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E V O L U T I O N A R Y  B I O L O G Y

Proteotype coevolution and quantitative diversity 
across 11 mammalian species
Qian Ba1†, Yuanyuan Hei1†, Anasuya Dighe2,3, Wenxue Li1, Jamie Maziarz2,3, Irene Pak2,3, 
Shisheng Wang5, Günter P. Wagner2,3,4,6*, Yansheng Liu1,7*

Evolutionary profiling has been largely limited to the nucleotide level. Using consistent proteomic methods, we 
quantified proteomic and phosphoproteomic layers in fibroblasts from 11 common mammalian species, with 
transcriptomes as reference. Covariation analysis indicates that transcript and protein expression levels and vari-
abilities across mammals remarkably follow functional role, with extracellular matrix–associated expression being the 
most variable, demonstrating strong transcriptome-proteome coevolution. The biological variability of gene 
expression is universal at both interindividual and interspecies scales but to a different extent. RNA metabolic 
processes particularly show higher interspecies versus interindividual variation. Our results further indicate that 
while the ubiquitin-proteasome system is strongly conserved in mammals, lysosome-mediated protein degrada-
tion exhibits remarkable variation between mammalian lineages. In addition, the phosphosite profiles reveal a 
phosphorylation coevolution network independent of protein abundance.

INTRODUCTION
Despite the scalable nucleotide sequencing performed in evolutionary 
biology, it is ultimately protein abundances and activities that, to a 
large part, define the organism phenotype. Recently, a qualitative pro-
teome landscape for 100 taxonomically diverse organisms was es-
tablished by mass spectrometry (MS)–based analysis (1). However, 
a quantitative evolutionary comparison of proteomes across multiple 
species, such as mammals, represents, so far, uncharted territory. Ribo-
some profiling (Ribo-seq) was used as a proxy for quantifying proteins 
synthesized, which revealed coevolutionary patterns across the 
transcriptome and translatome in five mammals (2). However, both 
the proteome dynamic range and protein degradation cannot be directly 
measured by Ribo-seq. On the other hand, the recently developed re-
producible proteomic workflow exemplified by data-independent 
acquisition (DIA) MS has achieved favorable reproducibility and 
quantitative performance for the global proteome (3, 4), with data quality 
thoroughly and widely assessed (5–8). However, a systematic, unbiased 
multispecies quantitative effort has been lacking to link individual vari-
ability to species level variability (9) and to understand phosphorylation 
signaling among multiple species in a comprehensive manner.

RESULTS
Steady-state and diverse proteotype across  
11 mammalian species
Proteotype is defined as the proteome complement of a genotype (10, 11). 
To understand the functional and molecular basis of proteotype 

evolution in mammals, we profiled the steady-state proteomes and 
phosphoproteomes of primary skin fibroblasts from 11 common 
mammalian species (Fig. 1A) by DIA-MS (12, 13). Considering that 
different cell types present a major variable factor in profiling gene 
expression (14–16), we here exclusively analyzed cultured fibroblast 
cells commonly used for evolutionary studies (fig. S1). The mam-
malian species we analyzed represent two major phylogenetic clades, 
Euarchontoglires (EAOG: primates, rodents, and their relatives) and 
Laurasiatheria (LAUT: carnivores, hoofed animals, and their relatives), 
together with an evolutionarily distant species, Monodelphis domestica 
(opossum), a marsupial, as the outgroup. The EAOG taxon samples 
include Oryctolagus cuniculus (rabbit), Rattus norvegicus (rat), Macaca 
mulatta (monkey), and Homo sapiens (human), whereas the LAUT taxon 
samples include Ovis aries (sheep), Bos taurus (cow), Sus scrofa (pig), 
Canis lupus (dog), Felis catus (cat), and Equus caballus (horse). For 
clarity, the short common names of the species are used hereafter.

Our spectral library-free DIA-MS (4, 17) was able to detect an 
average of 6490 protein groups [peptide and protein false discovery 
rates (FDRs) < 1%] (18) in the fibroblasts of different species, ranging 
from 5968 (dog) to 7165 (human) identified proteins. In most species, 
our phosphoproteomic analysis measured >8000 unique, confidently 
localized phosphosites (P-sites) despite limited species-specific pep-
tide mixtures acquired. In addition, we profiled the mRNA levels 
for an average of 12,400 genes in all the samples by mRNA sequencing 
(RNA-seq) to study possible posttranscriptional regulations (Fig. 1A 
and tables S1 and S2). To quantify the molecular traits across the 11 spe-
cies, the mRNA, protein, and P-site levels were further compared after 
a one-to-one gene ortholog mapping between species, using the Ensembl 
Biomart tool (see Materials and Methods) (19). This gene-centric 
mapping filtered 4353 transcripts [transcripts per million (TPM) > 1], 
1660 proteins, and 546 phosphoproteins (containing 611 P-sites) 
being overlapping across species (fig. S2A and table S3). All the in-
dividual replicates clustered together in the hierarchical clustering 
analysis based on both mRNA and protein quantities (Pearson 
R = 0.9822 and 0.9855; fig. S2, B to E). The overall coefficient of varia-
tions (CVs) of the experimental replicates at both mRNA and pro-
tein levels are comparable, most of which (86.59% for transcripts and 
88.59% for proteins) are <20% (fig. S2, F and G). Considering the 
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similarly great reproducibility demonstrated for phosphoproteomic 
DIA workflow (4,  20), together, our datasets enabled a deep and 
precise quantification of proteotype and covarying signaling at each 
molecular layer (fig. S3) in mammals.

We subsequently explored the extent of regulation at different 
molecular layers. First, according to principal components analysis 
(PCA) (Fig. 1B), we found that, compared to the matched mRNA data, 
the proteome data showed a smaller power in separating EAOG and 
LAUT (90 Ma ago), indicating substantial proteotype variability. The 
phosphoproteome data also showed a limited separating power, which 
might be partially due to the low coverage of phosphoproteome across 
species. The transcriptome and proteome of opossum (160 Ma) are 
both quantitatively distant from EAOG and LAUT species, as expected. 
Second, we analyzed mRNA~protein and protein~P-site relationships on 
the absolute scale. Within each species, the mRNA-protein correlation 
is as high as 0.52 to 0.64 (Spearman rho; Fig. 1C and fig. S4), similar 

to previous single-species reports (21–23). Thus, mRNA quantities seem 
to determine the protein abundances in all mammalian cells tested to 
a globally similar extent. In contrast, the absolute protein abun-
dances only poorly predict the P-site intensities (rho = 0.10 to 0.15; 
Fig.  1D) (4). Third, we determined the gene-specific and P-site–
specific quantitative correlations in the relative scale. We found that 
cross-species mRNA~protein correlation is centered at Spearman’s 
rho of merely 0.224, based on all quantified mRNA~ protein pairs 
across species (n = 1656; Fig. 1E), arguing for pervasive protein level 
remodeling between species. Because of the removal of detectability 
bias among P-sites, the cross-species protein~P-site correlation is 
higher than the within-species comparison but still weak for many 
P-sites (mean of rho for all P-sites, 0.326). Furthermore, the rho dis-
tributions for mRNA~protein and protein~P-site tend to be gene 
function class dependent (Fig. 1, F and G). We discovered that, for 
example, the mRNA~protein correlation across species is much higher 
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Fig. 1. Identification and quantification overview of transcriptome, proteome, and phosphoproteome across 11 mammalian species. (A) Phylogenetic relationships 
among 11 mammalian species including 10 Boreotherian mammals and the opossum M. domestica as an outgroup. In Boreotherian mammals, six LAUT were colored as red, 
and four EAOG were colored as blue. The transcriptome, proteome, and phosphoproteome in skin fibroblast cells of all these species were shown in Circos plots. The identifi-
cation numbers of mRNA (TPM > 1), protein, or P-sites in individual species are shown in green, red, and blue colors; created with BioRender.com. (B) Principal component 
analysis (PCA) of mRNA, protein, and P-site profiles in 11 species. (C and D) Within-species correlation between different layers [mRNA~protein (C) and protein~P-site (D)] of all 
genes/sites in individual species. Spearman’s rho for every species was individually calculated from all detected genes/sites in single species. (E) Gene-specific and cross-species 
correlation between different layers (mRNA~protein and protein~P-site). Spearman’s rho for every gene/site was individually calculated from the dataset of 11 species. All 
rho values were then summarized as violin plots. (F and G) Representative pathways showing different distribution of mRNA~protein (F) and protein~P-site (G) correlation.
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for “secretome” (mean of rho = 0.464) than other processes such as 
“ubiquitin-mediated proteolysis” (rho = 0.027). The protein~P-site 
correlation rho was merely 0.245 for “cellular component movement.” 
Therefore, both posttranscriptional and phosphorylation-mediated 
regulations among mammals are extensive and gene function specific.

Transcriptome-proteome coevolution across gene classes
Phylogenetic relationships can cause nominal correlations among 
variables even when the variables are in fact evolving independently. 
To associate mRNA and protein levels with evolutionary process, 
we performed phylogenetically independent contrast (PIC) analy-
sis to remove the effect of phylogenetic history (see also Materials 
and Methods and fig. S5) (24). The thus determined mRNA and 
protein PICs across phylogenetical nodes are still positively correlated 

(averaged R = 0.306; fig. S5, A and B), confirming strong transcriptome- 
proteome coevolution along the phylogeny. The top mRNA~protein 
coevolving genes are WDR13, XRCC5, GCN1, and others (fig. S5C). 
To compare coevolution between strongly correlated (R > 0.8) and 
noncorrelated (|R| < 0.2) genes, we determined the signed geometric 
mean of mRNA and protein PIC values as a proxy, which integrates the 
direction and size of evolution. We found that highly correlated 
mRNA-protein pairs tend to coevolve at all episode nodes through-
out the phylogenetical tree (fig. S6 for C12 to C21). For example, at 
node C13 that separates EAOG and LAUT clades, geometric means of 
mRNA and protein PIC are mostly positive and much higher if 
mRNA~protein correlation is high (P = 2.4 × 10−13) (Fig. 2A). By 
mapping the number of protein-protein interactions in the STRING 
(search tool for retrieval of interacting genes/proteins) database (25) 
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among proteins, we found that correlated evolution of RNA and pro-
tein levels (e.g., R > 0.8 versus |R| < 0.2; Fig. 2B) is prevalent among pro-
teins with a low number of protein-protein interactions.

To discern the functional implications of gene expression vari-
ability, we calculated the SD for mRNA and protein levels among 
species (see Materials and Methods). By mapping SDs to a gene es-
sentiality database (26), we found that the expression levels of es-
sential or conditionally essential gene products tend to be much less 
variable during evolution than the expressions of nonessential 
genes (Fig. 2C). Likewise, haploinsufficient genes (27) are expressed 
with much more stable transcript and protein levels than other genes. 
Also, the newly evolved mammal-specific genes during evolution (i.e., 
“younger” genes) (28) show higher expression divergence among mam-
mals, especially at the protein level, than those of “older” eukaryote- 
specific genes (Fig. 2C and fig. S7A). Furthermore, secretory (29) 
and cell surface proteins (30) display much less stability between 
species compared to nonsecretory or proteins inside the cells, con-
sistent to their adaptable roles. A curated list of cancer biomarkers 
(31) also showed larger variability, indicating that these proteins might 
be prone to be dysregulated in disease states. Together, the interspe-
cies SD of mRNA and protein abundances provides an evolutionary 
angle to understand gene functional diversity.

To broadly map mRNA and protein species variability to gene 
functions in an unbiased manner, we used a two-dimensional (2D) 
enrichment plot (Fig. 3A) (32). Such a 2D plot essentially summa-
rizes gene classes expressed with either significantly more variable 
or stable transcript or protein levels, as compared to other classes. 
First, we found that most functional classes exhibit highly correlated 
mRNA and protein variabilities—when mRNA levels are variable, 
the protein concentrations also tend to be diverse across species and 
vice versa. This overall trend endorses the notion of strong coevo-
lution of transcriptome and proteome across gene classes (table S4 
and fig. S7B) (2). Second, among the gene classes, extracellular matrix– 
related genes have most variable expressions at both, the transcript 
and the protein levels (highlighted in blue, Fig. 3A). This agrees well 
with the role of extracellular matrix in interacting with the environment. 
On the other hand, the intracellular protein and phosphorylation 
removal systems such as the proteasome complex and the serine/
threonine phosphatase complexes showed the least variable con-
centrations among all functional classes. This may imply that those 
cell adaptive responses, correcting excessive protein copies (33) and 
abnormal phosphorylation (34), are evolutionarily conserved. Third, 
the gene categories with the most deviation from transcriptome- 
proteome coevolution are translation-related genes, especially genes 
involved in translational elongation and initiation, for which the 
protein quantitative variabilities are strongly buffered compared to 
that of mRNA. Last, we confirmed that the lower abundant tran-
scripts and proteins are not associated with functional categories 
that are more variable between mammalian species, strongly en-
dorsing that the above observations are independent of any intensity- 
associated effects (fig. S7, C and D). In summary, both PIC analysis 
and functional annotations demonstrate global coevolutionary dy-
namics between transcriptome and proteome levels across gene 
classes and among species, with deviating classes mainly due to the 
protein level buffering and protein-protein interaction constraints.

Biological variability analysis: Interindividual versus interspecies
How does evolutionary gene expression variability compare to vari-
ation at other scales? We here refer to a published dataset, part of 

which reported the proteome variability among 11 unrelated healthy 
human individuals by using the same cell type and DIA-MS tech-
nique (35). This comparison thus intriguingly presents an interspecies 
(n = 11) versus interindividual (n = 11) comparison of biodiversity. 
Combined PCA (see Materials and Methods) indicates that the 
global variability between mammalian species is naturally much 
larger than the variability between human individuals (fig. S7E). Be-
sides the extent of variation, proteins participating in any heteromeric 
protein complex [i.e., Complex_In, according to the annotation in 
the CORUM database (36)] exhibited significantly lower interindividual 
and interspecies SDs than other “Complex_Out” proteins (Fig. 2C, 
bottom two). This demonstrates the proteostasis control through protein 
complex stoichiometry, which was previously found posttranscrip-
tionally in many studies (35,  37–39). However, our data indicate 
that the mRNA variability in the Complex_In group is also notably 
lower than that of Complex_Out. The gene-gene correlation analysis 
demonstrates a consistent trend (fig. S3D). Hence, the evolutionary 
diversity might have already started to intensively regulate the transcript 
abundance toward protein-level usage of, e.g., protein complexes.

Next, we used a 2D enrichment plot (32) to illustrate the func-
tional convergence between interindividual diversity and interspe-
cies diversity at the proteome level (Fig. 3B). We found that, at both 
individual and species scales, the members of the proteasome com-
plex, again, manifest the lowest protein abundance variability, whereas 
the extracellular matrix proteins show the highest. Compared to the 
same items enriched in Fig. 3A, it is thus appealing to deduce that 
abundance control of the subcellular proteomes can extend over 
both scales of biodiversity (table S5 and fig. S7F). RNA processing and 
cell division pathways show a particular higher protein abundance 
variability at the interspecies scale than at the interindividual scale, 
indicating that these pathways play a particularly important role in 
mammalian evolution. In addition, at the mRNA level, a similar anal-
ysis suggests that while the most variable classes are again extracellular 
matrix related at both biodiversity scales, the most stable classes are 
RNA processing–associated pathways (fig. S8). Thus, during mam-
malian evolution, RNA processing and splicing, although stable 
between individuals, are tightly regulated at the protein level. To 
summarize, the interindividual and interspecies proteome variabil-
ities are in fact broadly correlated and function dependent.

Divergent evolutionary conservation for proteasome- 
and lysosome-mediated protein degradation
Because of the prominent conservation of proteasome expression 
between individuals and between species, we next sought to interro-
gate the interspecies stability of the general protein degradation 
machineries in the cell. We found that the transcript and protein 
abundance profiles of lysosomal hydrolases and ubiquitin (Ub) en-
zymes including both deubiquitylating enzymes (DUBs) and E3 Ub 
ligases demonstrate distinctly higher variabilities than the protea-
some components across both, individuals and species (Fig. 4A and 
fig. S9). Whereas the distribution of Ub enzyme levels is wide, the 
lysosomal proteases display an even higher protein expression di-
versity than the average level proteome wide (P = 5.38 × 10−05; fig. S9). 
This result suggests that the lysosome-mediated degradation path-
way is fast evolving among mammals, despite proteasomal degrada-
tion is evolutionarily conserved. Only two proteasome proteins 
showed exceptional instability—proteasome 20S subunit alpha type-4 
(PSMA4) and proteasome activator complex subunit 2 (PSME2), 
the latter was implicated in immunoproteasome assembly (40). Many 
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lysosome hydrolases seem to be expressed lower in opossum than 
EAOG and LAUT species in which they become more variable. Certain 
DUBs such as ubiquitin carboxyl-terminal hydrolase 5 (USP5), USP7, 
USP8, USP14, and USP47 are as conserved as proteasome core subunits, 
whereas USP19 and USP48 are quite dynamic among mammals. A 
summary network analysis not only reinforces similar rates of mRNA 
and protein divergence in these cellular protein removal processes 
but also reveals that a few Ub enzymes such as the deubiquitinating 
protein VCPIP1 (valosin containing protein interacting protein 1), the 
ubiquitin thioesterase (OTU deubiquitinase with linear linkage 
specificity), and the E3 ubiquitin- protein ligases XIAP (X-linked 
inhibitor of apoptosis) , and TRIP12 (thyroid hormone receptor 
interactor 12) underwent extensive posttranscriptional regulation 
during evolution (Fig. 4B). We additionally checked that the CVs of 
experimental replicates for all the above proteins, confirming the bi-
ological variability between the functional classes, are not associated 
with any measurement bias (P = 0.335; Fig. 4C).

To corroborate these results, we performed an independent Ub 
modification search (41), to focus on Ub chains with specific Ub 
chain linkage to different lysine (K) residues. We were able to detect 
the signature peptides representing modified lysine positions in Ub, 
including K11, K27, K48, and K63, successfully among all species 
with the modified representative peptides (see Materials and Meth-
ods). For the most abundant K48 and K63 DIA-MS signals, we used 
an unmodified peptide between K48 and K63 peptide sequences as 
a normalization reference. The relative comparison suggests that the 
K48-linked Ub chains harbor a smaller cross-species variability than 
K63 chains (CV 27.2% versus 77.4%; Fig. 4D). Because of the canoni-
cal role of K48 polyUb chains in proteasome-mediated degradation 
and the diverse signaling roles of K63, the Ub modification search-
ing effort agrees well to the above variability analysis.

Common and covarying phosphoproteomic signatures 
across mammalian species
To interrogate how phosphoproteomics could shed light on molec-
ular evolution, we first evaluated cross-species SDs among transcripts, 
proteins, and phosphoproteins. We found that P-sites are molecularly 
much more dynamic than mRNAs and proteins (P < 2.2 × 10−16; 
Fig. 5A and fig. S10). In addition, the protein abundance “regressed out” 
P-site values (or P-site_reg) (42) are still credibly higher (P < 2.2 × 
10−16), indicating that phosphoproteomes captured activity dynamics 
that is not reflected by transcript and protein abundances. Follow-
ing, we focused on the 611 P-sites that were aligned across 11 spe-
cies (hereafter, common P-sites). Compared to all the other P-sites, 
we detected that, in human, the common P-sites are predicted with 
an overall lower “sift_ala_score,” a computational score predicting 
the system tolerance if the P-site residue is mutated to alanine (P = 
6.6 × 10−12; Fig. 5B) (43, 44). Besides, the common P-sites exhibit a 
noteworthy higher functional fitness score (43) than other P-sites 
(P = 3.6 × 10−10). Moreover, by mapping to a dataset reporting P-site– 
specific melting temperature (Tm) (45), we found a small but signif-
icant difference, indicating that the common P-sites may bring more 
structural thermal stability to proteins than other P-sites (P = 3.5 × 
10−4). These results supported the conservative and essential role of 
common P-sites in evolution and organismal fitness. As for se-
quence features, the frequency of amino acids surrounding all the 
common P-sites revealed a diverse amino acid distribution and en-
riched for a few signature motifs (Fig. 5, C and D). These motifs, such 
as (SP), (SP.R), and (R..S), can potentially match to the substrate motifs 
of, e.g., cyclin-dependent kinases (CDKs) and calmodulin-dependent 
protein kinase or protein kinase A. Last, a relative amino acid fre-
quency comparison to human background revealed notable deple-
tion of glutamic acid (E) and enrichment of arginine (R) and serine 
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(S) around the common P-sites (Fig. 5E). These motifs and rules 
might be useful for predicting P-site evolutionary conservation 
in mammals.

Previously, little has been known about the structure and evolu-
tion of phosphorylation signaling networks. We here built a phos-
phorylation coevolution network (Fig. 5F and fig. S11 for all P-site 
identities). Each node represents a particular P-site. In addition, each 
edge denotes a strong site-to-site Pearson correlation (P < 0.001) 
based on the P-site_reg levels across the 11 mammalian species. We 
found that the majority (i.e., 96.23%) site-to-site correlations are 
strongly positive and coevolving in the network. Also, the biological 
annotation suggests that most of the P-sites (i.e., 74.85%) could be 
functionally annotated to five processes including transport, RNA 
processing, protein modification process, organelle organization, and 
developmental process. The top nine kinases, including three CDKs 

(1, 2, and 5), could govern 18.69% of the P-sites in this network 
(Fig. 5F), indicating their prevalent roles in mammalian evolution.

In summary, our phosphoproteomics analysis has revealed con-
servative P-site motifs and a pilot phosphorylation coevolutionary 
network containing variance independent of protein abundance. We 
lastly generated a website to facilitate the navigation of the multi-omic 
data basis (https://yslproteomics.shinyapps.io/Evolutome/; fig. S12).

DISCUSSION
Our proteomic data delineate both protein expression and activity 
regulation underlying evolutionary diversity on a large scale. In 
agreement with Wang et al. (2) that measured translational rates, 
we found that the old, essential, and housekeeping genes tend to be 
expressed with much smaller between-species divergence than other 
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genes. We also found that coevolution of expression layers is strong 
and prevalent across gene classes. In our results, the global proteome 
variability is comparable to or even slightly higher than the tran-
scriptome level across species (see Fig. 5A and fig. S10), emphasiz-
ing the evolution of lineage adaptions, rather than the genome-wide 
compensatory evolution (2), at the proteome level. Processes such 
as negative regulation of G protein–coupled receptor signaling and 
mRNA methylation, as examples that can be extracted from table 
S4, seem to show a higher variability at the protein level than at the 
RNA level. In addition, our data further suggest that the involve-
ment in protein complexes or protein-protein interactions presents 
additional constraints potentially reducing the transcriptome- 
proteome coevolution.

The biological variabilities between individuals and between 
species jointly shape the biological diversity on Earth. Our data ad-
dressed two principles underlying biodiversity. The first principle is 
that the proteome largely reflects variability at the transcriptional 
level. As shown in Fig. 3A, gene expression variabilities at mRNA 
and corresponding protein levels are overall tightly controlled with-
in classes of genes of the same molecular functions. Extracellular 
matrix proteins overall show a very high evolvability. The dynamics 
of gene products participating in the extracellular matrix might ren-
der each mammalian species a rapid environment adaptive response. 
In contrast, the expression of proteasome components seems to be 
evolutionarily conserved as reported (33). According to our data, 
the tight expression regulation is already detectable at the transcrip-
tional level, probably due to the high cost of protein synthesis (46). 
Accordingly, the translation-relevant gene expressions are particu-
larly stabilized at the protein level across species (Fig. 3A). This re-
inforces the previous finding that translation efficiency profile is 
highly conserved in evolution (47).

In a mammalian cell, the proteasome and lysosome represent 
the two major machineries for protein degradation (48). Previously, 
Ub-proteasome pathway was found to be evolutionarily conserved 
(33), but little is known about the evolutionary conservation of the 
lysosomal proteolysis pathway and the entire Ub system. We discov-
ered a much higher variability of the lysosomal degradation pathway. 
Considering that the endosome transportation–associated protein 
expressions are quite stable across species, our discovery might be 
associated with lysosomal exocytosis for remodeling extracellular 
proteins (49). Consistent to this finding, previous studies about the 
Ub code (50) suggested that K48-linked Ub, the most stable Ub 
codes we found here, is mainly involved in canonical protein degra-
dation via proteasome. In contrast, other lysine-linked Ubs carrying 
diverse functions, such as endocytosis and DNA damage responses 
(K63), were quantitatively more variable between species in our re-
sults. Even for proteasome itself, the immunoproteasome components 
such as PSME2 (11) manifested high interspecies variation than other 
proteasome components. Together, our data delineate a complex and 
manifold relationship between protein degradation and biodiversity.

The second principle underlying biodiversity at the molecular 
level is that proteome variability tends to be parallel at both the in-
dividual and species scales (Fig. 3B). Although it is expected that 
interspecies protein variability globally exceeds the interindividual 
variability, proteins in extracellular matrix and proteasome again 
showed the highest and the lowest variable abundances, respectively, 
also among humans. Functional classes such as mRNA splicing, mRNA 
metabolism, and cell division that showed exceptionally higher in-
terspecies variability are intriguing and warrant future investigations. 

For example, Keren et al. (51) have summarized various changing 
models of mRNA alternative splicing (AS) in different eukaryotic 
lineages. AS provides a strategy for relaxing negative selection pres-
sure against evolutionary change (52). In our data, the evolutionary 
variability of the AS pathway is strong at the protein level, which might 
enhance evolvability and proteotype diversity. The cell division– 
associated protein variability among mammals was further supported 
by phosphoproteomic data. Our cross-scale analysis represents a critical 
step toward comprehensive understanding of inherent protein ex-
pression variability. For many proteins such as those in and related 
to the extracellular matrix–mediated pathways, their expressions 
exhibit marked individual differences through intrinsic regulatory 
machineries, the evolutionary selective forces in speciation and 
phylogeny would prefer to just expand the magnitude of their intra-
specific protein diversity. For the other type of proteins, they are 
regulated particularly along the evolution axis, irrespective of their 
biological variability within species, such as RNA processing. It is 
thus essential to classify two types of protein variabilities for future 
evolutionary research.

Compared to early studies (53), our phosphoproteome data are 
fairly large in coverage and quantitative. Previously, little was known 
about the evolution of phosphorylation signaling networks. Our co-
variance analysis between P-sites provides a first coevolutionary 
phosphorylation network independent of protein levels. The enriched 
sequence motifs around the common P-sites pointed out similar 
kinases such as CDKs heavily evolving in mammalian evolution. We 
found the patterns of depleted glutamic acid (E) and enriching argi-
nine (R) residues around the common P-site. This result agrees well 
to our previous study that showed that such patterns tend to accel-
erate protein turnover when the P-sites get phosphorylated (20). 
Thus, the timely phosphoprotein turnover may render active selec-
tion on P-sites in mammalian evolution.

The present study only analyzed fibroblast cells, whereas enor-
mous single-cell and multitissue studies have demonstrated the 
complexity and diversity of gene expression among different cell types 
(14–16). Our datasets could provide additional broad impacts, be-
cause skin-derived fibroblast cells play an essential role during cuta-
neous wound healing and were used to discover different molecular 
traits associated with the longevity between different mammals and 
other species previously (54, 55), and skin fibroblasts are critical de-
terminants of skin cancer malignancy across species (56, 57). More-
over, cryobanking of fibroblast cells presents a national-wide tool 
that facilitates the biological diversity characterization and contrib-
utes to ex situ conservation of genetic resources (58). Although 
most of our conclusions, such as transcriptome-proteome coevolu-
tion and biological variability control, are unlikely to be limited to 
fibroblast cells, our results promisingly anchor future proteotype char-
acterization studies on other cell types and multiple tissues across 
species. In addition, the species differences of molecular events 
might be more apparent in studies of the disturbed or dynamic sys-
tems. Moreover, as already shown in studies analyzing protein turn-
over (9, 59), thermal stability (60), protein-protein interaction (61), 
and specific phosphorylation signaling process (62,  63), the MS-
based quantitative proteomic analysis across multiple species will 
provide additional insights into answering fundamental evolution-
ary questions and beyond. We expect the establishment of quantitative 
landscape of proteins and posttranslational modifications across spe-
cies to further contribute to our understanding of biological vari-
ability and biodiversity on Earth.
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MATERIALS AND METHODS
Skin fibroblast cell culture
Human skin fibroblast (SF) cells were purchased from American 
Type Culture Collection (CRL-4001). B. taurus (cow), C. lupus (dog), 
E. caballus (horse), F. catus (cat), M. mulatta (monkey), M. domestica 
(opossum), O. cuniculus (rabbit), O. aries (sheep), R. norvegicus (rat), 
and S. scrofa (pig) SFs were obtained from fresh skin tissue follow-
ing established protocols (56, 64). Briefly, a small piece of skin was 
collected with hair removed, washed in phosphate-buffered saline 
(PBS) buffer, and cut into strips approximately 1.0 cm2. Dermis was 
separated from epidermis by enzymatic digestion (30 min in 0.25% 
trypsin buffer at 37°C, followed by dissociation buffer [collagenase 
(1 mg/ml), dispase (1 mg/ml), and deoxyribonuclease I (400 g/ml)] 
for 45 min at 37°C. Epidermis was then removed, and 2-mm pieces 
were cut from the dermis and transferred to a 12-well plate and cov-
ered with media. Fibroblasts emerged from the explants and grew to 
confluency in growth media with extra tissue removed. Fibroblast 
cell cultures were then established in 10-cm dishes with high glu-
cose Dulbecco’s modified Eagle’s medium supplemented with 10% 
fetal bovine serum at 5% CO2 (fig. S1). The approximate doubling 
times for all the species are about every 3 to 4 days for H. sapiens, 3 to 
4 days for B. taurus, 3 to 7 days for C. lupus, 4 days for E. caballus, 7 days for 
F. catus, 7 days for M. mulatta, 4 to 5 days for M. domestica, 2 to 3 days 
for O. cuniculus, 5 to 7 days for O. aries, 6 to 7 days for R. norvegicus, 
and every 3 to 5 days for S. scrofa. The sample preparation procedures 
were approved by Institutional Animal Care and Use Committee 
under the no. 2021-11483. Three replicates (each of 60 to 80% con-
fluency) were processed for RNA-seq and proteomic analyses, re-
spectively, with the exception that five replicates for human and two 
for monkey proteomic profiling. After estimating the experimental 
reproducibility (fig. S2), all the replicate measurements were ac-
cepted and averaged per each of the 11 mammalian species for tran-
scriptomic and proteomic profiling.

RNA isolation, sequencing, and data procession
RNA was isolated using an RNeasy micro kit (QIAGEN) and resus-
pended in 15 l of water. The RNA samples were measured at The 
Yale Center for Genome Analysis on the Agilent Bioanalyzer 2100 to 
determine RNA quality, prepared mRNA libraries, and sequenced 
on Illumina HiSeq 2500 to generate 30 to 40 million reads per sample 
[single-end 75–base pair (bp) reads].

RNA-seq data obtained were quantified using the transcript- based 
quantification approach provided in the “kallisto” program (65). Reads 
are aligned to a reference transcriptome using a fast hashing of k-mers 
together with a directed de Bruijn graph of the transcriptome. This 
rapid quantification technique produces transcript-wise abundances 
that are then normalized and mapped to individual genes and ul-
timately reported in terms of TPM (66). The Ensembl release 100 
(May 2020 version) (67) gene annotation model was used, and raw 
sequence reads (single-end 75 bp) for SFs from the 11 species were 
aligned to GRCh38.p13, ARS-UCD1.2, CanFam3.1, Felis_catus_9.0, 
EquCab3.0, Mmul_10, MonDom5 (Release 97), OryCun2.0, Oar_
v3.1, Rnor_6.0, and Sscrofa11.1 reference transcriptome assemblies. 
The Ensembl Biomart tool was used to obtain a dataset of one-to-one 
orthologs. Specifically, the “Multi-species Comparisons” and 
“Homologues” filters were used in addition to “Homology type” 
filter to obtain one-to-one orthologs from a pair of species. This was 
done in an iterative fashion for each pair of species. An intersection 
operator was applied to these pairwise gene lists to obtain a final set 

of 8138 orthologs between 11 species. To facilitate gene expres-
sion across species, this one-to-one ortholog dataset was formu-
lated across the 11 species such that the sum of TPMs across these 
genes for each species totals to 1 × 106. The TPMs across replicates 
of the same species were averaged and log2-transformed for the fol-
lowing bioinformatic analysis.

Protein extraction, alkylation, and digestion
The fibroblast cell proteomes were harvested as previously described 
(35). Cells were washed with PBS twice and scaped off from the dish 
using the lysis buffer containing 8 M urea containing complete pro-
tease inhibitor cocktail (Roche) and Halt Phosphatase Inhibitor 
(Thermo Fisher Scientific). The cell pellets were then ultrasonically lysed 
at 4°C for 2 min using a VialTweeter device (Hielscher-Ultrasound 
Technology) and centrifuged at 18,000g for 1 hour to remove the 
insoluble material. Protein concentrations were then determined 
with a Bradford assay (Bio-Rad, Hercules, CA, USA). The superna-
tant protein samples were reduced with 10 mM dithiothreitol for 
1 hour at 57°C and alkylated by 20 mM iodoacetamide in the dark 
for 1 hour at room temperature. All samples were further diluted 
five times using 100 mM NH4HCO3 and were digested in-solution 
with sequencing-grade porcine trypsin (Promega) overnight at 37°C 
as previously described (37). The resulted peptide mixture was 
desalted with a C18 column (MarocoSpin Columns, NEST Group 
INC). The final peptide amounts were determined by NanoDrop 
(Thermo Fisher Scientific).

Phosphopeptide enrichment
Besides ~4 g of peptides digested per sample that were used for pro-
teomic analysis, all the peptides from different replicates of equal 
amount were pooled for phosphopeptide enrichment and phosphopro-
teomics, due to the limited peptide amounts yielded in individual 
replicate. The phosphopeptide enrichment was performed using 
the High-Select Fe-NTA kit (Thermo Fisher Scientific, A32992) ac-
cording to the manufacturer’s instructions (68). Briefly, the resins 
of spin-column in the Fe-NTA kit were aliquoted and incubated 
with 80 to 300 g of total peptides for 30 min at room temperature. 
The resins were then transferred into a filter tip (TF-20-L-R-S, Axygen), 
so that the supernatant was removed by centrifugation. Then, the 
resins were washed sequentially with 200 l of washing buffer (80% 
acetonitrile (ACN) and 0.1% trifluoroacetic acid) three times and 
200 l of liquid chromatography (LC)–MS grade H2O two times 
to remove the nonspecifically adsorbed peptides. The enriched 
phosphopeptides were then eluted off the resins by 100 l of elution 
buffer (50% ACN and 5% NH3·H2O) two times. All the centrifugation 
steps were kept at 500g, 30 s. The eluates per species were combined 
and dried by speed- vac and stored in −80°C.

LC separation coupled with MS
All peptide-level samples (and their pooled mixtures per species) 
were resolved in 2% ACN and 0.1% formic acid for LC-MS mea-
surements, with 2 g of peptides or 0.2 to 0.5 g of the enriched 
phosphopeptides injected per measurement. The single-shot DIA-MS 
analysis of 2.5 hours was performed as previously described 
(4, 69). The LC used was an EASY-nLC 1200 system (Thermo Fisher 
Scientific, San Jose, CA) harboring a 75 m by 50 cm C18 column 
packed with 100A C18 material. A 150-min LC separation was con-
figured on the basis of the mix of buffer A (0.1% formic acid in 
H2O) and buffer B (80% acetonitrile containing 0.1% formic acid): 
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Buffer B was made to increase from 4 to 34% in 139 min, then to 
surge to 100% in 3 min, and then kept at 100% for 8 min. The LC-MS 
flow rate was kept at 300 nl/min with the temperature-controlled at 
60°C by a PRSO-V1 column oven (Sonation GmbH, Biberach, Germany). 
The additional column re-equilibration was performed in about 10 to 
15 min using the high-flow rate up to ~800 nl/min.

DIA-MS measurements
The Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo 
Fisher Scientific) instrument coupled to a nanoelectrospray ion source 
(NanoFlex, Thermo Fisher Scientific) was used as the DIA-MS plat-
form for both proteomic and phosphoproteomic analyses (4). Spray 
voltage was set to 2000 V and heating capillary temperature was set 
at 275°C. All the DIA-MS methods consisted of 1 MS1 scan and 33 
MS2 scans of variable windows by quadrupole isolation (70). This 
schema was composed of 350 to 373.775, 373.25 to 393.75, 393.25 to 
410.75, 410.25 to 427.75, 427.25 to 443.75, 443.25 to 459.75, 459.25 to 
474.75, 474.25 to 489.75, 489.25 to 503.75, 503.25 to 518.75, 518.25 
to 533.75, 533.25 to 547.75, 547.25 to 562.75, 562.25 to 577.75, 577.25 
to 592.75, 592.25  to 608.75, 608.25  to 623.75, 623.25  to 639.75, 
639.25  to 656.75, 656.25  to 674.75, 674.25  to 692.75, 692.25  to 
711.75, 711.25 to 732.75, 732.25 to 754.75, 754.25 to 778.75, 778.25 
to 803.75, 803.25 to 833.75, 833.25 to 866.75, 866.25 to 905.75, 905.25 
to 955.75, 955.25 to 1023.75, 1023.25 to 1134.75, and 1134.225 to 
1650 with 0.5  mass/charge ratio (m/z) overlapping between win-
dows. The MS1 scan range was 350 to 1650 m/z and the MS1 reso-
lution was 120,000 at 200 m/z. The MS1 full scan automatic gain 
control (AGC) target value was set to be 2.0 × 106, and the maxi-
mum injection time was 50 ms. The MS2 scan range was set to be 
200 to 1800 m/z, and the MS2 resolution was 30,000 at 200 m/z. The 
normalized HCD collision energy was set at 28%. The MS2 AGC 
was set to be 1.5 × 106, and the maximum injection time was 52 ms. 
The default peptide charge state was set to 2.

Database search for proteomics and phosphoproteomics
DIA-MS data procession was performed using Spectronaut v14 
(17, 71) with the “DirectDIA,” an optimal spectral library-free pipe-
line (72). For both proteomic and phosphoproteomic results (4), 
the DIA-MS raw datasets were searched directly against the Ensembl 
species-specific protein fasta files (zipped files with name ending 
as “pep.all.fa.gz” at useast.ensembl.org/index.html). These files 
include Bos_taurus.ARS-UCD1.2.pep.all.fa (for “cow”), Canis_lupus_ 
familiaris.CanFam3.1.pep.all.fa (for “dog”), Cavia_porcellus.Cavpor3.0. 
pep.all.fa (for “opossum”), Equus_caballus.EquCab3.0.pep.all.fa (for 
“horse”), Felis_catus.Felis_catus_9.0.pep.all.fa (for “cat”), Homo_sapiens. 
GRCh38.pep.all.fa (for “human”), Macaca_mulatta.Mmul_10.pep.all.fa (for 
“monkey”), Oryctolagus_cuniculus.OryCun2.0.pep.all.fa (for “rabbit”), 
Ovis_aries.Oar_v3.1.pep.all.fa (for “sheep”), Rattus_norvegicus. Rnor_6.0.
pep.all.fa (for “rat”), and Sus_scrofa.Sscrofa11.1.pep.all.fa, (for “pig”).

In particular, for the total proteomic identification in each spe-
cies, the possibilities of oxidation at methionine and acetylation at 
the protein N terminus were set as variable modifications, whereas 
carbamidomethylation at cysteine was set as a fixed modification. 
For the phosphoproteomic identification, the additional possibility 
of phosphorylation at serine/threonine/tyrosine (S/T/Y) was enabled 
as the variable modification. For both proteomic and phosphopro-
teomic datasets per species, both peptide and protein FDR (based 
on Q value) were both controlled at 1%. In particular, the PTM lo-
calization option in Spectronaut v14 was enabled to locate P-sites 

(6, 73) in each species with the probability score cutoff of >0.75 (73), 
which ensures class I peptides (74), in which each P-site is confi-
dently localized onto one S, T, or Y in the peptide sequence, to be 
identified, quantified, and reported in the results. For each localized 
P-site, the corresponding phosphopeptide precursors (if more than 
one) were averaged for quantification.

Database search for Ub linkage types
In addition, to search and determine the different types of Ub chains 
via its lysine residue (i.e., the “Ub code”), a “Gly-Gly” or diGly mod-
ification was set up as a variable modification in a separated search 
in all mammalian species, by searching the total proteomic data 
against the same fasta files. After the identical FDR control (i.e., 1%) 
at both peptide and protein levels, the diGly localization scoring in 
peptide sequence, the search results on the peptide level were manually 
inspected. The detection of K11-, K27-, K48-, and K63-linked chains 
were inferred on the basis of the identification of peptide precursors 
for TLTGKGGTITLEVEPSDTIENVK (K11), TITLEVEPSDTIENVKGGAK 
(K27), LIFAGKGGQLEDGR (K48), and TLSDYNIQKGGESTLHLVLR 
(K63), respectively, all mapped to Ub sequence. To determine the rela-
tive quantitative variability between K48- and K63-linked chains, 
the tryptic peptide TITLEVEPSDTIENVK that is in the middle be-
tween K48 and K63 peptides was used for normalization purpose.

Data analysis, representation, and statistics
All the other Spectronaut settings for identification and quantifica-
tion were kept as default (4). This means that, for example, the “missed 
cleavages” allowed was set at 2, the “inference correction” was enabled, 
the “global normalization” (on “median”) was used, the quantification 
was performed at the MS2 level using peak areas, the “protein infer-
ence algorithm” was implemented using “IDPicker,” and the top 3 
peptide precursors (“min: 1 and max: 3”) were summed on the basis 
of MS2-level peak areas for representing protein quantities in all 
DIA analyses. The quantitative data reported by Spectronaut analy-
sis for proteins and P-sites were then log2-transformed for down-
stream statistical analysis if applicable. As for multispecies analysis, 
due to the database searching against Ensembl species-specific pro-
tein fasta files, the proteomic quantitative results could be directly 
added to the “one-to-one ortholog” data table consisting of 8138 
genes (see above for RNA-seq data procession) using the ensembl 
gene identities, allowing the transcriptomic and proteomic quanti-
fications to be summarized with a “gene-centric” perspective. For the 
absolute scale analysis, the log2-transformed mRNA, protein, and 
P-site quantification data are compared between molecular layers 
or between species. For the relative scale analysis, the mRNA, protein, 
and P-site quantification data of each species were compared to the 
averaged values across all 11 species, summarized as fold changes 
(FCs), and the log2-transformed FCs (i.e., individual species/averaged 
values of 11 species) were used for relative correlation analysis and 
variability analysis (i.e., by determining the SD). Alternatively, the 
CVs were calculated using data before log transformation for evalu-
ating data deviation. Pearson and Spearman’s correlation coeffi-
cients were calculated using R [functions cor() or cor.test() to infer 
statistical significance]. Wilcoxon rank sum test was used to calcu-
late P values of SDs between functional categories.

Bioinformatic analysis
Circos-0.69-9 (http://circos.ca) (75) was used for the circle visual-
ization (Fig. 1A). Functional annotation was carried out in David 

http://useast.ensembl.org/index.html
http://circos.ca
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Functional Annotation Tool v6.8 (https://david.ncifcrf.gov/summary.
jsp) (76) with all detected proteins in this study as background (fig. 
S3). PCA was performed by NIA (National Institute of Aging) Array 
Analysis (Fig. 1B) (77). The colored scatterplots were visualized by 
the “heatscatter” function in R package “LSD” based on a 2D kernel 
density estimation (figs. S4 and S7). The annotation of surfaceome, 
secretome, cancer biomarkers, gene essentiality, haploinsufficien-
cy, and age were annotated, respectively, by Cell Surface Protein 
Atlas (30), human secretome map (29), Human Protein Atlas (www.
proteinatlas.org) (31), OGEE v2 (26), HIPred scores (27), and modeAge 
(28) (Fig. 2). Protein complex information was extracted from the 
CORUM database (36) (Fig. 2). The gene ontology and Kyoto Ency-
clopedia of Genes and Genomes annotation and 2D enrichment 
analysis were performed in Perseus v1.6.8.0 (78) (Fig. 3 and figs. S7 
and S8). The retrieve of flanking amino acid sequences (±7 amino 
acids) of P-sites and the motif enrichment were performed by mo-
tifeR (79) (Fig. 5). Sequence analysis (Fig. 4) was conducted and vi-
sualized by IceLogo (https://iomics.ugent.be/icelogoserver) (80). 
The functional score can reflect the importance of P-site for organismal 
fitness (Fig. 5) (43). The sift score predicts the functional impact of 
missense variants based on sequence homology and the physico-
chemical properties of the amino acids (Fig. 5) (81). The melting 
temperature (Tm, °C) values (Fig. 5) for each P-site were taken from 
the reported datasets (45). The net phosphorylation changes were de-
tected by total protein change correction through linear regression 
as reported previously (42). After regression, the phospho-site pairs 
with significant correlation (Pearson, P < 0.001) were used to con-
struct interaction network by Cytoscape (82) (Fig. 5 and fig. S11). The 
kinase-substrate relations were curated from PhosphoSitePlus (83). To 
identify the homologous P-sites across 11 species from our phosphor-
ylation datasets, the sequence windows (±7 amino acid flanking se-
quence) of detected P-sites in one-to-one orthologous proteins 
were aligned by the “pairwiseAlignment” function in R package “Bio-
strings.” The sequence windows with a score ≥ 10 and in ortholo-
gous proteins were considered as homologous. Data from other 
species were first mapped to human data, and then the common 
P-sites were obtained as the intersection of all species. The number 
and relationship of protein-protein interactions were curated using 
STRING v11.0 (https://string-db.org) (25).

Species are the product of a process of lineage splitting (speciation) 
and divergence and are thus not statistically independent random 
events. The most broadly used method to account for phylogenetic 
structure is the method of PICs where observations on N species are 
transformed into N-1 contrasts (differences) (84, 85). The method 
estimates the most likely history of evolutionary change in variables 
such that the contrasts reflect independent evolutionary changes. 
PIC values were computed by R package APE (analysis of phyloge-
netics and evolution) using the function “pic” (84, 85) where the 
gene and protein expression values were iteratively fed into the pic 
function to obtain an array of resultant PICs (86).

Website inventory for proteome-centric  
multispecies navigation
Because of the well-matched multi-omic layers especially the appli-
cation of consistent DIA-MS, we consider our dataset a high-quality 
resource for future mammalian evolution and gene expression studies. 
We thus generated a website https://yslproteomics.shinyapps.io/
Evolutome/ to facilitate the navigation of the data basis (fig. S12). 
This website interactively provides queries about the abundances 

for any transcript or protein in every species. It additionally offers 
heatmaps and scatterplots between molecular layers for individual 
gene or gene sets of interest.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abn0756
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