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Abstract: Nitrate is the preferred nitrogen source for plants and plays an important role in plant
growth and development. Under various soil stresses, plants reallocate nitrate to roots to promote
stress tolerance through the ethylene-ethylene response factors (ERFs)-nitrate transporter (NRT)
signaling module. As a light signal, ultraviolet B (UV-B) also stimulates the production of ethylene.
However, whether UV-B regulates nitrate reallocation in plants via ethylene remains unknown. Here,
we found that UV-B-induced expression of ERF1B, ORA59, ERF104, and NRT1.8 in both Arabidopsis
shoots and roots as well as nitrate reallocation from hypocotyls to leaves and roots were impaired
in ethylene signaling mutants for Ethylene Insensitive2 (EIN2) and EIN3. UV-B-induced NRT1.8
expression and nitrate reallocation to leaves and roots were also inhibited in the triple mutants for
ERF1B, ORA59, and ERF104. Deletion of NRT1.8 impaired UV-B-induced nitrate reallocation to
both leaves and roots. Furthermore, UV-B promoted ethylene release in both shoots and roots by
enhancing the gene expression and enzymatic activities of ethylene biosynthetic enzymes only in
shoots. These results show that ethylene acts as a local and systemic signal to mediate UV-B-induced
nitrate reallocation from Arabidopsis hypocotyls to both leaves and roots via regulating the gene
expression of the ERFs-NRT1.8 signaling module.

Keywords: Arabidopsis thaliana; ERFs; ethylene biosynthesis; ethylene signaling; nitrate reallocation;
NRT1.8; systemic signal; UV-B

1. Introduction

Nitrogen (N) is one of the basic elements of nucleic acids, hormones, amino acids
and other key substances, and it is a key limitation factor for crop growth and yield. In
agricultural production, application of N fertilizer increases year by year to meet the
increasing food demand caused by global population growth. However, only about 30–50%
of the N fertilizer invested can be absorbed and converted into agricultural productivity,
and the rest is discharged into the atmosphere in the form of nitrous oxide or leached
underground in the form of nitrate, causing low nitrogen use efficiency and environmental
pollution [1,2]. Therefore, research on the mechanism of nitrogen uptake, transportation
and distribution has gained increasing attention.

Inorganic nitrogen is the main nitrogen source for plants obtained from soil, and
nitrate, based on its highly liquidity, is an ideal inorganic nitrogen source for plants [3].
Nitrate transporters (NRT) are involved in nitrate uptake, transport and distribution in
plants [4]. Nitrate transportation from roots to shoots is achieved through symplast and
apoplast pathways. In this process, NPF7.2/NRT1.8 and NPF7.3/NRT1.5 are two trans-
porters mediating long-distance nitrate transport. NRT1.8, which is mainly expressed in
the membrane of xylem parenchyma cells of roots, is responsible for unloading nitrate
from the xylem to root cells. NRT1.5, which is mainly expressed in the pericycle cells
near the protoxylem of roots, is responsible for loading nitrate into the xylem [5,6]. In
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addition, plants can transport nitrate upward through the phloem by NPF2.13/NRT1.7
and NPF2.9/NRT1.9 [7,8]. Once nitrate is transported to the shoots, many members of the
NRT family are involved in nitrate allocation. NRT1.8 not only plays a role in unloading
nitrate from the xylem to roots, but also participates in unloading nitrate from the xylem to
leaves [6]. Previous studies have shown that under cadmium (Cd), salt (Na) and drought
stresses, the expression of NRT1.8 and NRT1.5 in roots was significantly upregulated and
downregulated, respectively, resulting in more nitrate accumulation in roots to improve
plant stress resistance [6,9]. Further studies showed that Cd and Na stresses induced
nitrate reallocation to roots via initiating ethylene/jasmonic acid (JA) signaling, which
converged at ethylene insensitive 3 (EIN3)/EIN3-like1 (EIL1). EIN3/EIL1 modulates the
ethylene responsive factors (ERFs) ERF104, ERF1B and ORA59 and hence upregulates
NRT1.8 expression in roots. Furthermore, EIN3/EIL1 binds to the promoter region of
NRT1.5 to inhibit its expression in roots [10]. Thus, stress-initiated nitrate allocation to roots
(SINAR) is regulated by the ethylene/JA-NRT signaling module and serves as a universal
mechanism of plants in response to diverse stresses [6,9,10].

Ultraviolet-B (UV-B) light, an inherent component of sunlight, is not only a potential
stress factor but also a signal to regulate plant growth and development [11,12]. At present,
there are UV-B-specific and -nonspecific signaling pathways in plants. The UV-B-specific
signaling pathway, dependent on the UV-B receptor UV RESISTANCE LOCUS8 (UVR8), can
be activated at a low dose of UV-B radiation and mainly mediates plant morphogenesis and
defense gene expression [12–14]. The UV-B-nonspecific signaling pathway, independent
of UVR8, can be activated by high-dose UV-B radiation or other stresses and mediates
stress-related gene expression [15]. Furthermore, 0.5 W/m2 UV-B (about 3.45 µmol/m2/s),
close to the UV-B in sunlight [16], is the biologically effective radiation [14], under which
both the UV-B-specific and -nonspecific signaling pathway can be activated [17,18]. Similar
to soil stress factors such as Cd, Na and drought stresses, UV-B can also induce ethylene
production in many plants [19,20]. However, it remains unknown whether UV-B, similar to
soil stress factors, also regulates nitrate reallocation and whether the ethylene-ERFs-NRT
signaling module is also involved in this process.

Under abiotic and biotic stresses, different parts of the same plant are not exposed to
the same stress intensity [21,22]. Tissues that initially sense stress signals (i.e., local tissue)
send systemic signals to other tissues even to parts of the plant (i.e., systemic tissue) that
have not yet been subjected to the stresses. These systemic signals induce acclimation
processes in systemic tissues, termed “systemic acquired acclimation (SAA)”, enabling
these tissues to prepare for the possibility of being subjected to the stresses [23]. SAA
plays a vital role in optimizing plant growth and preventing damage caused by abiotic
and biotic stresses [24]. Under light stress, a variety of systemic signals are activated
in leaves, including electrical signals, systemic reactive oxygen species (ROS), systemic
redox changes, hydraulic waves, and hormones, such as JA, abscisic acid (ABA) and
auxin [24–32]. In the process of light-promoted root growth and nitrate uptake, bZIP
transcription factor HYPOCOTYL5 (HY5) is a shoot-to-root mobile signal. Shoot-derived
HY5 auto-activates root HY5 and promotes root nitrate uptake by activating NRT2.1 [33].
Furthermore, hormone-response transcripts were identified in response to light stress [34].
However, to date, it is still unclear whether ethylene can act as a systemic signal to regulate
nitrate reallocation in the systemic tissues under light stimulus or other stresses.

In this study, we provide evidence that UV-B radiation promotes gene expression
and enzymatic activities of ethylene biosynthetic enzymes only in shoots, thus increasing
ethylene biosynthesis in shoots (the local tissue) and promoting transportation of ethylene
from shoots to roots (the systemic tissue). Ethylene in local and systemic tissues, whose
function is dependent on the ethylene signaling components EIN2 and EIN3, induces
the expression of genes in the ERFs-NRT1.8 signaling module, thus promoting NRT1.8-
mediated nitrate unloading from hypocotyl to roots and leaves. This study not only helps
to understand the signal transduction mechanism of nitrate reallocation regulated by UV-B
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radiation but also gives us a new insight into ethylene acting as a local and systemic signal
in plants.

2. Results
2.1. UV-B Induces Nitrate Reallocation from Hypocotyls to Leaves and Roots

To investigate the effect of UV-B radiation on nitrate allocation in Arabidopsis seedlings,
we determined the nitrate concentration in leaves, hypocotyls and roots of 20-day-old wild-
type Col-0 seedlings under light alone or with 0.5 W/m2 UV-B irradiation for 3 h. Under
light condition, nitrate levels in both leaves and roots were lower than that in hypocotyls
(Figure 1A), leading to a leaf/hypocotyl (L/H) nitrate ratio of 0.77 and a root/hypocotyl
(R/H) nitrate ratio of 0.24 (Figure 1B). UV-B irradiation significantly increased the nitrate
contents in both leaves and roots but decreased that in hypocotyls (Figure 1A), resulting in
an L/H ratio of 1.52 and an R/H ratio of 0.42 (Figure 1B). These results indicate that UV-B
radiation promotes nitrate reallocation from hypocotyls to the local tissue leaves and the
systemic tissue roots.
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mulation in leaves than that in roots (Figure 1), suggesting the involvement of NRT1.8 in 
UV-B-regulated nitrate reallocation to both leaves and roots. To confirm the role of 
NRT1.8, we next detected the effect of NRT1.8 mutation on UV-B-induced nitrate reallo-
cation to leaves and roots. Under normal light condition, the nitrate levels in leaves, hy-
pocotyls and roots were similar in WT Col-0 and nrt1.8 (Figure 2B). The nitrate ratios of 
L/H and R/H in nrt1.8 were also not significantly different from those in WT Col-0 (Figure 

Figure 1. UV-B-induced nitrate reallocation from hypocotyls to leaves and roots. Twenty-day-old
seedlings of Arabidopsis wild-type Col-0 grown in vermiculite substrate were exposed to light alone
(Light) or with 0.5 W/m2 UV-B (UV-B) for 3 h. Then, leaves, hypocotyls and roots were harvested,
their nitrate contents were determined (A), and the leaf/hypocotyl (L/H) and root/hypocotyl (R/H)
nitrate ratios were calculated (B). Values are means ± SE of three biological replicates, each pooled
more than thirty plants. Asterisks indicate significant differences between light and UV-B treatments
(* p < 0.05; ** p < 0.01).

2.2. UV-B Induces Nitrate Reallocation by Promoting NRT1.8 Expression in Shoots and Roots

Considering that NRT1.8 regulates nitrate reallocation in plants under several soil
stresses [6,10], we determined if NRT1.8 is involved in UV-B-regulated nitrate reallocation in
Arabidopsis. We first investigated the gene expression of NRT1.8 in shoots and roots. When
seedlings grown in vermiculite substrate were exposed to 0.5 W/m2 UV-B radiation for 3 h,
the expression of NRT1.8 was enhanced by 14.49 times in shoots and 2.43 times in roots
(Figure 2A). This result was consistent with that UV-B caused a higher nitrate accumulation
in leaves than that in roots (Figure 1), suggesting the involvement of NRT1.8 in UV-B-
regulated nitrate reallocation to both leaves and roots. To confirm the role of NRT1.8, we
next detected the effect of NRT1.8 mutation on UV-B-induced nitrate reallocation to leaves
and roots. Under normal light condition, the nitrate levels in leaves, hypocotyls and roots
were similar in WT Col-0 and nrt1.8 (Figure 2B). The nitrate ratios of L/H and R/H in
nrt1.8 were also not significantly different from those in WT Col-0 (Figure 2C). However,
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under UV-B treatment, in contrast to WT Col-0, no nitrate reallocation from hypocotyls to
leaves and roots was found in nrt1.8 mutants (Figure 2B,C). This result indicates that the
nitrate reallocation from hypocotyls to leaves and roots in WT Col-0 is abolished by NRT1.8
mutation, confirming the role of NRT1.8 in mediating UV-B-induced nitrate reallocation
from hypocotyls to both leaves and roots.
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Figure 2. UV-B induced NRT1.8 expression and NRT1.8 mediated UV-B-induced nitrate reallocation
to leaves and roots. (A) NRT1.8 expression was determined by qPCR in shoots and roots of wild-type
Col-0 exposed to light alone (Light) or with 0.5 W/m2 UV-B (UV-B) for 3 h. Data are presented as
values relative to those of shoots and roots under light treatments after normalization to those of
ACTIN2. (B) Nitrate content was determined in leaves, hypocotyls and roots of wild-type Col-0 and
nrt1.8 plants exposed to light alone (Light) or with UV-B (UV-B) for 3 h. (C) Leaf/hypocotyl (L/H)
and root/hypocotyl (R/H) nitrate ratios were calculated after determination of nitrate levels. Values
are means ± SE (n = 3). Asterisks indicate significant differences between light and UV-B treatments
(* p < 0.05; ** p < 0.01; *** p < 0.005; ns: no significant difference).

2.3. UV-B Induces Expression of ERF Genes, and ERFs Mediates UV-B-Induced NRT1.8
Expression and Subsequent Nitrate Reallocation to Leaves and Roots

Given that ERFs including ERF1B, ORA59 and ERF104 are immediate upstream
regulators of NRT1.8 [10] and that NRT1.8 expression is greatly induced by UV-B in shoots
and roots (Figure 2), we further detected whether UV-B radiation induces expression of
these ERFs in wild-type Col-0 shoots and roots. As expected, UV-B irradiation significantly
induced expression of ERF1B, ORA59, and ERF104 in shoots and ERF1B and ORA59 in
roots, and the induction of these ERFs in shoots was even more dramatic than that in roots
(Figure 3A). These results were consistent with the results that UV-B induced more dramatic
NRT1.8 expression in shoots than in roots (Figure 2A) and promoted a greater proportion
of nitrate accumulation in leaves than in roots (Figure 1). To confirm the role of ERF1B,
ORA59 and ERF104 in UV-B-induced NRT1.8 expression and nitrate reallocation, NRT1.8
expression and nitrate distribution were further compared between wild-type Col-0 and
the ora59 erf104 erf1b triple mutants, tri-1 and tri-2 [10]. In the tri-1 and tri-2 triple mutants,
UV-B-induced NRT1.8 expression was inhibited largely in shoots and completely blocked
in roots (Figure 3B). Consistent with this, UV-B-induced changes of nitrate level and nitrate
ratio were all completely inhibited in tri-1 and tri-2 mutants (Figure 3C,D). These results
firmly indicate that UV-B-induced NRT1.8 expression and subsequent nitrate reallocation
from hypocotyls to leaves, and roots are mediated by ERF transcription factors ERF1B,
ORA59, and ERF104.
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this, ein2-1 and ein3-1 also significantly inhibited the rise in nitrate level in both leaves and 
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Figure 3. UV-B induced expression of ERF genes, and ERFs mediated UV-B-induced NRT1.8 expres-
sion and nitrate reallocation to leaves and roots. (A,B) Expression of ERF1B, ORA59, and ERF104 in
shoots and roots of wild-type Col-0 (A) and expression of NRT1.8 in shoots and roots of wild-type
Col-0 and the ora59 erf104 erf1b triple mutants tri-1 and tri-2 (B) were determined by qPCR in plants
exposed to light alone (Light) or with 0.5 W/m2 UV-B (UV-B) for 3 h. Data are presented as values
relative to those under light treatments after normalization to those of ACTIN2. (C,D) Nitrate con-
centration was determined in leaves, hypocotyls and roots of wild-type Col-0, tri-1 and tri-2 plants
exposed to light alone (Light) or with UV-B (UV-B) for 3 h (C), and then leaf/hypocotyl (L/H) and
root/hypocotyl (R/H) nitrate ratios were calculated (D). Values are means ± SE (n = 3). Data with
asterisks indicate significant differences between light and UV-B treatments (* p < 0.05; ** p < 0.01;
*** p < 0.005; ns: no significant difference).

2.4. Ethylene Signaling Pathway Is Involved in UV-B-Induced Nitrate Reallocation through
Regulating Gene Expression of ERFs-NRT1.8 Signaling Module

Considering that the ethylene signaling pathway regulates ERFs-NRT1.8 signaling
module gene expression upon treatment with Cd, Na, and ethylene [10], we further investi-
gated whether ethylene signaling also mediates UV-B-induced expression of ERFs-NRT1.8
module genes and the subsequent nitrate reallocation using ethylene signaling mutants.
Results showed that UV-B-induced expression of ERF genes ERF1B, ORA59, and ERF104
(Figure 4A) as well as NRT gene NRT1.8 (Figure 4B) in both shoots and roots significantly
decreased in ein2-1 and ein3-1 compared with wild-type Col-0. Consistent with this, ein2-1
and ein3-1 also significantly inhibited the rise in nitrate level in both leaves and roots and
the decrease in nitrate level in hypocotyls induced by UV-B (Figure 4C). Subsequently,
ein2-1 and ein3-1 also significantly inhibited the UV-B-increased nitrate ratios of L/H and
R/H (Figure 4D). These results indicate that the ethylene signaling pathway mediates
UV-B-induced nitrate reallocation from hypocotyls to both leaves and roots by regulating
gene expression of the ERFs-NRT1.8 signaling module.
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tion by inducing gene expression of the ERFs-NRT1.8 signaling module in both shoots and 
roots (Figures 1–4), we further investigated whether UV-B activates ethylene signaling by 
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lease rates in shoots and roots of wild-type seedlings in response to UV-B, and the results 
showed that UV-B radiation significantly increased ethylene release rates in both shoots 
and roots (Figure 5A), suggesting that UV-B induces ethylene accumulation in both shoots 
and roots. We further investigated UV-B’s impact on the gene expression and enzymatic 
activities of ethylene biosynthetic enzymes ACS and ACO in shoots and roots. When Ar-
abidopsis seedlings grown in vermiculite substrate were exposed to 0.5 W/m2 UV-B for 3 
h, the expression of ACS genes including ACS2, ACS5, and ACS7 as well as ACO genes 
including ACO1 and ACO2 was induced significantly only in the UV-B-irradiated shoots 
but not in the UV-B-nonirradiated roots (Figures 5B,C, S1 and S2). Consistent with this, 
UV-B treatment enhanced activities of ethylene biosynthetic enzymes ACS and ACO only 
in shoots but not in roots (Figure 5D). Taken together, these results not only indicate that 
UV-B radiation enhances ethylene biosynthesis only in the UV-B-radiated shoots and not 
in the UV-B-nonradiated roots, but also suggest that UV-B-induced ethylene in the local 
UV-B-irradiated shoots can act as a systemic signal to the UV-B-nonirradiated roots.  

Figure 4. The ethylene signaling pathway was involved in UV-B-induced nitrate reallocation through
regulating gene expression of the ERFs-NRT1.8 signaling module. (A,B) Expression of ERF1B, ORA59,
and ERF104 (A) or NRT1.8 (B) was determined by qPCR in shoots and roots of wild-type Col-0,
ein2-1, and ein3-1 plants exposed to light alone (Light) or with 0.5 W/m2 UV-B (UV-B) for 3 h. Data
are presented as values relative to that of wild-type Col-0 under light treatment after normalization
to those of ACTIN2. (C,D) Nitrate concentration was determined in leaves, hypocotyls and roots
of wild-type Col-0, ein2-1 and ein3-1 plants exposed to light alone (Light) or with UV-B (UV-B) for
3 h (C), and then leaf/hypocotyl (L/H) and root/hypocotyl (R/H) nitrate ratios were calculated (D).
Values are means ± SE (n = 3). Values with asterisks indicate significant differences between light
and UV-B treatments (* p < 0.05; ** p < 0.01; *** p < 0.005; ns: no significant difference).

2.5. UV-B Increases Ethylene Levels in Both Shoots and Roots by Inducing Ethylene Biosynthesis
Only in Shoots

Having established that ethylene signaling mediates UV-B-induced nitrate reallocation
by inducing gene expression of the ERFs-NRT1.8 signaling module in both shoots and
roots (Figures 1–4), we further investigated whether UV-B activates ethylene signaling
by inducing ethylene biosynthesis in both shoots and roots. We first measured ethylene
release rates in shoots and roots of wild-type seedlings in response to UV-B, and the results
showed that UV-B radiation significantly increased ethylene release rates in both shoots
and roots (Figure 5A), suggesting that UV-B induces ethylene accumulation in both shoots
and roots. We further investigated UV-B’s impact on the gene expression and enzymatic
activities of ethylene biosynthetic enzymes ACS and ACO in shoots and roots. When
Arabidopsis seedlings grown in vermiculite substrate were exposed to 0.5 W/m2 UV-B for
3 h, the expression of ACS genes including ACS2, ACS5, and ACS7 as well as ACO genes
including ACO1 and ACO2 was induced significantly only in the UV-B-irradiated shoots
but not in the UV-B-nonirradiated roots (Figure 5B,C, Figures S1 and S2). Consistent with
this, UV-B treatment enhanced activities of ethylene biosynthetic enzymes ACS and ACO
only in shoots but not in roots (Figure 5D). Taken together, these results not only indicate
that UV-B radiation enhances ethylene biosynthesis only in the UV-B-radiated shoots and
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not in the UV-B-nonradiated roots, but also suggest that UV-B-induced ethylene in the local
UV-B-irradiated shoots can act as a systemic signal to the UV-B-nonirradiated roots.
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Figure 5. UV-B enhanced ethylene levels in both shoots and roots by only increasing ethylene
biosynthesis in Arabidopsis shoots. Seedlings of Arabidopsis wild-type Col-0 grown in vermiculite
substrate were exposed to light alone (Light) or with 0.5 W/m2 UV-B (UV-B) for 3 h. Then, shoots and
roots were harvested and subjected to determination of ethylene release rates (A), gene expression of
ACS (B) and ACO (C), and activities (D) of ethylene biosynthetic enzymes ACS and ACO. Values are
means ± SE of three biological replicates, each pooled more than thirty plants. Data of gene relative
expression are presented as values relative to those under light treatment after normalization to those
of ACTIN2. Data with asterisks indicate significant differences between light and UV-B treatments
(* p < 0.05; ** p < 0.01; *** p < 0.005; ns: no significant difference).

3. Discussion

Previous studies have shown that SINAR serves as a universal mechanism of plants
in response to diverse soil stresses such as salt, drought and heavy metal stresses [6,9,10],
under which roots are the local tissues that initially sense the stress signals. However,
whether other environmental factors, such as visible light and UV-B signals that are initially
sensed by leaves (the local tissues) but not by roots (the systemic tissues), also initiate nitrate
allocation to roots is still unclear. Meanwhile, it is also unclear whether light signals and
soil factors can initiate nitrate allocation to the local tissue leaves and the systemic tissue
leaves, respectively. In this study, our data demonstrate that UV-B radiation induces nitrate
reallocation from hypocotyls of Arabidopsis seedlings not only to the local tissue leaves
but also to the systemic tissue roots (Figure 1). This result further confirms that SINAR is a
universal acclimation mechanism of plants in response to both soil and light stresses and
suggests that UV-B can induce nitrate reallocation to both the local and systemic tissues.
Whether the soil factors can also initiate nitrate allocation to the systemic tissue leaves is
worth studying in the future.
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Studies have shown that Cd and Na stresses induce nitrate reallocation to roots via
initiating ethylene signaling to induce expression of ORA59, ERF1B and ERF104 and hence
to upregulate NRT1.8 expression in roots [6,10]. However, stresses mentioned above are soil
stresses, and roots are the directly stressed local tissues. It remains unknown whether light
signal UV-B regulates nitrate reallocation to both the local tissue leaves and the systemic
tissue roots also through the ethylene-ERFs-NRT1.8 signaling module. Here, we found
that UV-B induced expression of ERF104, ERF1B, ORA59, and NRT1.8 in both Arabidopsis
shoots and roots (Figures 2 and 3), suggesting that these ERFs may mediate UV-B-induced
NRT1.8 expression and the subsequent nitrate reallocation to leaves and roots. However,
ERF104 expression showed significant but less response in shoots and no response in roots
to UV-B (Figure 3A). This might be due to the fact that ERF104 is preferentially regulated at
the posttranslational level by UV-B-triggered signals such as ethylene [35]. Furthermore,
nitrate reallocation from hypocotyls to both leaves and roots was impaired in ethylene
signaling mutants for EIN2 and EIN3 (Figure 4). UV-B-induced NRT1.8 expression and
nitrate reallocation were also inhibited in the triple mutants for ERF104, ERF1B, and ORA59
(Figure 3), and deletion of NRT1.8 impaired UV-B-induced nitrate reallocation as well
(Figure 2). These data not only provide evidence that UV-B induces nitrate reallocation
to both the local tissue leaves and the systemic tissue roots via ethylene-ERFs-NRT1.8
signaling module, but also suggest that this signaling module mediates nitrate reallocation
in plants in responses to various environmental conditions. However, our results also
showed that the UV-B-induced nitrate reallocation and gene expression of ERFs and NRT1.8
were only partially inhibited in Arabidopsis shoots when EIN2 and EIN3 were mutated
(Figure 4). These results further suggest that except for the ethylene signaling pathway,
there may be other pathways also involved in the regulation of nitrate reallocation under
UV-B radiation, such as salicylic acid and jasmonic acid [10,36]. Previous studies have
shown that HY5 is involved in light-regulated nitrate absorption and distribution [33], and
that HY5 is also a key component of the UV-B-specific signaling pathway dependent on
UVR8 [13–15]. Therefore, it is worth exploring whether UV-B-induced nitrate reallocation
is under a coordinated regulation between ethylene- and UVR8-dependent pathways.

Under diverse abiotic and biotic stresses, the local tissues can send systemic signals
to induce acclimation processes in the systemic tissues, termed SAA, which play a vital
role in optimizing growth and preventing damage associated with abiotic and biotic stress
conditions [24–26]. Studies have shown that a variety of systemic signals are activated in
leaves under light stress, including electrical signals, ROS, systemic redox changes, JA, ABA,
auxin, hydraulic waves and HY5 [21–33]. However, to date, whether ethylene can act as a
systemic signal under light stimulus or other stresses is still not clear. Our results showed
that UV-B radiation upregulated ACS and ACO gene expression and enhanced ACS and
ACO enzymatic activities only in the local irradiated tissue shoots but increased ethylene
level in both the local tissue shoots and the systemic tissue roots (Figure 5). At the same
time, the suppression of the ethylene signaling pathway inhibited UV-B-induced expression
of ERFs and NRT1.8 as well as nitrate reallocation to both leaves and roots (Figure 4). These
results further indicate that ethylene induced by UV-B in shoots acts as not only a local
signal but also a systematic signal, which promotes nitrate reallocation through initiating
the ERF-NRT1.8 signaling module in both the local and systemic tissues. Gaseous molecule
ethylene can freely diffuse from one cell to another neighboring cell, as described in [37].
However, the long-distance transport of ethylene still needs further evidence. Ethylene’s
precursor ACC can be easily transported over short and long distances, providing the plant
with an elaborate system to control local and remote ethylene responses [38,39]. It has
been reported that ACC is a systemic signal when the roots are exposed to stress [38]. In
this study, UV-B increased ethylene levels in both shoots and roots but induced ethylene
biosynthesis only in the local shoots, indicating that the enhanced ethylene in the systemic
roots is either direct ethylene transport or is a result of ACC transport from shoots, which
needs further study to clarify. Regardless of the form of ethylene or its precursor ACC, there
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is no doubt that ethylene is a potential local and systemic signal involved in UV-B-induced
nitrate reallocation.

Based on our research, a potential module of the UV-B signaling pathway for regulating
nitrate reallocation in Arabidopsis thaliana is established as follows: UV-B signaling is
initiated by inducing the gene expression of ACSs and ACOs in the local tissue shoots, which
results in ethylene/ACC biosynthesis in shoots and thus promotes ethylene movement
to roots in the form of ethylene itself or its precursor ACC. Ethylene induces the gene
expression of the ERFs-NRT1.8 signaling module in both the local tissue shoots and the
systemic tissue roots and thus promotes nitrate reallocation from hypocotyls to both leaves
and roots (Figure 6).
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Figure 6. Potential module of the UV-B signaling pathway for regulating nitrate reallocation from
hypocotyls to leaves and roots. UV-B signaling is initiated by inducing gene expression of ACSs
and ACOs in shoots, which results in ethylene/ACC biosynthesis in shoots and thus promotes
ethylene/ACC movement from shoots to roots. Ethylene activates the ERFs-NRT1.8 signaling
module in both shoots and roots via EIN2- and EIN3-dependent manners and thus promotes nitrate
reallocation from hypocotyls to leaves and roots.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Seeds of Arabidopsis (Arabidopsis thaliana) wild-type and mutant ein2-1 (CS3071), ein3-
1 (CS8052) and nrt1.8 (CS873532) were obtained from the Nottingham Arabidopsis Stock
Centre (Nottingham, UK). Seeds of ora59-1 erf104 erf1b triple mutants tri-1 and tri-2 were
kindly provided by Prof. J.-M. Gong (National Key Laboratory of Plant Molecular Genetics
and National Center for Plant Gene Research, Shanghai). Mutants ein2-1, ein3-1, nrt1.8, tri-1
and tri-2 are in the Col-0 ecotype. The genotypes of all mutants were confirmed by PCR
analysis [10,40].

Plants were grown in vermiculite substrate in a growth chamber at 22 ◦C with 80%
relative humidity under 16 h: 8 h (light: dark) conditions with 100 µmol/m2/s light
intensity and irrigated every 2 days with a nutrient medium containing 10 mmol/L KNO3,
2.5 mmol/L NH4NO3, 5 mmol/L KH2PO4, 1 mmol/L MgSO4, 2.5 mmol/L (NH4)2SO4, 0.5
mmol/L CaCl2, 50 µmol/L H3BO3, 12 µmol/L MnSO4, 1 µmol/L ZnCl2, 1 µmol/L CuSO4,



Int. J. Mol. Sci. 2022, 23, 9068 10 of 13

0.2 µmol/L Na2MoO4, 0.1 mmol/L Fe-EDTA. After growing for 20 days, the seedlings
were selected for UV-B irradiation treatment.

4.2. UV-B Treatment

In this study, we chose 0.5 W/m2 UV-B irradiation for 3 h (equaling 5.4 kJ/m2 received
by plants) for all UV-B treatments according to a previous study [17]. Twenty-day-old
seedlings were moved into an artificial climate incubator with the same growth conditions
as in the growth chamber, and UV-B irradiation was obtained for 3 h from 40 W Q-panel UV
313 lamps (Largo; its maximum output is at 313 nm) covered with 0.13 mm thick cellulose
diacetate (West Design Products) to transmit radiation down to 290 nm. The desired UV-B
radiation intensity (0.5 W/m2) was achieved by adjusting the distance between seedlings
and the UV 313 lamps, measured by UV spectroradiometer (Model 742) and weighted with
the generalized plant response action spectrum normalized to 300 nm.

4.3. RNA Extraction and qPCR Analysis

After treatments, total RNA was extracted from the shoots (aboveground parts includ-
ing leaves and hypocotyls) or roots using TRIzol reagent (Invitrogen, San Diego, CA, USA)
according to the manufacturer’s instructions. The total RNAs were reverse-transcribed
into first-strand cDNA using HiScript®IIReverse Transcriptase (Vazyme, Nanjing, China)
according to the manufacturer’s instructions. qPCR was performed with ChamQ™ SYBR
qPCR Master Mix (Vazyme, Nanjing, China) on an CFX96 real-time system (Bio-Rad Labo-
ratories, Hercules, CA, USA). The qPCR assays were performed in triplicate in a reaction
volume of 20 µL with 5 µL of diluted cDNA (1:10) and SYBR Green PCR Master Mix. All
amplification reactions were performed in 96-well optical reaction plates with 40 cycles of
denaturation for 10 s at 95 ◦C, annealing for 30 s at 60 ◦C. For each independent biological
replicate, the relative transcript level was the mean of three technical replicates. Each qPCR
result was the average of three independent biological repeats. The relative expression
level is shown as a value relative to that of wild-type Col-0 under light treatment after
normalization to those of ACTIN2 [41]. The primer sequences for qPCR are listed in Table
S1. Most of the primers have been successfully used in previous studies [10,40–42]. Ampli-
fication efficiency and specificity of the newly reported primers in the present study were
checked by reading the amplification plot from a machine. The relative quantification of
each gene expression was performed using the 2−∆∆Ct method [43].

4.4. Determination of Nitrate Content

For nitrate content analyses, at least thirty seedlings for each biological replicate were
dissected into leaves, hypocotyls and roots, and then, 3 mL of milli-Q water per 0.1 g fresh
weight (FW) of tissues was added, and the mixture was boiled for 20 min and frozen at
−80 ◦C overnight. The material was centrifuged at 20,800× g for 5 min at room temperature,
and then, the supernatant was taken up in a 1 mL syringe, passed through a 0.22 µm filter,
and its nitrate content was determined by HPLC (Agilent 1200 series) using a PARTISIL 10
strong anion-exchange column (Whatman) as described [44].

4.5. Detection of Ethylene Release Rate

In this study, we detected the ethylene release rate as mentioned previously [42].
After the aforementioned treatments (light or 0.5 W/m2 UV-B irradiation for 3 h), the
shoots (aboveground parts including leaves and hypocotyls) and roots from at least thirty
seedlings for each biological replicate were immediately enclosed in 2 mL vials. After
3 h, the gas in the vial was extracted using a syringe, and then, the ethylene content was
measured with an Agilent 6890 NGC system equipped with a flame ionization detector
on an HP-5 capillary column (Agilent Technologies, Palo Alto, CA, USA). Treatment was
repeated at least three times. Data are presented as means ± standard errors (SE).
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4.6. Assays for ACS Activity

ACS activity in shoots and roots from at least thirty seedlings for each biological
replicate was detected as described previously [45] with slight modifications. Briefly,
0.1 g tissues was ground with liquid nitrogen and then resuspended in 350 µL buffer A
(200 mmol/L phosphate buffer, pH 8.0, 10 µmol/L pyridoxal phosphate, 1 mmol/L EDTA,
2 mmol/L PMSF and 5 mmol/L DTT). The samples were centrifuged at 15,000× g for
15 min at 4 ◦C, and then, 300 µL extraction was transferred to a 5 mL vial containing
100 µL 5 mmol/L S-(5′-Adenosyl)-L-methionine (AdoMet). After incubation for 1 h at
22 ◦C, 100 µL 10 mmol/L HgCl2 and 100 µL 1:1 mixture of saturated NaOH:bleach were
added in order to promote the conversion of ACC formed to ethylene. The reaction vials
were then sealed with rubber serum stoppers and incubated on ice for 20 min. For each
sample, 1 mL of headspace gas in vial was removed with a syringe and injected into
gas chromatograph (Agilent 6890 NGC) for ethylene determination as described above.
All reactions were performed in three replications and compared with controls, to which
AdoMet was not added.

4.7. Assays for ACO Activity

ACO activity in shoots and roots from at least thirty seedlings for each biological
replicate was assayed as described previously [46] with slight modifications. Briefly, 0.5 g
tissues was ground with liquid nitrogen and then resuspended in extraction buffer (10%
glycerol, 30 mmol/L sodium ascorbate, 5% polyvinyl polypyrrolidine, 0.1 mol/L Tris-HCl,
pH 7.2). Homogenate of tissues was centrifuged at 15,000× g for 20 min at 4 ◦C, and then,
0.2 mL supernatant was mixed with 2 mL reaction mixture containing 1.7 mL extraction
buffer (without polyvinyl polypyrrolidine), 50 µmol/L FeSO4, and 2 mmol/L ACC, and
incubated at 30 ◦C. Ethylene produced in the head space of 5 mL capped tubes after a
1 h incubation was determined as described above. All reactions were performed in three
replications and compared with controls, to which ACC was not added.

4.8. Statistical Analysis

Results from different treatments were compared using Student’s t test and one-way
ANOVA (analysis of variance). Following ANOVA, post hoc comparisons of means were
made using Mann–Whitney multiple comparisons. Statistical significance was determined
at p < 0.05, p < 0.01 or p < 0.005, as indicated in the figure legends. All data analyses were
carried out using SPSS16.0.
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