlighting not only the significance of
angiogenesis in disease progression but also the role of tumor-
reprogrammed ECs in recruiting and polarizing immune cells in
the TME (198). EC-mediated T cell trafficking, a crucial and
highly dynamic process, is initiated by the release of chemokines,
to attract circulating leukocytes, followed by selectin-dependent
leukocyte rolling on the endothelium and integrin-induced
trans-endothelial migration (199). Multiple steps in this tightly
controlled process are disrupted in tumors.

The tumor vasculature has been found to be less functional
with abnormal ‘leaky’ vessels (200), contributing to the hypoxic
state that characterizes the majority of solid tumors. In this
hypoxic environment, ECs release nitric oxide (NO) that
suppresses the expression of leukocyte adhesion molecules
(VCAM-1, ICAM-1) (201). Decreased ICAM-1 expression on
TECs has been shown to impair T cell extravasation and has been
associated with decreased numbers of tumor-infiltrating
lymphocytes (TILs) (202).

Together with ECs, cancer-associated fibroblasts (CAFs), the
resident fibroblasts activated in a chronic inflamed TME, have
been shown to actively shape the immune infiltrate. The CAF
secretome promotes recruitment and polarization of regulatory
cells from both the innate and adaptive immune arms (203).
Recently, a subpopulation of immunoregulatory CAFs (CAF-S1)
has been functionally involved in the attraction, retention and
activation of TRegs in the breast cancer TME through the
secretion of CXCL12 (204). Moreover, other CAF-derived
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factors like Chi3L1, MCP-1 and SDF-1 drive the recruitment of
monocytes and their polarization into pro-tumoral,
immunosuppressive M2-macrophages in breast and prostate
cancers (205–207), while CAF-derived IL-6 has been shown to
promote immunosuppressive neutrophils in hepatocellular
carcinoma (208). In addition, CAF-driven abnormal
extracellular matrix (ECM) deposition and remodeling have
been shown to induce the physical trapping of anti-tumor T
cells to prevent effective tumor access (209).

Besides their role in mapping the spatial organization of
immune cells in the TME, stromal cells can also directly
influence or suppress endogenous anti-tumor immune
responses through additional mechanisms, including antigen
presentation. ECs upregulate both MHC-I and MHC-II in
response to inflammatory cytokines (such as INFg) acting as
semi-professional non-hematopoietic APCs (210). As a
consequence, ECs can mediate Ag-specific stimulation of
effector memory CD4+ and CD8+ T cells (211–215).
Interestingly, Motz and colleagues found that FasL expression
on the vasculature of human and mouse solid tumors induced
specific killing of CD8+ TILs, but not Tregs, thus skewing the
lymphocyte infiltrate towards a more regulatory phenotype
(216). Moreover, ECs can upregulate PD-L1 and PD-L2
molecules inhibiting T cell activation and cytotoxic capacity
(217–220).

Along the same lines, CAFs also directly impact the cytolytic
activity of anti-tumor effector T cells through a number of
different mechanisms. Prostaglandin E2 (PGE2) and NO
produced by tumor-associated fibroblasts dampen CD8+ T
cells proliferation in pancreatic and breast cancer respectively
(221, 222) and CAFs expressing tumor antigens promote CD8+

apoptosis via PD-L2 and FasL expression (223). Overall, these
intricate studies have shown that stromal cells shape the TME by
affecting the recruitment and function of different adaptive and
innate immune cells in solid tumors, but accumulating evidence
is now revealing that similar mechanisms are operative in B
cell malignancies.

The Importance of Stromal Cells in B Cell
Malignancies
In lymphoid organs [lymph nodes (LNs), spleen and bone
marrow (BM)] resident stromal cells engage in bidirectional
interactions with lymphocytes that directly contribute to the
shaping and function of the immune system (224, 225).
Lymphocytes enter the LN via both afferent lymphatics formed
by lymphatic endothelial cells (LECs) and peripheral circulation
through high endothelial venues (HEVs). Lymphocyte homing
to secondary lymphoid organs is coordinated by the expression
of integrin and adhesion molecules, as well as chemokine–
chemokine receptors on ECs lining HEVs (199). Emerging
evidence also shows that LN ECs also acquire distinct
immunomodulatory roles such as priming T cells (226), while
BM ECs critically influence bone marrow remodeling and
hematopoiesis, also contributing to the differentiation of
immature B cells (225). Besides ECs, lymphocytes also closely
interact with stromal cells of mesenchymal origin: mesenchymal
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stromal cells (MSCs) in the BM and both fibroblastic reticular
cells (FRCs) and follicular dendritic cells (FDCs) in the LNs.
MSCs primarily function to create a reticular network in the BM
and to produce factors essential to lymphoid lineage
development and differentiation. MSCs are also a key
component of the regenerative system and they possess the
ability to migrate to a damaged tissue, promote its repair and
suppress the associated inflammation through a number of
immunomodulatory factors (227). In the LN, FRCs and FDCs
maintain immune system homeostasis by guiding the correct
compartmentalization of immune cells through the display and
secretion of chemokines and cytokines. They also actively
participate in the control of immune responses by regulating
the recruitment and the activation status of myeloid cells and
lymphocytes using similar mechanisms to the ones described for
MSCs (228). Thus, it is reasonable to hypothesize that stromal
cells could similarly participate in shaping the immune TME,
with potential contribution to the immunosuppressive state in B
cell malignancies.

Several studies have shown that stromal cell architecture is
altered in both the BM and LN tissue compartments of patients
with different hematological malignancies (229, 230). Increased
proliferation of VEGFR-1+ neovasculature has been observed in
aggressive lymphomas (DLBCL and Burkitt’s lymphoma), and
an elevated numbers of aSMA+ mesenchymal cells described in
indolent NHLs including CLL and small lymphocytic lymphoma
(SLL) (231). Despite this general distinction, the stromal
landscape of hematological malignancies is far more complex,
with evidence that both ECs and fibroblasts cooperate in shaping
disease biology and promoting tumor progression. Angiogenesis
contributes to CLL development and correlates with disease
progression (232–234). In line with this observation,
overexpression of vascular endothelial growth factor (VEGF) in
tissue biopsies has been shown to be a promising prognostic
factor for NHL (235). In aggressive DLBCL, Lenz and colleagues
described two different stromal gene signatures (stromal 1 and
stromal 2) associated with patient survival following CHOP and
R-CHOP treatment. The ‘stromal-2’ signature comprised of
angiogenesis-associated genes (including CD31, VEGF),
increased tumor blood-vessel density and correlated with poor
prognosis following R-CHOP. On the other hand, the
prognostically favorable stromal-1 signature showed
enrichment for fibroblasts and ECM-associated genes (236).
The importance of fibroblasts in aggressive lymphoma was
functionally demonstrated in the Eµ-Myc mouse model, where
expanded FRCs created a pro-tumor niche directing the homing
and survival of lymphoma cells in the spleen (237). It has also
been demonstrated in CLL using the Em-TCL1 murine model,
that splenic stromal cells co-evolve with disease, in particular an
expansion and reprogramming of splenic fibroblasts that
produce the pro-B cell cytokine CXCL13 (238). To complicate
the picture further, endothelial and mesenchymal cells are
intimately linked to each other as exemplified by PDGF-
activated MSCs in CLL that were shown to up-regulate VEGF
production and promote the ‘angiogenic switch’ associated with
disease progression (239). The importance of crosstalk in CLL
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between tumor cells and stroma cells has been recently reviewed
by Dubois et al. (240).

Malignant B Cells Hijack Stromal Cells
in the Lymphoma TME
Altered vascular patterns and angiogenesis characterize
aggressive and indolent lymphomas (241, 242). Tumor B cells
secrete pro-angiogenic factors such as VEGF (243, 244), that
promote the activation of endothelial cells and neoangiogenesis.
In turn, as highlighted by numerous studies in CLL (245–248)
and other hematological malignancies (249, 250), activated ECs
critically contribute to malignant B cell survival through factors
such as B-cell activating factor (BAFF) (245, 251, 252)
(Figure 2A).

Moreover, CLL and HL cells secrete EVs that promote the
acquisition of a CAF-like phenotype in previously healthy ECs
and fibroblasts from different origins (267, 268). Importantly,
tumor-derived EVs can also modulate other cellular components
of the TME (269), and their role in B-cell malignancies has been
recently reviewed (135).

In multiple myeloma (MM), the combination of both soluble
(SDF-1a) and membrane-bound factors (integrins) induce
stroma activation (ECs and BM-MSCs) (263), while in FL and
CLL, tumor-derived TNFa and lymphotoxin (LT) are involved
in the remodeling of BM-MSCs and LN-FDCs respectively (253,
254). These tumor-specific factors ultimately converge in the
activation of NF-kB-dependent transcriptional programs (253,
263) that promote the secretion of pro-inflammatory soluble
mediators involved in the enhancement of cancer survival (255)
and in the modulation of TME immune infiltration (Figure 2A).

Evidence for the Immunomodulatory Roles
of Reprogrammed Stromal Cells in
B Cell Malignancies
As described above, tumor-activated stroma has a direct impact
on the retention of tumor B cells and could therefore impact the
recruitment or exclusion of other lymphocytes via similar
mechanisms. The upregulation of adhesion molecules on EC
surfaces (250) may negatively impact T cell trans-endothelial
migration, which is a critical step of T cell homing into the LNs
(270). In CLL, CD4+ and CD8+ T cells exhibit impaired integrin
lymphocyte function-associated antigen-1 (LFA-1)–driven
migration (271). Altered expression of adhesion molecules on
TECs, together with T cell motility defects, could therefore block
effective T cell trafficking into LN tissues.

Although studies showing a direct impact of activated
endothelium on T cell recruitment in hematological
malignancies are lacking, recently de Weerdt et al. revealed
that CLL LNs contained twice the amount of TRegs and a lower
frequency of cytotoxic lymphocytes compared to the peripheral
blood compartment (194). Under inflammatory conditions,
activated ECs induce the expansion of TRegs (215, 216) and the
proliferation of memory CD4+ T cells (272), and it could be
speculated that similar mechanisms occur in the CLL TME.

Despite the lack of evidence for ECs, several studies have
demonstrated the contribution of mesenchymal cells in the
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regulation of immune infiltration in B cell malignancies. In a
mouse model of aggressive lymphoma, where tumor cells rely
less on the TME for survival, the co-injection of MSCs with
tumor cells induced a marked increase of immune cells including
CD4+ T cells, CD11b+ cells, CD4+Foxp3+ TRegs, and
CD11b+Ly6C+Ly6G− MDSCs (256), demonstrating that the
CAF secretome can modulate the recruitment and/or
polarization of different immune subpopulations. In another
model of aggressive lymphoma (Eµ-Myc), T cell zone resident
stromal cells were shown to selectively retain CD4+ T cells in the
TME to support tumor progression via CD40L signaling (237).

In FL, where tumor cells strongly depend on TME interactions,
stromal-derived IL-6 supports the survival of T-follicular helper
(TFH) and T-follicular regulatory (TFR) cells (257). TFH cells, that
sustain lymphoma through a number of mechanisms (258), were
also shown to establish a feedback loop with stromal cells. IL-4, the
predominant cytokine produced by TFH, was shown to trigger
production of CXCL12 by FRC-like stromal cells, thus supporting
FL tumor cell activation and survival (259). Additionally, FL-
associated stroma (BM-MSCs) derived CCL2 and IL-8 were
shown to promote the recruitment of monocytes/TAMs and
neutrophils respectively, using in vitro assays (253, 260). Once
in contact with FL-MSCs, monocytes/TAMs have been
demonstrated to acquire an immunosuppressive phenotype with
a reduced capacity to respond to pro-inflammatory stimuli such as
LPS, while neutrophils supported the inflammatory stromal
phenotype. Also in MM, malignant B cells have been shown to
induce MSCs to secrete pro-tumor cytokines, as well thymic
stromal lymphopoietin (TSLP) that activated TH2-type
inflammation in the BM TME resulting in tumor progression
(261) (Figure 2B).

Another important mechanism of how stromal cells
contribute to an immunosuppressive TME is through the
expression of immune checkpoint molecules. Lymphoma-
derived ECs preferentially express TIM-3. Expression levels of
TIM-3 in the B-cell lymphoma endothelium has been correlated
with poor prognosis and TIM-3+ ECs suppressed the activation
of CD4+ T cells inhibiting TH1 polarization in vitro and in vivo
(273). In DLBCL, besides its expression on tumor and immune
cells described earlier in this review, PD-L1 has also been
associated to the non-malignant cellular compartment
(“microenvironmental PD-L1”or mPD-L1) (262). Our own
work has reported that PD-L1 upregulation on lymphoma-
educated stromal cells can dampen TIL cytolytic killing activity
against DLBCL tumor cells, highlighting that stromal cells
expressing inhibitory ligands can directly modulate anti-tumor
immune responses (274).

In addition to expression of immunomodulatory immune
checkpoints, both LN and BM-derived stromal cells can adopt a
number of other immunosuppressive mechanisms to modulate
immune responses (Figure 2B). In MM, MSCs exhibit a
distinctive gene expression profile compared to healthy MSCs,
characterized by the expression of a number of immunoregulatory
factors and cytokines including NOS2, IL-10, IL-6 and TGF-b,
involved in the generation and activation of MDSCs (263, 264). In
FL, MSCs also produce prostaglandin E2 (PGE2) that not only
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promotes neutrophil survival, but can have additional effect on
other immune subpopulations (260). In physiological conditions,
MSCs and LN-fibroblasts produce IDO to keep activated immune
responses in check by inhibiting T cell proliferation, a mechanism
also described in solid tumors (265). In FL, MSCs-derived IDO
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was also shown to repress not only T cell proliferation, but also the
pro-lymphoma activity of stromal cells, highlighting the complex
effects of cytokines in the TME (266). Clearly, our understanding
of the immunomodulatory function of the different stromal cell
populations that reside within lymphoma TMEs is still in its
A

B

FIGURE 2 | Stroma cells as key players in regulating immune responses in the TME of B cell malignancies. (A) Tumor cells and tissue-resident stroma (endothelial
cells (ECs) and FRCs [fibroblastic reticular cells)/MSCs (mesenchymal stromal cells)] engage into complex bidirectional interactions that promote cancer progression
while simultaneously altering the stroma cell phenotype which can then further contribute to resistance to therapy. Tumor B cells induce neoangiogensis and the
upregulation of adhesion molecules on ECs (243–245, 248, 252). Similarly, lymphoma cells through cell-to-cell contact interactions, secretion of soluble factors and
extracellular vesicles (EVs) promote the activation of FRCs and MSCs that contribute to increased tumor survival and neoangiogensis (135, 253–255). (B) Unlike solid
tumors the investigation of the immunosuppressive roles of stroma cells in the lymphoma TME is still in its infancy. Stromal cells play a crucial role in spatial
organization of the TME as they can retain immunoregulatory cells and possibly actively exclude anti-tumor effector cell populations (237, 253, 256–261). Additionally,
lymphoma ECs and FRCs upregulate immune checkpoints such as TIM-3 and PD-L1 (261, 262) and secrete immunoregulatory factors such as IDO and IL-10 that
block T cell proliferation, while activating immunosuppressive cells (263–266). FRCs have been also found to drive the survival of pro-tumoral immune subsets such
as TFH, TH2 and TAMs (257–260). (Created with Biorender.com).
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infancy. However, it is becoming clear that different non-
hemopoietic cells within lymphoid TMEs can alter the
recruitment, polarization and function of immune cells,
suggesting that the tumor stroma may also influence immune
responses elicited by current immunotherapy.
IMMUNE AND STROMA TARGETED
IMMUNOTHERAPY TO ACTIVATE
ANTI-LYMPHOMA ACTIVITY

A number of studies have shown that the TME can interfere with
clinical response to tumor-targeting therapy via different
mechanisms. Reduced macrophage infiltration in the BM of
ALL mice limits the response to anti-CD20 antibodies
(alemtuzumab) (275), while adhesion to BM-derived stromal
cells provides protection to CLL cells from rituximab-induced
apoptosis (276). On the other side, tumor-targeting drugs can
have indirect effects on the TME that may boost clinical
responses. In CLL, there is evidence that ibrutinib treatment
alleviates T cell exhaustion (277), while chemotherapy-induced
cancer cell death promotes the exposure of tumor neoantigens
and could re-invigorate anti-tumor immune responses (278).
Understanding how the TME is shaped by currently available
treatments can help to understand resistance mechanisms and to
design combination therapies to boost clinical responses.

The immuno-oncology era has introduced a vast array of
drugs designed to engage and promote innate and adaptive
immune responses within the TME. Thus, lymphoma therapy
is changing dramatically with the introduction of several new
therapeutic approaches, including the use of checkpoint
inhibitors (3). However, as described here, only a subset of
patients achieve long-lasting responses to anti-PD-1
monotherapy even if they harbor inflamed TMEs. This clinical
experience, together with the lack of clinical activity of anti-PD-1
in NHL (108) and CLL (5), has highlighted the need to
incorporate checkpoint blockade therapies into more powerful
combinations to unleash the power of anti-tumor immune cells,
with potential therapeutic partners including CELMoDs and
immunomodulatory drugs, CAR T cells and bispecific
antibodies (Figure 3).

As discussed earlier, there is substantial evidence
demonstrating that type I and II IFN signaling is required
within TMEs to prevent development of an immunosuppressive
state (37, 49). Recent work by our group has demonstrated that the
CELMoD avadomide can induce type I and II IFN signaling in the
T cell compartment that sensitizes CLL to anti-PD-1 or anti-PD-
L1 checkpoint blockers (67). Avadomide was shown to trigger a
feedforward cascade of reinvigorated T cell responses, as well as
IFN-inducible feedback inhibition through upregulation of PD-L1.
Patient-derived xenograft tumor models revealed that inducing
IFN-driven T cell responses with avadomide could convert non-
inflamed CLL tumors into CD8+ T cell-inflamed TMEs that
responded to anti-PD-L1/PD-1-based combination therapy. This
pre-clinical study provides encouraging proof of concept that
inducing inflammatory IFN type I and II signaling in patient T
Frontiers in Oncology | www.frontiersin.org 12
cells can successfully re-shape anti-tumor T cell responses and
sensitize CLL to immunotherapy (67).

The re-activation of autologous anti-tumor immune
responses has been also demonstrated in a number of different
hematological malignancies by using “off the shelf” bispecific T
cell engager (BiTE) antibodies. This dual binding of both
neoplastic cells and tumor-infiltrating lymphocytes is providing
an attractive therapeutic approach for B cell malignancies (279).
Blinatumumab, a BiTE with dual specificity for CD3 and CD19,
has shown activity in ALL and in different NHL, and has been
approved by FDA in 2014 (280). However, due to its short half-
life, Blinatumumab requires continuous infusion for weeks,
causing patients discomfort. Moreover, the occurrence of
different resistance mechanisms described for ALL patients
(effector T cell exhaustion/dysfunction and expansion of TRegs),
prompted the optimization and testing of alternative BiTE drugs
in recent years [reviewed in (288)]. Among them, the T cell
bispecific (TCB) antibody drug CD20-TCB (RG6026), with its
2:1 CD20-CD3 binding format, has shown superior potency in T
cell activation and increased half-life in pre-clinical settings
(281). CD20-TCB can be efficiently combined with the
bispecific antibody fusion protein CD19-4-1BBL, that provides
co-stimulatory signals to tumor-engaged immune cells (T cells or
NK cells) and this combination immunotherapy has been shown
to promote intratumoral TILs accumulation and increased anti-
tumor efficacy in preclinical models of NHL (282). These pre-
clinical results suggest that combination immunotherapy may
achieve better clinical responses and overcome immune
suppression in the TME. Currently, BiTEs and CD20 TCBs,
including RG6026, are being evaluated in B cell malignancy
patients with activity detected.

CD19-directed CAR-T cells have shown remarkable efficiency
in the treatment of ALL and aggressive NHL (283, 289, 290) and,
along the same line, new CD19-CAR-NK cells are showing
effective anti-tumor activity with minor side effects (291).
Indeed, CAR-T cell therapy has been the first FDA-approved
cellular therapy in lymphoma [covered in a recent review (4)].
Despite this clinical success, emerging data is showing that
durable responses induced by CAR Ts are seen in only a
subset of patients and their anti-tumor activity depends on the
persistence of CARs (181). While peripheral blood analysis of
treated patients has shown that CAR-T concentrations peak at 14
days post-infusion (292), recent data has demonstrated that only
a minimal amount of CAR-T cells infiltrate TME tissue at 5 days
post-infusion, and that virtually no CAR-Ts were present in the
TME 10 days following infusion (104). These results support the
concept that the stroma-rich TME may contain ill-defined
immunosuppressive mechanisms that interfere with the
effective trafficking and optimal activation of anti-tumor
immune cells using current immunotherapies.

Combining immunotherapy with drugs that target stromal
cells is an attractive, next-generation treatment strategy.
Different approaches can be adopted to target stromal cells in
cancer including the direct targeting of fibroblasts/ECs or their
associated proteins, activated signaling pathways or secreted
factors. The majority of studies to date targeting tumor stroma
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have used solid cancer models, establishing a strong rationale for
developing therapies for hematological malignancies. A strong
case in point is fibroblast activating protein (FAP), a cell-surface
serine protease which is expressed at high levels on tumor stroma
and has been considered a suitable therapeutic candidate on CAFs
for some time. Several FAP-specific pharmacological approaches
(vaccines, CAR-T cells) designed to selectively target CAFs, were
shown to induce tumor regression indifferentmurinemodels (284).
However, depletion of FAP+ fibroblasts has been shown to cause
profound systemic immune-mediated toxicity, indicating their
importance not only in cancer but also in physiological tissue
functions (293). This example suggests that caution should be
taken in considering direct elimination of stromal cells forming
the TME given their critical functions in tissue architecture and
immune homeostasis. Therefore, therapies designed to ‘normalize’
or ‘re-educate’ aberrant stromal cells by targeting or overcoming
their pro-tumor, immune evasive pathways couldbemore clinically
relevant (Figure 3).

To this direction, stromal cell normalization can be achieved by
directly blocking or neutralizing cancer-secreted factors that
promote stromal cell activation. To date, in lymphoma this
approach has been exploited through the use of endostatin, an
endogenous inhibitor of angiogenesis which inhibits matrix
Frontiers in Oncology | www.frontiersin.org 13
metalloproteinases (MMP) activity and blocks VEGF binding to
VEGFR-2. Administration of endostatin in lymphoma-bearing
mice was shown to delay tumor growth (285). Imatinib, a
PDGFRb inhibitor, has also been shown to disrupt lymphoma
angiogenesis by targeting vascular pericytes (286). Moreover, as
PDGFR ligation also has a role in promoting fibroblast activation,
the use of specific inhibitors can also affect fibroblast differentiation
and function in the TME. As described above, TGFb, TNFa and
LT are all master regulators of immunosuppressive fibroblast
function in hematological malignancies, and the use of
neutralizing antibodies against these molecules could provide an
interesting approach for stroma normalization, as already
demonstrated in solid tumors (294). Combined blockade of
TGFb and anti-PD-1 in MM has been shown to promote anti-
tumor T cell activation and proliferation, indicating that targeting
the different immunosuppressive pathways occurring in the TME
can reactivate endogenous anti-tumor immune responses and
favor tumor clearance (287).

In conclusion, understanding the functional role of stroma
and its specific features will help to design new combination
immunotherapies to improve clinical responses. An example of
effective immune-stroma dual targeting therapy comes from
recent work from Claus and colleagues in solid tumors (282),
FIGURE 3 | Targeting strategies to activate anti-tumor immunity in the TME. Therapeutic strategies include re-activation of autologous anti-tumor immune responses
using CELMoDs (e.g. avadomide) (67) or T-cell bispecific antibodies and fusion proteins (CD20-TCB, CD19-4-1BBL, Blinatumumab) (279–282). Anti-tumor immunity
can also be induced by transferring CAR-T/NK effector cells that directly target cancer cells (CD19-CAR-T) (283). In addition, cancer-associated stroma can be
efficiently targeted to boost anti-tumor immunity, and fibroblasts-specific pharmacological approaches (anti-FAP antibodies or CAR-T) have been shown to induce
tumor regression (284). Tumor stroma can also be ‘normalized’ by blocking or neutralizing cancer-secreted factors that promote stromal cell activation (Endostatin,
Imatinib, anti-TGFb) (285–287). Moreover, the presence of cancer-stroma-specific proteins can be used to activate tissue resident anti-tumor T cells using stroma-
specific/T cells co-stimulatory fusion proteins (FAP-4-1BBL) (282). (Created with Biorender.com).
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where the combination of tumor antigen-TCB (CEA-TCB) with
a stroma-specific/T cell co-stimulatory fusion protein (FAP-4-
1BBL) promoted tumor remission and accumulation of activated
CD8+ in the TME (Figure 3).
CONCLUSIONS

Immunotherapy has revolutionized cancer treatment, achieving
significant responses in patients with B cell malignancies, although
sensitivity and resistance remain major challenges. Despite the
extreme inflamed vs non-inflamed classification of immune
TMEs, most B cell malignancies and their subtypes show a high
degree of heterogeneity that likely influences responses to
immunotherapy. For this reason, it is crucial for further research
Frontiers in Oncology | www.frontiersin.org 14
to fully unravel TME complexity including the major tumor
intrinsic and extrinsic drivers of immune composition and
spatial organization of immune and stromal cell subsets.
Defining how malignant B cells alter both immune and stromal
cells, as well as how these reprogrammed cells contribute to the
creation of a pro-tumor and immunosuppressive TME will be
essential to design next-generation immunotherapies and
combination treatment strategies to overcome TME-driven
immune suppression and optimize therapy for patients.
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GLOSSARY
CLL chronic lymphocytic leukemia

SLL small lymphocytic lymphoma
DLBCL diffuse large B-cell lymphoma
cHL classical non-Hodgkin lymphoma
NHL non-Hodgkin lymphoma
MM multiple myeloma
PMBL primary mediastinal B-cell lymphoma
FL follicular lymphoma
MCL mantle-cell lymphoma
ALL acute lymphoblastic leukemia
CRC colorectal carcinomas
EBV Epstein–Barr virus
GCB non-germinal center B-cell subtype
R/R relapsed/refractory
ORR overall response rate
TME tumor microenvironment
LN(s) lymph nodes
BM bone marrow
TILs tumor-infiltrating lymphocytes
TAMs tumor-associated macrophages
APCs antigen-presenting cells
DCs dendritic cells
NK(s) natural killer cells
FDCs follicular dendritic cells
MDSCs myeloid-derived suppressor cells
ECs endothelial cells
TECs tumor-associated endothelial cells
LECs lymphatic endothelial cells
BECs blood endothelial cells
HEVs high endothelial venules
FRCs fibroblastic reticular cells
CAFs cancer-associated fibroblasts
MSCs mesenchymal stromal cells
PD-1 programmed cell death protein 1
IFN interferon
HLA human leukocyte antigen
IL- Interleukin-
MHC major histocompatibility complex
TRAIL TNF-related apoptosis-inducing ligand
CELMoD cereblon E3 ligase modulator
IRF4 IFN regulatory factor 4
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
CAR T
cells

chimeric antigen receptor T cells

JAK2 Janus kinase 2
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
STAT3 signal transducer and activator of transcription 3
MAPK mitogen-activated protein kinase
PTEN phosphatase and tensin homolog
EZH2 enhancer of zeste homolog 2
TP53 tumor protein P53
BCL2 B-cell lymphoma 2
TGF-b transforming growth factor beta
EVs extracellular vesicles
ARG1 arginase 1
IDO indoleamine-pyrrole 2,3-dioxygenase
LAG-3 lymphocyte activation gene-3
TIM-3 T-cell immunoglobulin and mucin-domain containing-3
FOXP3 forkhead box p3
NO nitric oxide
ICAM-1 intercellular adhesion molecule 1
VCAM-1 vascular cell adhesion protein 1
CXCL C-X-C motif chemokine ligand

(Continued)
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CXCR C-X-C motif chemokine receptor
CCR (C-C motif) chemokine receptor
SDF-1 stromal cell-derived factor 1
MCP-1 monocyte chemoattractant protein-1
Chi3L1 chitinase 3 like 1
ECM extracellular matrix
PGE2 prostaglandin E2
VEGF vascular endothelial growth factor
aSMA alpha smooth muscle actin
R-)
CHOP

(rituximab-) cyclophosphamide doxorubicin hydrochloride
(hydroxydaunorubicin) vincristine sulfate (Oncovin) and prednisone

PDGF platelet-derived growth factor
BAFF B-cell activating factor
LT lymphotoxin
TSLP thymic stromal lymphopoietin
NOS2 nitric oxide synthase 2
FAP fibroblast activating protein
March 2021 | Volume 11 | Article 626818

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Understanding the Immune-Stroma Microenvironment in B Cell Malignancies for Effective Immunotherapy
	Introduction
	The Immune TME and Anti-Tumor Immunity
	T Cells and Anti-Tumor Immunity
	The Importance of Type I and II IFNs in the Immune TME
	Inflamed Versus Non-Inflamed Immune TMEs

	Tumor Intrinsic and Extrinsic Mechanisms That Influence Response To Immunotherapy
	Tumor Cell-Intrinsic Mechanisms That Shape the Immune TME
	Tumor Cell Extrinsic Mechanisms That Shape the Immune TME

	Stroma Cells as A Key Tumor Cell Extrinsic Mechanism That Regulate Immune Responses in the TME
	Evidence That Stromal Cells Regulate Anti-Tumor Immunity in Solid Tumors
	The Importance of Stromal Cells in B Cell Malignancies
	Malignant B Cells Hijack Stromal Cells in the Lymphoma TME
	Evidence for the Immunomodulatory Roles of Reprogrammed Stromal Cells in B Cell Malignancies

	Immune and Stroma Targeted Immunotherapy to Activate Anti-Lymphoma Activity
	Conclusions
	Author Contributions
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


