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Abstract
Novel coronavirus (COVID-19) is started from Wuhan (City in China), and is rapidly spreading among people living in other
countries. Today, around 215 countries are affected by COVID-19 disease. WHO announced approximately number of cases
11,274,600 worldwide. Due to rapidly rising cases daily in the hospitals, there are a limited number of resources available to
control COVID-19 disease. Therefore, it is essential to develop an accurate diagnosis of COVID-19 disease. Early diagnosis of
COVID-19 patients is important for preventing the disease from spreading to others. In this paper, we proposed a deep learning
based approach that can differentiate COVID- 19 disease patients from viral pneumonia, bacterial pneumonia, and healthy
(normal) cases. In this approach, deep transfer learning is adopted. We used binary and multi-class dataset which is categorized
in four types for experimentation: (i) Collection of 728 X-ray images including 224 images with confirmed COVID-19 disease
and 504 normal condition images (ii) Collection of 1428 X-ray images including 224 images with confirmed COVID-19 disease,
700 images with confirmed common bacterial pneumonia, and 504 normal condition images. (iii) Collections of 1442 X- ray
images including 224 images with confirmed COVID-19 disease, 714 images with confirmed bacterial and viral pneumonia, and
504 images of normal conditions (iv) Collections of 5232 X- ray images including 2358 images with confirmed bacterial and
1345 with viral pneumonia, and 1346 images of normal conditions. In this paper, we have used nine convolutional neural
network based architecture (AlexNet, GoogleNet, ResNet-50, Se-ResNet-50, DenseNet121, Inception V4, Inception ResNet
V2, ResNeXt-50, and Se-ResNeXt-50). Experimental results indicate that the pre trained model Se-ResNeXt-50 achieves the
highest classification accuracy of 99.32% for binary class and 97.55% for multi-class among all pre-trained models.

Keywords Automatic detections . Coronavirus . Pneumonia . Chest X-ray radiographs . Convolutional neural network . Deep
transfer learning

1 Introduction

In December 2019 the novel coronavirus disease (COVID-19)
originated as a new species which is not previously found in
humans. The new COVID-19 virus increases the serious
pneumonia infections, and has spread widely from Wuhan
City, across China, and now to more than 215 countries.
Now it is becoming a worldwide serious public health issue
[1]. WHO announced the COVID-19 outbreak a pandemic on
March 11, the first of its kind since the 2009 Swine Flu.
Internationally, as of mid-March, 2020, because of COVID-
19 more than 150,000 cases found and nearly 6000 people
died (https://www.who.int/emergencies/diseases/novel-
coronavirus-2019). Currently, the total number of confirmed
coronavirus cases is approximately 11,274,600, died are
530,522, and recovered are 6,387,345. Also, number of
infected patients’ is 4,356,733. On the other hand, disease
surviving the number of infected patients are 4,297,914
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(99%) and serious or critical condition patients are 58,819
(1%) (https://www.worldometers.info/coronavirus/).

COVID-19 is currently the biggest health, economical, and
survival threat to the entire human race. We are in urgent need
to find solutions, treatment, and develop vaccines to combat it.
One challenge in developing effective antibodies and vaccines
for COVID-19 is that we do not yet understand this virus.
How far away is it from other coronaviruses? Has it under-
gone any changes since its first discovery? These questions
are critical for us to find cures and design effective vaccines
and critical for managing this virus.

Infection signs involve symptoms of nausea, cough, and
inhalation. In progressively genuine cases, the disease can be
a reason for pneumonia, serious intense respiratory disorder,
multi-organ disappointment, and sometimes death in bad con-
ditions (https://www.who.int/emergencies/diseases/novel-
coronavirus-2019) [2]. The rate of COVID-19 pneumonia
cases is very faster than normal flue people [3]. Therefore
many developed countries are facing breakdown due to the
increasing requirement of intensive care units for health sys-
tems. The isolation ward and care units of hospitals are occu-
pied with COVID-19 patients.

The distribution of COVID-19 cases are showing in Fig. 1
between the days of 22nd January to 3rd July 2020 for
worldwide.

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a positive-sense single-stranded RNA virus and that
virus caused COVID-19 pandemic disease (https://www.
worldometers.info/coronavirus/). Coronaviruses (CoV) con-
tains a huge number of viruses which results in cold-related
illnesses including Middle East Respiratory Syndrome
(MERS-CoV) as well as Severe Acute Respiratory
Syndrome (SARS-CoV) viruses (https://www.who.int/
emergencies/diseases/novel-coronavirus-2019) [3].

In the Deep Learning approach, deep convolutional neural
networks are the most famous network which is used for fea-
ture extraction. Feature extraction can be retrieved by the con-
volution process. The nonlinear information is stored in layers
[5]. The revolution of the data into a more abstract and higher
level is involved in each layer of CNN. The more composite
information and knowledge can be discovered in the deep
network.

Deep learning (DL) approaches on chest X-ray for
COVID-19 classification have been actively explored
[4]–[10]. Especially, Wang et al. [4] proposed an open source
deep convolutional neural network platform called
COVIDNet that is tailored for the detection of COVID-19
cases from chest radiography images. They claimed that
COVIDNet can achieve good sensitivity for COVID-19 cases
with 80% sensitivity. In [48], proposed CovidGAN: Data
Augmentation Using Auxiliary Classifier GAN for
Improved Covid-19 Detection. They have used convolutional
neural networks (CNNs) to improve performance. Inspired by

this early success, in these papers we aim to further investigate
deep convolutional neural network and evaluate its feasibility
for COVID-19 diagnosis. The motivation behind this explo-
ration is to evaluate the performance of available
convolutional neural networks introduced by researchers, re-
lated to the automatic diagnosis of COVID-19 from thoracic
X-rays. Additionally, the motivation behind this investigation
is to determine the practicality of top-tier pre-designed
convolutionary neural frameworks which is discovered by
knowledgeable researchers.

To accomplish this, a group of 6674 thoracic X-ray scans is
being processed and used to train and test the CNNs. Since,
the size of the COVID-19 related samples is small (224 im-
ages), deep transfer learning is the best strategy for deep
CNNs training. This is because the state-of-the-art CNNs are
complex methods that require huge datasets to achieve precise
feature extraction and classification.

The findings are promising and validate the efficiency of
deep learning, and more precisely transfer learning with
CNNs to automatically detect irregular X-ray images from
COVID-19 disease small datasets. Despite the drawbacks of
the present analysis is that the unavailability of COVID-19
disease data which is opening the horizons for more advanced
studies into the possible presence of COVID-19 related bio-
markers in X-ray images. Datasets are now being identified
and annotated in the case of a new disease, such as the coro-
navirus. There are very few information sources are available
for coronavirus data. Similarly, very few experts are available
for identifying the data from a particular new strain of the
infection in people.

Our aim is to propose automated coronavirus CT image
analysis tools using deep-learning approaches. Results show
that the differentiation of coronavirus affected patients from
normal patient who are infected by normal flu only. These
findings help in the location, estimations, and following of in-
fection movement among people. A result of, continuously
increasing the COVID-19 cases daily, available test equip-
ment’s are not enough in hospitals/clinics. Therefore, it is es-
sential to develop an automatic detection system as a fast solu-
tion to avoid transmission of COVID-19 between humans.

Rest of this paper is organized as follows: In Section 2, we
discuss background of the work. Pre-trained neural networks
and deep transfer learning models are discussed in Section 3.
Dataset, experimental results, comparisons and contributions
are described in Section 4. Finally, conclusion, limitations,
and future works are summarized in Section 5.

2 Literature review

Coronavirus outbreak and spreading across the world since
December 2019, and has become common in a variety of
countries. Planning and actions from the government in
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response to the pandemic varied from country to country, and
their role in impacting disease transmission was addressed.

Machine learningmethods have been carried out to identify
and detect COVID-19 disease from the last fewmonths. Some
of these are as follows: Fei et al. proposed a “VB-Net” deep
learning system for automated segmentation of all lung and
infection sites using CT in the chest [6]. A chest scan with
computed tomography (CT) is one of the good methods used
for the treatment of pneumonia. Automatic COVID-19 CT
image analysis tools using artificial intelligence methods can
be used to identify, measure, and monitor coronavirus disease.
It helps to differentiate coronavirus patients from healthy peo-
ple. To discriminate COVID-19 pneumonia and Influenza-A
viral pneumonia from disease-free people, Xiaowei et al. dis-
covered an early screening model. This model is based on
pulmonary CT images and deep learning techniques [7]. It
gives 86.7% maximum overall accuracy using deep learning

CNN model. Shuai et al. developed a deep learning method
that can extract COVID-19’s graphical characteristics. They
analyzed COVID-19 radiographic changes from CT images.
This method is used to provide clinical conclusions before
pathogenic testing and in this way, we can save critical time
for the disease diagnosis [8]. They obtained 89.5% accuracy
with 88.0% precision and 87.0% sensitivity.

Prabira et al. [9] introduced an approach for the identifica-
tion of COVID-19 based on deep feature and SVM using X-
ray images. X-ray images are collected from GitHub, Open-I
repository, and Kaggle. They extracted the deep feature of
CNNmodels and fed them to the SVM classifier individually.
It results in 95.38% accuracy for ResNet-50 and SVM.
COVID-19 cousins are represented as MERS-CoV and
SARS-CoV. The analysis of MERS-CoV and SARS-CoV,
chest X-ray images are used in many work of literatures.
Ahmet Hamimi’s analysed MERS-CoV and demonstrated

(a). Worldwide distribution of COVID-19 cases

(b). Total number of COVID-19 casess

Fig. 1 Worldwide distribution of COVID-19 cases (22nd January to 3rd July 2020). (a). Worldwide distribution of COVID-19 cases. (b). Total number
of COVID-19 cases
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that available chest X-ray and CT features are like pneumonia
manifestations [10]. Data mining methods used by Xuanyang
et al. to separate SARS and traditional pneumonia based onX-
ray images [11]. Huang et al. described the spectrum of clin-
ical presentation of 41 Chinese patients from Wuhan [4]. The
commonest symptoms were fever (98%), cough (76%), and
myalgia (44%), while sputum production, headache, and di-
arrhea were rare presentations. Acute respiratory distress syn-
drome (ARDS), anemia, secondary infection, and acute cardi-
ac injury were common complications noted more in patients
needing intensive care. Wang et al. described clinical charac-
teristics of 138 cases of NCIP (novel Coronavirus infected
pneumonia) admitted in Zhongnan Hospital of Wuhan [12].
They reiterated that fever, fatigue, and dry cough were the
commonest symptoms. The majority of the patients were in
their fifth decade. 26% of patients needed intensive care, with
ARDS, shock, and arrhythmia being the major complications.

The epidemic has been the second most severe in Italy so
far. Albarello et al. have discussed two of the cases from Italy
which helped to understand some diagnostic aspects of the
disease [13]. These two cases travelled from Wuhan, China.
In both cases, the increased diameter of the perilesional pul-
monary vessels grew by extending the pulmonary alterations.
The follow-up with chest X-Rays and CT scans was also
included, showing a progressive adult respiratory distress syn-
drome (ARDS). Holshue et al. reported that in the United
States first case of 2019-nCoV found [14]. They describe the
identification, diagnosis, clinical course, and management of
the case, including the patient’s initial mild symptoms at pre-
sentation with progression to pneumonia on day 9 of illness.
This case highlights the importance of close coordination be-
tween clinicians and public health authorities at the local,
state, and federal levels, as well as the need for rapid dissem-
ination of clinical information related to the care of patients
with this emerging infection. Li et al. described the early trans-
mission dynamics of the disease among initially affected
Chinese population [15]. They described the characteristics
of the cases and estimated the key epidemiologic time-delay
distributions. In the early period of exponential growth, esti-
mated the epidemic doubling time and the basic reproductive
number. Distribution of the incubation period estimated and
suggested incubation period which indicates a 14-day medical
observation period or quarantine for infected persons.

Zhu et al. very recently published a systematic review of all
ongoing clinical drug trials relating to this pandemic [16].
Among many drugs studied so far, hydroxychloroquine,
though pending FDA approval, appears promising and its
use is supported by multiple studies like Gao et al. and
Cortegiani et al. [17, 18]. Though the development of targeted
vaccines in this mutating virus may be effective in halting
future epidemics, their use in the current emergent scenario
seems to be limited, as it may take months or years to develop
an effective, widely tested vaccine. The epidemic spreading

wildly, there has been a surge of statistical studies to predict
the number of cases affected by the virus. Anastassopoulou
et al., Gamero et al. and Wu et al. are a few notable examples
in this regard [19–21]. Elsewhere, Lin et al. researched the
effect of person’s reaction and policy intervention (holiday
extension, urban shutdown, hospitalization, and quarantine)
on the spread of the infection [22]. Chinazzi et al. studied
the effect of travel restrictions on the same [23]. Butt et al.
reviewed a study in which they have compared multiple
convolutional neural network (CNN) models to classify
COVID-19 CT samples with viral pneumonia, or no-
infection [24].

From the above literature we can observed the following
issues:

1. Due to the emergent nature of the COVID-19 pandemic, a
systematic collection of CXR data set for deep neural
network training is difficult [7–9, 12, 17, 18].

2. Most of the literature uses the convolutional neural net-
work (CNN) models to detect COVID-19 [6–8, 24].

To address the above problems, Yujin et al. proposed a
patch-based convolutional neural network approach with a
relatively small number of trainable parameters for COVID-
19 diagnosis [46]. The proposed method is inspired by a sta-
tistical analysis of the potential imaging biomarkers of the
CXR radiographs. The main focus of this paper is to develop
a neural network architecture that is suitable for training with
limited training data set, which can still produce radiologically
interpretable results.

Sarkodie et al. showed a report which focuses on the role of
chest X-ray in the diagnosis of the disease [47]. Chest X-ray
can be used as an effective, fast, and affordable way to imme-
diately triage COVID-19 patients when suspected and should
be encouraged as a diagnostic tool for isolation until PCR
testing is done for confirmation.

Abdul et al. present a method to generate synthetic chest X-
ray (CXR) images by developing an Auxiliary Classifier
Generative Adversarial Network (ACGAN) based model
called CovidGAN. They concentrated on the unavailability
of a significant number of radiographic images. In addition,
they demonstrated that the synthetic images produced from
CovidGAN can be utilized to enhance the performance of
CNN for COVID-19 detection. Classification using CNN
alone yielded 85% accuracy. By adding synthetic images pro-
duced by CovidGAN, the accuracy increased to 95% [48].

So, inspired by this early success, in these papers we aim to
further investigate deep convolutional neural network and
evaluate its feasibility for COVID-19 diagnosis. The motiva-
tion behind this exploration is to evaluate the performance of
available convolutional neural networks introduced by re-
searchers, related to the automatic diagnosis of COVID-19
from thoracic X-rays. Additionally, the motivation behind this
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investigation is to determine the practicality of top-tier pre-
designed convolutionary neural frameworks which is discov-
ered by knowledgeable researchers.

Since the pandemic is recent, there are only a limited num-
ber of CXR images available for study. The lack of data in
medical imaging led us to explore ways of expanding image
datasets. To solve the limitations of the current study, we are
focusing on improvements in COVID-19 detection. For eval-
uation, we also used a dataset provided by the author [45]. The
dataset consist of an aggregate of 5232 images, where normal
category has 1346 images, 3883 images delineated pneumo-
nia, out of which 2538 images have a place with bacterial
pneumonia and 1345 images delineated viral pneumonia.

In this study, we have introduced deep convolution neural
network based transfer models (specially Se-ResNet-50 and
Se-ResNeXt-50) for automatic detection of COVID-19 on the
Chest X-ray images. In this approach we have used nine pre-
trained models AlexNet, GoogleNet, ResNet-50, Se-ResNet-
50, DenseNet121, Inception V4, Inception ResNet V2,
ResNeXt-50, and Se-ResNeXt-50 to achieve maximum accu-
racy for CT images datasets.

Based on the results, it is demonstrated that deep learn-
ing with CNNs may have significant effects on the auto-
matic detection and automatic extraction of essential fea-
tures from X-ray images, related to the diagnosis of the
Covid-19.

The innovation of this proposed work is summarized as
follows:

i) We can perform automatic operations without manual
intervention and selection methods.

ii) We have demonstrated that Se-ResNeXt-50 is a power-
ful pre-prepared model as compared with other used
pre-prepared models.

iii) X-ray images of the chest can be used as an identifica-
tion tool to detect COVID-19.

iv) The selected pre-trained models coupled with transfer
learning are showing high accuracy results for all four
datasets.

v) According to our knowledge, this is the first paper in
which squeeze and excitation based architecture Se-
ResNet-50 and Se-ResNeXt-50 is used to detect
COVID-19.

3 Methods

3.1 Proposed approach framework

The proposed approach of this work is encapsulated in Fig. 2.
This approach is divided into various phases: Chest X-ray

Fig. 2 Framework of the proposed system approach
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image pre-processing, augmentation, pre-trained models,
Deep Transfer Learning (Training phase), feature extraction,
and accurate prediction of models. Involve phases are
discussed in the next sections.

3.2 Chest X-ray data pre-processing and enhancement

In actual pre-trained CNN, models are big enough in size to
capture this X-ray dataset, which creates overfitting problems.
To solve this issue some kind of noise may be added with the
used dataset; this addition of noise at the initial stage (input) in
a neural network, shows momentous changes in dataset gen-
eralization for few cases. Noise addition task performs a kind
of augmentation on the dataset as well. As one of the difficul-
ties which is faced by the researcher working in the medical
area is dataset limitation. So, we also applied some other aug-
mentation techniques. We prepared the Chest X-ray image
dataset as follows: Initially, we changed the size of the images
to 224 × 224 × 3, next applied augmentation techniques:
Random Horizontal Flip (helps in pneumonia presence iden-
tification by its chest symptom), Random Resized Crop (helps

in deeper identification of pixels relationship), and at the end
image augmentation by changing image intensity.

3.3 CNN architecture and need of deep transfer
learning

Recently, CNN architecture based deep learning models used
to solve computer vision problems. We used deep CNN ar-
chitecture based AlexNet, GoogleNet, ResNet-50, Se-ResNet-
50, DenseNet121, Inception V4, Inception ResNet V2,
ResNeXt-50, and Se-ResNeXt-50 models coupled with trans-
fer learning techniques to classify COVID-19 Chest X-ray
image data between normal and COVID- 19 patient.
Transfer learning also helps to deal with inadequate data and
model execution time.

The schematic illustration of used CNN architectures along
with pre-trained AlexNet, GoogleNet, ResNet-50, Se-ResNet-
50, DenseNet121, Inception V4, Inception ResNet V2,
ResNeXt-50, and Se-ResNeXt-50 models shown in Fig. 3.

Pretrained models are first fine-tuned on a new dataset and
then classification is performed.

Fig. 3 Schematic illustration of CNN models for COVID-19 and normal patients’ prediction
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Transfer learning is an important tool in machine learning
to solve the basic problem i.e. insufficient training data. This
technique’s objective is to utilizes acquired knowledge from
one task (problem) and use it to solve similar work by solving
isolation learning problems. This gathered knowledge gives
the motivation to solve the problem of numerous domains that
involve difficulties in improvement due to inadequate or in-
complete training data. The transfer learning process repre-
sented in Fig. 4.

To work with the Chest X-ray image dataset, we are
using nine pre-trained architecture, in place of performing
the lengthy process of training from scratch. In this trans-
fer learning technique, the weights of network layers are
reused to train a model for a new field, shown in Fig. 5.
The transfer learning technique has achieved useful and
important results in numerous domains of computer vision
[25–28].

We used pre-trained CNN architecture weights, and fine-
tune the whole model with suitable learning rates. The key
idea is to leverage the pre-trained model weights to extract
low level features from images and to update the higher
level weights according to our dataset for the detection of
COVID-19.

3.4 Pre-trained CNN architectures

We have chosen nine distinct architectures as AlexNet
[29], GoogLeNet [33] DenseNet121 [30], ResNet-50
[31], Inception V4 [32], Inception-ResNet V2 [37],
ResNeXt-50 [43], Se-ResNet-50 [44] and Se-ResNeXt-
50 [44] for classification task on Chest X-ray images
dataset. Utilizing these architectures by fine tuning the
network with modified classification layer, enables us to
extract features for our target task based on the knowl-
edge of source task.

3.4.1 AlexNet architecture

AlexNet, CNN architecture is identical in design with LeNet
[34], although some minor significant variation still exists.
AlexNet network is deeper than the LeNet architecture,
AlexNet evolves eight layers: 5 convolutional (conv) layers,
3 fully-connected (FC) dense layer. To compute non-linearity
the sigmoid function is replaced with a ReLU: Rectified
Linear Unit. It evolves more convolution (10 times) channels
than LeNet. The Overfitting issue is resolved using dropout
layers and to reduce network size max pooling is used. The
AlexNet architecture used for the proposed approach is shown
in Fig. 6.

3.4.2 GoogleNet architecture

GoogleNet and AlexNet CNN architectures are different from
each other. This architecture uses global average pooling
along with max pooling. The inception block shown in
Fig. 7 is the basic convolutional block.

As shown in Fig. 7, four parallel paths are present in incep-
tion block which performs a different convolution of 1 × 1(to
reduce architecture complexity), 3 × 3, and 5 × 5window sizes
for information extraction of numerous spatial sizes.
Complete GoogleNet architecture is shown in Fig. 8. Each
cubic bar represents a layer. Convolution layer includes
Conv+ReLU. Inception block is used three times with fre-
quencies 2, 3, and 3 respectively. The first and second time
used inception blocks are followed by 3*3 max pooling and
the third time it is followed by a global average pool that is
connected with a fully connected dense layer.

3.4.3 ResNet-50

To simplify the training task of deep networks a new architec-
ture comes with a residual learning framework known as
ResNet. In this architecture network layers are reformulated
by learning using residual functions in respect of layer inputs.
ResNet [31, 35] is also called a residual network that intro-
duces skip connection concept to deal vanishing gradient
problem. This prevents the distortion which appears as the
network becomes deeper and complex. ResNet variant
ResNet-50 is used as one of the models. ResNet-50 architec-
ture is shown in Fig. 9. This makes use of a 50-layer network
and trained using ImageNet (http://www.image-net.org/)
dataset. The ResNet-50 architecture evolves convolutional
layer, 4 convolutional blocks, max pool, and average pool
to address the degradation of the accuracy. This helps to
generate deeper CNNs by maintaining accuracy. The
ResNet-50 architecture provided a way for developers to
build even deeper CNNs without compromising accuracy.
ResNet-50 was among the first CNNs which make use of
batch normalization feature.Fig. 4 Transfer learning process
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3.4.4 ResNeXt-50

The ResNeXt-50 is an advancement over ResNet-50.Millions
of images from the ImageNet dataset were used to train
ResNeXt-50. This CNN architecture is deeply modularized
and simple for image classification tasks. This architecture
makes use of a building block which involves transformation
steps with a similar design. This concept introduces a uniform
and multi-branch network architecture where only some pa-
rameters need to be set and this concept brings a new dimen-
sion cardinality associated with depth and width dimensions
of transformation step. The model architecture is shown in
Fig. 10.

3.4.5 Densenet121

Although ResNet has modified the way in which deep neural
network functions are parameterized, still some conceptual
extension may exist which is performed by DenseNet archi-
tecture. So this architecture is the logical extension of ResNet.
DenseNet121 architecture is shown in Fig. 11. As shown in
Fig. 11, DenseNet121 uses convolutional layers, max pool,
global average (avg) pool, dense block, and transition layer.

Dense block evolves convolutions of 1*1 and 3*3 to reduce
the number of parameters required for model tuning.
Transaction layers use a 1*1 convolution layer and 2*2 aver-
age pool layer shown in Fig. 12. DenseNet121 solves training
time issues (each layer output is used by the next layer as
input) by using loss function gradient values which help to
reduce the computation time and cost by making this architec-
ture a good option.

3.4.6 Inception architecture

In image recognition highly deep CNN architectures are cen-
tral demand for the greatest advances. One of the architecture
is Inception which shows good performance at comparatively
low computation cost. Inception deep network architecture
was brought into existence by the researcher [36] as
Inception-v1. Further, this Inception-v1 architecture was mod-
ified with the concept of batch normalization by the author
[43], named as Inception-v2. Then the factorization idea is
also added in the next iterations and that architecture will be
introduced as Inception-v3, Inception –v4, Inception ResNet
V1, and Inception ResNet V2. The technical difference be-
tween the Inception model and Inception ResNet model is

Fig. 5 Deep Transfer Learning
with Pre-trained and Learnable
weights

Fig. 6 AlexNet architecture for COVID-19 Chest X-ray image classification
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because of Inception variants as residual and non-residual.
This difference indicates that the batch-normalization concept
is used on top of the traditional layer only not above the re-
sidual summations.

In our methodology, we are using 2 variants of Inception
name as Inception V4 and Inception ResNet V2. Inception
ResNet V2 training time is less (i.e. much master) and gives
better was training much faster and achieved final accuracy is
marginally improved than Inception-v4. Inception v4 and
Inception ResNet V2 architecture are shown in below
Figs. 13 and 14.

Figures 13 and 14 represent the base diagram of
Inception v4 and Inception ResNet V2. Both the architec-
ture follow the same stem composition. In both architec-
ture, V denotes: ‘Valid’ padding otherwise architecture

uses the same padding. Stem architecture is shown in
Fig. 15. The schema of both models differs with respect
to interior grid modules [37].

3.4.7 SE-ResNet-50 and SE-ResNeXt-50

In these architecture squeeze-and-excitation (SE) block is ap-
plied at the end of each non-identity branch of residual block.
A SE block is a computational unit which is based upon a

transformation Ftr mapping an input X ϵ RH
0
*W

0
*C

0
to feature

maps U ϵ RH ∗W ∗C. This SE block can be integrated with
various CNN architectures. SE blocks can be used directly
with residual networks. Fig. 16, shows the Se-ResNet module
architecture [44]. Here, the SE block transformation Ftr is

Fig. 7 Inception block

Fig. 8 GoogleNet architecture for COVID-19 Chest X-ray image classification
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taken to be the non-identity branch of a residual module.
Squeeze and Excitation both act before summation with the
identity branch. In our work we are using SE blocks with
ResNet-50 and ResNeXt-50. This SE block slightly increases
the computational burden on basic ResNet-50 and ResNeXt-
50 architecture, however the accuracy of Se-ResNet-50 and
Se-ResNeXt-50 surpasses that of ResNet-50 and ResNeXt-50.
The slight additional computational cost acquire by the SE
block is validated by its contribution to architecture perfor-
mance. Both the architectures Se-ResNet-50 and Se-
ResNeXt-50 are shown in Figs. 17 and 18.

All the above discussed CNN architectures are used in our
proposed approach and the performance of each model is
evaluated based on 5 evaluation parameters.

Finally, we compare various configuration of CNN archi-
tecture to determine the best configured pre-trained model for

the chest X-ray images classification of the COVID −19
dataset.

3.5 Performance metrics

We use five metrics to measure the performance of pre-rained
CNN architectures in this paper to classify the Chest X-ray
images. All the metrics use four important terms as True
Positives (TP), True Negatives (TN), False Positives (FP)
and False Negatives (FN). The accuracy measure is shown
below:

Accuracy ¼ Number of Correct predictions
Total number of predictions made

¼ TN þ TPð Þ
TN þ TP þ FN þ FPð Þ

ð1Þ

Fig. 9 ResNet-50 architecture for Covid-19 Chest X-ray image classification

Fig. 10 ResNeXt-50 architecture for COVID-19 Chest X-ray image classification

An automatic approach based on CNN architecture to detect Covid-19 disease from chest X-ray images 2873



This accuracy measure will only work well shown in the
equation when we have an equal number of images belongs to
both classes. So, to predict the accurate performance of
models we also use other metrics.

In addition to accuracy, we further evaluate our pro-
posed system with four evaluation measures: sensitivity
(recall), specificity, precision, and F-score. The perfor-
mance evaluation metrics are shown in Eqs. 2 to 5 as
follows:

Sensitivity=Recall True Positive Rateð Þ

¼ True Positives
False Negativesþ True Positives

ð2Þ

Specificity False Positive Rateð Þ

¼ False Positives
False Positivesþ True Negatives

ð3Þ

Fig. 11 DenseNet121 architecture for COVID-19 Chest X-ray image classification

Fig. 12 Transition layer
architecture
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Precision ¼ True Positives
True Positivesþ False Positives

ð4Þ

F−Score ¼ 2* Precision*Recallð Þ
Precisionþ Recallð Þ ð5Þ

4 Experimental setup and results

4.1 Dataset description

To perform the experimentation, we identify the several Chest
X-rays sources from the Github repository for similar types of
datasets and Cohen [38], collection of Chest X-ray images.
This repository is an important resource of most researchers
managing with COVID-19. It contains 144 images of frontal
x-ray images of positive patients to COVID-19. The Author

extracted the images from online published research docu-
ments, websites, or directly from the PDF using the tool as
pdf images. This image resource consists of chest X-ray im-
ages of mainly patients with acute respiratory distress syn-
drome (ARDS), COVID-19, Middle East respiratory syn-
drome (MERS), pneumonia, severe acute respiratory syn-
drome (SARS). Deeply examine some websites also and then
we analysed, identified, and prepare the datasets.

Some group of Chest X-ray image data is collected from
internet sources [39]. We added a group of X-ray scanned
images belong to common bacterial-pneumonia in our dataset,
for training purposes of the CNN model to differentiate be-
tween COVID-19 patients and common pneumonia patients.
This group of a dataset is collected from the website hosted by
the author [40]. We refer to this group of images as Dataset1
and Dataset2.

Dataset1 includes only two categories of images as con-
firmed COVID-19: 224 and normal or healthy condition: 504.

Fig. 13 Inception v4 architecture base diagram

Fig. 14 Inception ResNet V2 base diagram
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Dataset2 includes three categories of images as confirmed
COVID-19: 224, confirmed common bacterial pneumonia:
700 and normal condition: 504.

We performed some changes on the dataset because
Dataset2 only includes a case of bacterial pneumonia, so it’s
difficult to observe the CNN model’s performance to differ-
entiate between COVID −19 diseases and pneumonia cases.
Hence we added cases of viral pneumonia and refer this group
of images as Dataset3 which includes images for confirmed
COVID -19: 224, confirmed bacterial pneumonia: 400, viral
pneumonia: 314 and normal condition: 504.

For evaluation, we also used a dataset provided by the
author [45]. The dataset consist of an aggregate of 5232 im-
ages, where normal category has 1346 images, 3883 images

delineated pneumonia, out of which 2538 images have a place
with bacterial pneumonia and 1345 images delineated viral
pneumonia. We refer to this dataset as Dataset-4.

4.2 Experimental environment

We employ fine-tuned pretrained CNN architectures for clas-
sification and detection of COVID-19. The pre-trained archi-
tectures used in our study for classification are: AlexNet,
GoogleNet, ResNet-50, Se-ResNet-50, DenseNet121,
Inception V4, Inception ResNet V2, ResNeXt-50 and Se-
ResNeXt-50. Each of these architecture makes use of fully
connected (FC) layers, where the last FC layer is used for

Fig. 16 Original Residual module
(left) and the Se-ResNet module
(right)

Fig. 15 Inception v4 and Inception ResNet v2 stem architecture
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the classification. We set the number of neurons of the last FC
layer according to the target dataset.

The parameters of fine-tuning method are not set by the
network architecture itself, and it is essential to set and opti-
mize these parameters according to the results of training the
images in improving the performance. In our case, each net-
work architecture is trained with Adam optimizer inmaximum
of 30 epochs. The value of train and test batch size is set to 32
and 8 with the initial learning rate of 1e-5.

We use python as a programming language to train the
CNN models. The whole experimentation was performed on
a Google Colaboratory with GPU NVIDIA CUDA Version:
10.1 with Tesla P100. We use deep learning library PyTorch
1.5 (https://pytorch.org/) to perform experimentation on pre-
trained CNN models (AlexNet, GoogleNet, ResNet-50, Se-
ResNet-50, DenseNet121, Inception V4, Inception ResNet
V2, ResNeXt-50 and Se-ResNeXt-50) by randomly initializ-
ing weights. Each of the used CNN architecture makes use of
some hyper-parameters for deep transfer learning, parameters,
and their values are shown in Table 1.

Dataset is divided randomly using the K-Fold cross-valida-
tion method for training: 80% and testing: 20%, shown in
Fig. 19, and calculate results for different values of k (k = 1
to 5). Dataset splitting criteria for all categories of datasets is
shown in Table 2.

4.3 Result analysis and discussions

We evaluate the effectiveness of our proposed methodology
based on metrics results calculated by conducting the experi-
ments and explores the finetuning technique of transfer learn-
ing by extracting the features of pretrained CNN networks. As
discussed in the dataset Section 4.1, the experimental study is
performed on 4 publicly available datasets. The effectiveness
of the proposed system is evaluated using performance met-
rics discussed in Section 3.5.

Initially, we evaluate the accuracy for all categories such as
a binary and multi-class dataset of the proposed system. Next,
we use the k-fold measure to evaluate average classification
accuracy. We calculate average accuracy by using accuracy

Fig. 17 Se-ResNet-50 Architecture for COVID-19 X-ray image classification

Fig. 18 Se-ResNeXt-50 architecture
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achieved by each one of the 5 fold. We have performed ex-
perimentation on binary class and multi-class datasets in our
proposed system. Experiments are performed in all four
datasets using nine pre-trained CNN networks i.e. AlexNet,
GoogleNet, ResNet-50, Se-ResNet-50, DenseNet121,
Inception V4, Inception ResNet V2, ResNeXt-50, and Se-
ResNeXt-50. Our outcome shows the exploration of deep
transfer learning techniques by feature extraction of pre-
trained models (CNN networks). From the Tables 3, 4, 5
and 6 results are observed that the performance of the fine-
tuned each pre-trained architectures used in this study is com-
parable with one another. We also observed that the Se-
ResNeXt-50 model achieves the highest accuracy in all cate-
gories of datasets.

Binary dataset (Dataset1: 2-class) Accuracy calculation for all
the used pre-trained models are shown in Table 3 for all k-
folds. This dataset achieves the highest accuracy of 99.32%
from fold-3 (i.e. fold-4 and fold-5 also achieve the same ac-
curacy) for two models ResNeXt-50 and Se-ResNeXt-50
however average accuracy of Se-ResNeXt-50 is higher than

ResNeXt-50. This dataset lowest achieved accuracy is 87.04%
for Inception ResNet V2, however, its average accuracy is sim-
ilar to Inception V4. Dataset1 achieve highest average accuracy
of 98.36% for Se-ResNeXt-50. For other pre-trained models
highest achieved accuracy as AlexNet: 97.95%, GoogleNet:
98.63%, DenseNet121: 98.63%, ResNet-50: 98.63%, Se-
ResNet-50: 98.63%, Inception V4: 90.41%, Inception ResNet
V2:91.10% and ResNeXt-50: 98.08%.

Multi-class dataset (Dataset2: 3-class) Accuracy calculation
for all the used pre-trained models are shown in Table 4 for
all k-folds. This dataset achieves the highest accuracy of
97.55% from fold-3 (i.e. fold-4 and fold-5 also achieve the
same accuracy) for two models ResNeXt-50 and Se-
ResNeXt-50. Dataset2 lowest accuracy is 84.97% for the
AlexNet model. Its highest average accuracy is 96.99% for
model Se-ResNeXt-50. For other pre trained models highest
achieved accuracy as AlexNet: 88.46%, GoogleNet: 92.31%,
DenseNet121: 94.41%, ResNet-50: 95.80%, Se-ResNet-50:
96.15% Inception V4: 92.66%, Inception ResNet
V2:93.71% and ResNeXt-50: 96.85%.

Table 1 Parameter setting of CNN architectures

Parameters AlexNet GoogleNet ResNet-50 Se- ResNet-50 DenseNet121 Inception-V4 Inception
ResNet –V2

ResNeXt-50 Se- ResNeXt-50

Optimizer ADAM ADAM ADAM ADAM ADAM ADAM ADAM ADAM ADAM

Base learning
rate

1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

Learning decay
rate

.1 .1 .1 .1 .1 .1 .1 .1 .1

Momentum β1 .9 .9 .9 .9 .9 .9 .9 .9 .9

RMSprop β2 .999 .999 .999 .999 .999 .999 .999 .999 .999

Dropout rate .5 .5 .5 .5 .5 .5 .5 .5 .5

No of epochs 30 30 30 30 30 30 30 30 30

Train batch
Size

32 32 32 32 32 32 32 32 32

Test batch size 8 8 8 8 8 8 8 8 8

Total No of
parameters

60 M 4 M 25 M 27.5 M 7.97 M 43 M 56 M 25 M 27.56 M

Fig. 19 Training and testing data
formulation for 5-fold cross
validation
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Fig. 20 Confusion matrix for ResNet-50, ResNeXt-50 and Se-ResNeXt-
50 model for all four categories of datasets: Binary class (a) ResNet-50
and (b) ResNeXt-50 & Se-ResNeXt-50), Multi-class1 (c) ResNet-50 and

(d) ResNeXt-50 & Se-ResNeXt-50), Multi-class2 (e) ResNet-50 and (f)
ResNeXt-50 & Se-ResNeXt-50), Multi-class3 (g) ResNet-50, (h)
ResNeXt-50 and (i) Se-ResNeXt-50)
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Multi-class dataset (Dataset3: 4-class) Accuracy calculation
for all the used pre-trained models are shown in Table 5 for
all k-folds. This dataset achieve highest accuracy of 96.89%
from fold-3 (i.e. fold-4 and fold-5 also achieve the same ac-
curacy) for two models ResNeXt-50 and Se-ResNeXt-50. Its

lowest accuracy is 81.66% for AlexNet model. Dataset3
highest average accuracy is 96.40% for model Se-ResNeXt-
50. For other pre trained models highest achieved accuracy as
AlexNet: 84.78%, GoogleNet: 87.89%, DenseNet121:
88.58%, ResNet-50: 95.16%, Se-ResNet-50: 95.16%,

Table 2 Data Splitting Criteria
Binary Data Set Multiclass Dataset-

1
Multiclass Dataset-
2

Multiclass Dataset-
4

Class Train Test Train Test Train Test Train Test

COVID −19 179 45 179 45 179 45

Normal Condition 403 101 403 101 403 101 1077 269

Bacterial pneumonia – – 560 140 320 80 2030 508

Viral pneumonia – – – – 251 63 1076 269

Fig. 20 continued.
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Table 3 Results obtained from pre-trained CNN models for Binary Class Dataset1

Models/Folds(F) Performance Evaluation based on four metrics

TP TN FP FN Test set (%) Acc Rec Spec Prec F1

AlexNet F-1 42 92 9 3 91.78 93.33 91.09 82.35 87.5

F-2 44 98 3 1 97.26 97.78 97.03 93.62 95.65

F-3 45 98 3 0 97.95 100 97.03 93.75 96.77

F-4 45 98 3 0 97.95 100 97.03 93.75 96.77

F-5 45 98 3 0 97.95 100 97.03 93.75 96.77

Average 96.58 98.22 95.84 91.44 94.69

GoogleNet F-1 42 93 8 3 92.47 93.33 92.08 84 88.42

F-2 45 97 4 0 97.26 100 96.04 91.84 95.74

F-3 45 99 2 0 98.63 100 98.02 95.74 97.83

F-4 45 99 2 0 98.63 100 98.02 95.74 97.83

F-5 45 99 2 0 98.63 100 98.02 95.74 97.83

Average 97.12 98.67 96.44 92.61 95.53

DenseNet121 F-1 43 91 10 2 91.78 95.56 90.1 81.13 87.76

F-2 44 97 4 1 96.58 97.78 96.04 91.67 94.62

F-3 44 100 1 1 98.63 97.78 99.01 97.78 97.78

F-4 44 100 1 1 98.63 97.78 99.01 97.78 97.78

F-5 44 100 1 1 98.63 97.78 99.01 97.78 97.78

Average 96.85 97.33 96.63 93.23 95.14

ResNet-50 F-1 43 93 8 2 93.15 95.56 92.08 84.31 89.58

F-2 45 98 3 0 97.95 100 97.03 93.75 96.77

F-3 45 99 2 0 98.63 100 98.02 95.74 97.83

F-4 45 99 2 0 98.63 100 98.02 95.74 97.83

F-5 45 99 2 0 98.63 100 98.02 95.74 97.83

Average 97.4 99.11 96.63 93.06 95.97

Se-ResNet 50 F-1 43 94 7 2 93.84 95.56 93.07 86 90.53

F-2 44 99 2 1 97.95 97.78 98.02 95.65 96.7

F-3 45 99 2 0 98.63 100 98.02 95.74 97.83

F-4 45 99 2 0 98.63 100 98.02 95.74 97.83

F-5 45 99 2 0 98.63 100 98.02 95.74 97.83

Average 97.53 98.67 97.03 93.78 96.14

Inception ResNet v2 F-1 41 87 14 4 87.67 91.11 86.14 74.55 82

F-2 43 90 11 2 91.1 95.56 89.11 79.63 86.87

F-3 43 90 11 2 91.1 95.56 89.11 79.63 86.87

F-4 41 88 13 4 88.36 91.11 87.13 75.93 82.83

F-5 41 89 12 4 89.04 91.11 88.12 77.36 83.67

Average 89.45 92.89 87.92 77.42 84.45

ResNeXt-50 F-1 43 95 6 2 94.52 95.56 94.06 87.76 91.49

F-2 45 98 3 0 97.95 100 97.03 93.75 96.77

F-3 45 100 1 0 99.32 100 99.01 97.83 98.9

F-4 45 100 1 0 99.32 100 99.01 97.83 98.9

F-5 45 100 1 0 99.32 100 99.01 97.83 98.9

Average 98.08 99.11 97.62 95 96.99

Se-ResNeXt-50 F-1 43 96 5 2 95.21 95.56 95.05 89.58 92.47

F-2 45 99 2 0 98.63 100 98.02 95.74 97.83

F-3 45 100 1 0 99.32 100 99.01 97.83 98.9

F-4 45 100 1 0 99.32 100 99.01 97.83 98.9

F-5 45 100 1 0 99.32 100 99.01 97.83 98.9

Average 98.36 99.11 98.02 95.76 97.4

Bold indicates highest accuracy
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Table 4 Results obtained from pre-trained CNN models for Multi-class1 Dataset 2

Models/Folds(F) Performance Evaluation based on four metrics

TP TN FP FN Test set (%)
Acc

Rec Spe Pre F1

AlexNet F-1 36 207 34 9 84.97 80 85.89 51.43 62.61

F-2 36 208 33 9 85.31 80 86.31 52.17 63.16

F-3 38 215 26 7 88.46 84.44 89.21 59.38 69.72

F-4 38 215 26 7 88.46 84.44 89.21 59.38 69.72

F-5 38 215 26 7 88.46 84.44 89.21 59.38 69.72

Average 87.13 82.67 87.97 56.35 66.99

GoogleNet F-1 39 220 21 6 90.56 86.67 91.29 65 74.29

F-2 39 222 19 6 91.26 86.67 92.12 67.24 75.73

F-3 40 224 17 5 92.31 88.89 92.95 70.18 78.43

F-4 40 224 17 5 92.31 88.89 92.95 70.18 78.43

F-5 40 224 17 5 92.31 88.89 92.95 70.18 78.43

Average 91.75 88 92.45 68.55 77.06

DenseNet121 F-1 39 226 15 6 92.66 86.67 93.78 72.22 78.79

F-2 39 228 13 6 93.36 86.67 94.61 75 80.41

F-3 40 230 11 5 94.41 88.89 95.44 78.43 83.33

F-4 40 230 11 5 94.41 88.89 95.44 78.43 83.33

F-5 40 230 11 5 94.41 88.89 95.44 78.43 83.33

Average 93.85 88 94.94 76.5 81.84

ResNet-50 F-1 40 228 13 5 93.71 88.89 94.61 75.47 81.63

F-2 40 229 12 5 94.06 88.89 95.02 76.92 82.47

F-3 41 233 8 4 95.8 91.11 96.68 83.67 87.23

F-4 41 233 8 4 95.8 91.11 96.68 83.67 87.23

F-5 41 233 8 4 95.8 91.11 96.68 83.67 87.23

Average 95.03 90.22 95.93 80.68 85.16

Se-ResNet-50 F-1 40 228 13 5 93.71 88.89 94.61 75.47 81.63

F-2 40 229 12 5 94.06 88.89 95.02 76.92 82.47

F-3 41 234 7 4 96.15 91.11 97.1 85.42 88.17

F-4 41 234 7 4 96.15 91.11 97.1 85.42 88.17

F-5 41 234 7 4 96.15 91.11 97.1 85.42 88.17

Average 95.24 90.22 96.18 81.73 85.72

Inception v4 F-1 39 221 20 6 90.91 86.67 91.7 66.1 75

F-2 39 225 16 6 92.31 86.67 93.36 70.91 78

F-3 39 226 15 6 92.66 86.67 93.78 72.22 78.79

F-4 39 223 18 6 91.61 86.67 92.53 68.42 76.47

F-5 39 221 20 6 90.91 86.67 91.7 66.1 75

Average 91.68 86.67 92.61 68.75 76.65

Inception ResNet v2 F-1 39 222 19 6 91.26 86.67 92.12 67.24 75.73

F-2 39 227 14 6 93.01 86.67 94.19 73.58 79.59

F-3 40 228 13 5 93.71 88.89 94.61 75.47 81.63

F-4 40 227 14 5 93.36 88.89 94.19 74.07 80.81

F-5 39 222 19 6 91.26 86.67 92.12 67.24 75.73

Average 92.52 87.56 93.44 71.52 78.7

ResNeXt-50 F-1 41 232 9 4 95.45 91.11 96.27 82 86.32

F-2 41 234 7 4 96.15 91.11 97.1 85.42 88.17

F-3 43 236 5 2 97.55 95.56 97.93 89.58 92.47

F-4 43 236 5 2 97.55 95.56 97.93 89.58 92.47

F-5 43 236 5 2 97.55 95.56 97.93 89.58 92.47
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Inception V4: 92.39%, Inception ResNet V2: 92.73% and
ResNeXt-50: 96.26%.

Multiclass dataset (Dataset4: 3-class)Accuracy calculation for
all the used pre-trained models are shown in Table 6 for all k-
folds. This dataset achieve highest accuracy of 95.98% from
fold-3 (i.e. fold-4 and fold-5 also achieve the same accuracy)
for model Se-ResNeXt-50. Its lowest accuracy is 83.94% for
AlexNet model. Its highest mean accuracy is 95.56% for Se-
ResNeXt-50. For other pre trained models highest achieved
accuracy as AlexNet: 85.26%, GoogleNet: 90.54%,
DenseNet121: 92.68%, ResNet-50: 94.00%, Se-ResNet-50:
94.13%, Inception V4: 90.39%, Inception ResNet V2:
91.20% and ResNeXt-50: 95.22%.

We observed that for all datasets pre-trained models
AlexNet , GoogleNet , ResNet-50, Se-ResNet-50,
DenseNet121, Inception V4, Inception ResNet V2,
ResNeXt-50 and Se-ResNeXt-50 achieves similar accuracy
after fold-2 i.e. for fold-3, fold-4 and fold-5. Models
Inception V4 and Inception ResNet V2 achieves the highest
accuracy for fold-3 but its accuracy again reduces for fold-4
and fold-5.

We can observe from Tables 3, 4, 5 and 6 that even after
increasing the no of classification classes in the dataset, the
Se-ResNeXt-50 model achieves higher accuracy i.e. it per-
forms better than other models in all dataset categories. So,
we can conclude that Se-ResNeXt-50 performs well in all
datasets and the top 2 pre-trained models are Se-ResNeXt-
50 and ResNeXt-50. As the highest accuracy is achieved
by the same pre-trained model Se-ResNeXt-50 for all the
datasets but lowest accuracy is not achieved by the same
model Se-ResNeXt-50. For example in the case of binary
class Inception ResNet V2 and in multiclass AlexNet pre-
trained model gives the lowest accuracy. Finally, we ob-
served that the SE blocks consistently improve perfor-
mance across different depths with very little increment
in computational complexity.

Abbreviations used in Tables 3, 4, 5 and 6 are: Acc: Accuracy,
rec: Recall, spec: Specificity, Prec: Precision, F1: F1-score. The

highest, average, and lowest accuracy of each model is rep-
resented with bold text. The proposed setup is classifying
COVID-19 disease patients correctly. For deeper explanation
confusion matrix of all datasets for ResNet-50, ResNeXt-50
and Se-ResNeXt-50 model is shown in Fig. 20. We have
considered fold-3, because it achieves the highest accuracy.

The dataset1 accurate classification of fold-3 for models
are:

& ResNet-50: COVID-19 with a 100% classification rate
and misclassify two instances of normal or healthy condi-
tion with an overall mean accuracy of 97.4%.

& ResNeXt-50 and Se-ResNeXt-50: COVID 19 with a
100% classification rate and misclassify one instance of
normal or healthy condition with an overall mean accura-
cy of 98.08% and 98.36%. However, both the architec-
tures achieve the same accuracy for fold-3.

The dataset2 accurate classification of fold-3 for models
are:

& ResNet-50: COVID-19 with 91% classification rate by
misclassify 4 as bacterial. For normal it misclassifies 2
instances as bacterial pneumonia, and for bacterial pneu-
monia, it misclassifies 1 instance as COVID −19 and 5
instances as normal with an overall mean accuracy of
95.03%.

& ResNeXt-50 and Se- ResNeXt-50: COVID-19 with 93%
classification rate by misclassify 2 as bacterial. For normal
it misclassifies 1 instance as bacterial pneumonia and for
bacterial pneumonia, it misclassifies 4 instances as normal
with an overall mean accuracy of 96.85% and 96.99%.
However, both the architectures achieve the same accura-
cy for fold-3.

The dataset3 accurate classification of fold-3 for models
are:

& ResNet-50: COVID-19 with a 91% classification rate
by misclassifying 3 instances as bacterial pneumonia

Table 4 (continued)

Models/Folds(F) Performance Evaluation based on four metrics

Average 96.85 93.78 97.43 87.23 90.38

Se-ResNeXt-50 F-1 42 232 9 3 95.80 93.33 96.27 82.35 87.5

F-2 42 234 7 3 96.50 93.33 97.1 85.71 89.36

F-3 43 236 5 2 97.55 95.56 97.93 89.58 92.47

F-4 43 236 5 2 97.55 95.56 97.93 89.58 92.47

F-5 43 236 5 2 97.55 95.56 97.93 89.58 92.47

Average 96.99 94.67 97.43 87.36 90.86

Bold indicates highest accuracy
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Table 5 Results obtained from pre-trained CNN models for Multi-class2 Dataset 3

Models/Folds(F) Performance Evaluation based on Four Metrics

TP TN FP FN Test set (%)
Acc

Rec Spe Pre F1

AlexNet F-1 35 201 43 10 81.66 77.78 82.38 44.87 56.91
F-2 35 207 37 10 83.74 77.78 84.84 48.61 59.83
F-3 36 209 35 9 84.78 80 85.66 50.7 62.07
F-4 36 209 35 9 84.78 80 85.66 50.7 62.07
F-5 36 209 35 9 84.78 80 85.66 50.7 62.07
Average 83.94 79.11 84.84 49.12 60.59

GoogleNet F-1 36 213 31 9 86.16 80 87.3 53.73 64.29
F-2 36 214 30 9 86.51 80 87.7 54.55 64.86
F-3 38 216 28 7 87.89 84.44 88.52 57.58 68.47
F-4 38 216 28 7 87.89 84.44 88.52 57.58 68.47
F-5 38 216 28 7 87.89 84.44 88.52 57.58 68.47
Average 87.27 82.67 88.11 56.2 66.91

DenseNet121 F-1 38 215 29 7 87.54 84.44 88.11 56.72 67.86
F-2 38 216 28 7 87.89 84.44 88.52 57.58 68.47
F-3 39 217 27 6 88.58 86.67 88.93 59.09 70.27
F-4 39 217 27 6 88.58 86.67 88.93 59.09 70.27
F-5 39 217 27 6 88.58 86.67 88.93 59.09 70.27
Average 88.24 85.78 88.69 58.31 69.43

ResNet-50 F-1 41 228 16 4 93.08 91.11 93.44 71.93 80.39
F-2 41 231 13 4 94.12 91.11 94.67 75.93 82.83
F-3 41 234 10 4 95.16 91.11 95.9 80.39 85.42
F-4 41 234 10 4 95.16 91.11 95.9 80.39 85.42
F-5 41 234 10 4 95.16 91.11 95.9 80.39 85.42
Average 94.53 91.11 95.16 77.81 83.89

Se-ResNet-50 F-1 41 229 15 4 93.43 91.11 93.85 73.21 81.19
F-2 41 232 12 4 94.46 91.11 95.08 77.36 83.67
F-3 41 234 10 4 95.16 91.11 95.9 80.39 85.42
F-4 41 234 10 4 95.16 91.11 95.9 80.39 85.42
F-5 41 234 10 4 95.16 91.11 95.9 80.39 85.42
Average 94.67 91.11 95.33 78.35 84.22

Inception v4 F-1 38 215 29 7 87.54 84.44 88.11 56.72 67.86
F-2 39 227 17 6 92.04 86.67 93.03 69.64 77.23
F-3 39 228 16 6 92.39 86.67 93.44 70.91 78
F-4 38 215 29 7 87.54 84.44 88.11 56.72 67.86
F-5 36 214 30 9 86.51 80 87.7 54.55 64.86
Average 89.2 84.44 90.08 61.71 71.16

Inception ResNet v2 F-1 38 216 28 7 87.89 84.44 88.52 57.58 68.47
F-2 39 226 18 6 91.7 86.67 92.62 68.42 76.47
F-3 39 229 15 6 92.73 86.67 93.85 72.22 78.79
F-4 39 215 29 6 87.89 86.67 88.11 57.35 69.03
F-5 39 215 29 6 87.89 86.67 88.11 57.35 69.03
Average 89.62 86.22 90.25 62.58 72.36

ResNeXt-50 F-1 41 234 10 4 95.16 91.11 95.9 80.39 85.42
F-2 41 235 9 4 95.5 91.11 96.31 82 86.32
F-3 43 237 7 2 96.89 95.56 97.13 86 90.53
F-4 43 237 7 2 96.89 95.56 97.13 86 90.53
F-5 43 237 7 2 96.89 95.56 97.13 86 90.53
Average 96.26 93.78 96.72 84.08 88.66

Se-ResNeXt-50 F-1 42 234 10 3 95.5 93.33 95.9 80.77 86.6
F-2 42 235 9 3 95.85 93.33 96.31 82.35 87.5
F-3 43 237 7 2 96.89 95.56 97.13 86 90.53
F-4 43 237 7 2 96.89 95.56 97.13 86 90.53
F-5 43 237 7 2 96.89 95.56 97.13 86 90.53
Average 96.40 94.67 96.72 84.22 89.14

Bold indicates highest accuracy
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Table 6 Results obtained from pre-trained CNN models for Multi-class3 Dataset 4

Models/Folds(F) Performance Evaluation based on Four Metrics

TP TN FP FN Test set (%)
Acc

Rec Spe Pre F1

AlexNet F-1 235 643 134 34 83.94 87.36 82.75 63.69 73.67

F-2 238 643 134 31 84.23 88.48 82.75 63.98 74.26

F-3 240 660 117 29 86.04 89.22 84.94 67.23 76.68

F-4 240 660 117 29 86.04 89.22 84.94 67.23 76.68

F-5 240 660 117 29 86.04 89.22 84.94 67.23 76.68

Average 85.26 88.7 84.07 65.87 75.59

GoogleNet F-1 245 688 89 24 89.20 91.08 88.55 73.35 81.26

F-2 245 698 79 24 90.15 91.08 89.83 75.62 82.63

F-3 249 704 73 20 91.11 92.57 90.6 77.33 84.26

F-4 249 704 73 20 91.11 92.57 90.6 77.33 84.26

F-5 249 704 73 20 91.11 92.57 90.6 77.33 84.26

Average 90.54 91.97 90.04 76.19 83.34

DenseNet121 F-1 249 709 68 20 91.59 92.57 91.25 78.55 84.98

F-2 251 713 64 18 92.16 93.31 91.76 79.68 85.96

F-3 255 720 57 14 93.21 94.8 92.66 81.73 87.78

F-4 255 720 57 14 93.21 94.8 92.66 81.73 87.78

F-5 255 720 57 14 93.21 94.8 92.66 81.73 87.78

Average 92.68 94.05 92.2 80.68 86.86

ResNet 50 F-1 255 720 57 14 93.21 94.8 92.66 81.73 87.78

F-2 255 722 55 14 93.40 94.8 92.92 82.26 88.08

F-3 258 730 47 11 94.46 95.91 93.95 84.59 89.9

F-4 258 730 47 11 94.46 95.91 93.95 84.59 89.9

F-5 258 730 47 11 94.46 95.91 93.95 84.59 89.9

Average 94.00 95.46 93.49 83.55 89.11

Se-ResNet-50 F-1 257 720 57 12 93.40 95.54 92.66 81.85 88.16

F-2 257 722 55 12 93.59 95.54 92.92 82.37 88.47

F-3 259 732 45 10 94.74 96.28 94.21 85.2 90.4

F-4 258 730 47 11 94.46 95.91 93.95 84.59 89.9

F-5 258 730 47 11 94.46 95.91 93.95 84.59 89.9

Average 94.13 95.84 93.54 83.72 89.37

Inception v4 F-1 245 698 79 24 90.15 91.08 89.83 75.62 82.63

F-2 248 698 79 21 90.44 92.19 89.83 75.84 83.22

F-3 248 704 75 21 90.84 92.19 90.37 76.78 83.78

F-4 245 700 77 24 90.34 91.08 90.09 76.09 82.91

F-5 245 698 79 24 90.15 91.08 89.83 75.62 82.63

Average 90.39 91.52 89.99 75.99 83.04

Inception ResNet v2 F-1 247 698 79 22 90.34 91.82 89.83 75.77 83.03

F-2 251 700 77 17 91.00 93.66 90.09 76.52 84.23

F-3 251 714 63 17 92.34 93.66 91.89 79.94 86.25

F-4 251 710 67 17 91.96 93.66 91.38 78.93 85.67

F-5 247 698 79 22 90.34 91.82 89.83 75.77 83.03

Average 91.2 92.92 90.6 77.39 84.44

ResNeXt-50 F-1 258 730 47 11 94.46 95.91 93.95 84.59 89.9

F-2 260 732 45 9 94.84 96.65 94.21 85.25 90.59

F-3 260 740 37 9 95.60 96.65 95.24 87.54 91.87

F-4 260 740 37 9 95.60 96.65 95.24 87.54 91.87

F-5 260 740 37 9 95.60 96.65 95.24 87.54 91.87
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and 1 instance as viral pneumonia. For normal it mis-
classifies 1 instance as bacterial pneumonia, for bac-
terial pneumonia it misclassifies 5 instances as normal
and 4 instances as viral pneumonia, and for viral
pneumonia it misclassifies 4 instances as normal and
2 instances as bacterial pneumonia with an overall
mean accuracy of 94.34%.

& ResNeXt-50 and Se-ResNeXt-50: COVID-19 with 93%
classification rate bymisclassify 2 as bacterial pneumonia.
For bacterial pneumonia, it misclassifies 5 instances as
normal and 2 instances as viral pneumonia and for viral
pneumonia, it misclassifies 3 instances as normal with
an overall mean accuracy of 96.26% and 96.40%.
However, both the architectures achieve the same ac-
curacy for fold-3.

The dataset4 accurate classification of fold-3 for models
are:

& ResNet-50: Normal condition with a 95.91% classifica-
tion rate by misclassifying 5 instances as bacterial pneu-
monia and 6 instances as viral pneumonia. For bacterial
pneumonia, it misclassifies 18 instances as normal and 12
instances as viral pneumonia and, for viral pneumonia it
misclassifies 10 instances as normal and 7 instances as
bacterial pneumonia with an overall mean accuracy of
94.00%.

& ResNeXt-50: Normal condition with a 96.65% classifica-
tion rate by misclassifying 4 instances as bacterial pneu-
monia and 5 instances as viral pneumonia. For bacterial
pneumonia, it misclassifies 16 instances as normal and 10
instances as viral pneumonia and, for viral pneumonia it
misclassifies 5 instances as normal and 6 instances as bac-
terial pneumonia with an overall mean accuracy of
95.22%.

& Se-ResNeXt-50: Normal condition with a 97.39% classi-
fication rate by misclassifying 4 instances as bacterial
pneumonia and 3 instances as viral pneumonia. For

bacterial pneumonia, it misclassifies 15 instances as nor-
mal and 10 instances as viral pneumonia and, for viral
pneumonia it misclassifies 5 instances as normal and 5
instances as bacterial pneumonia with an overall mean
accuracy of 95.56%.

In multiclass datasets misclassifies instances are: normal as
bacterial, bacterial as viral pneumonia and viral pneumonia
are misclassified as normal or bacterial. Human being’s im-
munity system is the main reason for this misclassification
because when people effected by viral or virus normally they
don’t go for chest-X-ray every time. Viral pneumonia is also
misclassified as bacterial pneumonia because of non-clarity of
X-ray images and non-availability of pediatric X-ray images
as it attacks child after their birth first time. In some cases, our
proposed system misclassified some images of COVID-19 as
bacterial pneumonia and viral pneumonia. In the case of
COVID-19, a lot of changes can be seen in the X-ray
image of the patient because bacterial pneumonia and
the human immunity system are not developed to fight
against this coronavirus. The COVID-19 patient X-ray
images are classified accurately by distinct architectures
of CNN. This architecture performance may be improved
by finely tune the transfer learning process and by in-
creasing the amount of data.

4.4 Performance evaluation

Performance evaluation of the proposed approach is per-
formed using 5 evaluation metrics discussed in Section 3.5.
Evaluation is performed on 20% test data for all four datasets.
Evaluation values are shown in Table 7.

We performed a comparative analysis to show the effec-
tiveness of our proposed system. We have compared the re-
sults of our proposed system with some previously existing
techniques [7, 8, 41, 42] as shown in Table 7. Wang et al. [8]
perform an evaluation using the Inception model on 453 CT
scans confirmed COVID-19 cases of pathogen and achieved

Table 6 (continued)

Models/Folds(F) Performance Evaluation based on Four Metrics

Average 95.22 96.51 94.77 86.49 91.22

Se-ResNeXt-50 F-1 260 732 45 9 94.84 96.65 94.21 85.25 90.59

F-2 261 733 44 8 95.03 97.03 94.34 85.57 90.94

F-3 262 742 35 7 95.98 97.4 95.5 88.22 92.58

F-4 262 742 35 7 95.98 97.4 95.5 88.22 92.58

F-5 262 742 35 7 95.98 97.4 95.5 88.22 92.58

Average 95.56 97.17 95.01 87.09 91.85

Bold indicates highest accuracy
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89.5% accuracy to classify data in healthy and COVID-19
patients. Xu et al. [7] proposed another deep learning-based
system on 618 CT samples and differentiates between
COVID-19 patients, pneumonia, and Influenza-A viral pneu-
monia using the ResNet-50 model and achieved 86.7% accu-
racy. Similarly, other authors of paper [41, 42] achieve accu-
racy of 96.78% and 98% respectively by classifying data (k-
fold techniques) in 2 and 3 classes respectively. Table 7 we
have shown the average accuracy of the model (Se-ResNeXt-
50) which gives the highest accuracy.

From evaluation scores, we can say that the proposed ap-
proach accurately classifies images in all classes as COVID-
19, normal, bacterial pneumonia, and viral pneumonia. So we
can conclude that fine-tuning of pre-trained CNN architecture
can be deployed as one of the useful techniques in the medical
field for the classification of Chest X-ray images.

4.5 Application of the proposed approach

From results, we can state that this proposed approach can be
deployed as one of the useful techniques in the medical field
for classification of Chest X-ray images to identify COVID-19
patients. This can be used as a pre-assessment process to re-
duce physician workload, to reveal internal structures, to di-
agnose and treat diseases at early stages. These techniques can
be used to detect the characteristics of metastatic cancer with
higher accuracy than a human radiologist. For example, if
breast cancer is diagnosed early it is highly curable because
it involves comparing two mammogram images to identify
points of abnormal breast tissue which can be facilitated by
deep transfer learning techniques. We can also apply this ap-
proach to process MRI images. Standard MRI analysis re-
quires hours of computing time to analyse data of large num-
ber of patients. So by applying CNN architectures desired
output may be produced early. In medical imaging fields, this
approach can speed up the diagnosis process to provide a
solution for children with chronic pain, detection of early di-
abetes, tumour, and cancers, etc. So we can conclude that this
approach can be used by doctors and practitioners to deter-
mine the status of the organ and what treatments would be
required for the recovery.

5 Conclusion

Early diagnosis of COVID-19 patients is important for
preventing the disease from spreading to others. In this paper,
we introduced a deep CNN based approach using transfer
learning to differentiate COVID-19 patients from bacterial
pneumonia, viral pneumonia, and normal. We have deployed
nine pre-trained CNN models to explore the transfer learning
techniques and conclude that fine tuning the pre-trained CNN
models can be successfully deployed to a limited class
dataset.CT imaging is an important method for diagnosing
and assessing COVID-19. We have used pre-trained expertise
to improve COVID-19’s diagnostic efficiency. The proposed
system produced a maximum accuracy of 99.32% for binary
class and 97.55% for multi-class among all the seven models.
Our high accuracy findings can be helpful to the doctors and
researchers to make decisions in clinical practice.

Our study has several limitations that can be overcome in
future research. In particular, a more in-depth analysis requires
much more patient data, especially those suffering from
COVID-19. A more interesting approach for future research
would focus on distinguishing patients showing mild symp-
toms, rather than pneumonia symptoms, while these symp-
toms may not be accurately visualized on X-rays, or may
not be visualized at all.

Furthermore, we will try to use our approach on bigger
datasets, to solve other medical problems like cancer, tumors,
etc. and also on other computer vision fields as energy, agri-
culture, and transport in the upcoming days. Future research
directions will include the exploration of image data augmen-
tation techniques to improve accuracy even more while
avoiding overfitting. We observed that performance could be
improved further, by increasing dataset size, using a data aug-
mentation approach, and using hand-crafted features, in the
future.

Compliance with ethical standards
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Table 7 Accuracy Comparison of proposed work with other researchers work

Methods Features Model Classes Data Samples Performance

Xu et al. [7] Automated ResNet 2 618 86.7%

Wang et al. [8] Automated Inception model 2 453 89.5%

Apostolopoulos et al. [41] Automated MobileNet 3 1427 96.78 (train data accuracy)

Ali Narin et al. [42] Automated ResNet-50 2 20 98% (test data- average accuracy)

Proposed System Automated Se-ResNeXt-50 2,3,4 6674 98.36%, 96.99%, 96.40% (test data- average accuracy)
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