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IntroductIon

Cervical cancer is widely occurring cancer and a major 
health problem in women worldwide. It is usually caused by 
sexually transmitted infections from certain types of human 
papillomavirus (HPV). According to the WHO,[1] cervical 
cancer was recorded as the second‑most common cancer in 
women in low‑ and middle‑income regions with an estimated 
570,000 new cases and approximately 311,000 deaths in 2018.[2] 
There are 10 premature deaths per week for women 20–39 years 
old.[3] Early‑stage diagnosis can help prevent cervical cancer.

Tissue specimens from the uterine cervix of affected women 
is extracted through biopsy and affixed on glass slides and 
stained with hematoxylin and eosin (H&E). Then, an expert 
histopathologist examines the glass sides under a light 
microscope to provide the diagnosis for each sample, as shown 

in Figure 1. Accurate interpretation of glass slides is crucial 
to avoid misdiagnoses,[4] which requires extensive time and 
effort by the pathologist. Each woman could have up to a 
dozen biopsy samples that require analysis. This illustrates the 
necessity of computational digital pathology to augment and 
automate the process of diagnosis by scanning the digitalized 
whole‑slide image (WSI).[5,6]
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Figure 1: Graphical overview of the proposed toolbox
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Grading of cervical disease is largely based on the proportion 
of immature cells within the epithelium, starting at the base 
and gradually encompassing the entire epithelial layer. This 
precancerous condition is called cervical intraepithelial 
neoplasia (CIN) or cervical dysplasia. The CIN lesions are 
caused by HPV. All the cells in the epithelium contain the 
virus. Epithelium maturity depends on the degree to which 
the virus interferes with the cellular maturation process. The 
disease is present in the entire epithelial layer. The degree of 
differentiation determines the grade. In CIN1, CIN2, and CIN3, 
the immature cells are found in the lower one‑third, two‑thirds, 
and entire epithelial layers, respectively. The remaining cells 
in the corresponding upper epithelial layers can be different. 
In CIN1, these cells are larger because the tissue can become 
more mature than the other grades. In CIN3, there is little 
or no maturation, so the upper cells may be similar to lower 
layer cells.[7]

The histopathological WSIs have some unique challenges 
to overcome. The sheer size of WSI data contains billions 
of pixels, comprising gigabytes of data. There is a high 
variability of image appearance due to slide preparation, 
staining, and various other artefacts during the scanning 
of the tissue slides. In addition, the shapes of the biopsied 
tissue samples vary, and there is no standard shape and size 
of the epithelium regions and the abnormal cells present 
inside these regions. The presence of blood stains, ink 
markers, tapes, and blurred regions pose challenges when 
designing automated tools. These problems present unique 
barriers to the development of deep learning (DL) models 
in digital pathology. Nonetheless, the use of DL methods 
in digital pathology has been proven to have a significant 
improvement in diagnostic capabilities and efficiency,[8‑10] 
the histopathological analysis is performed for various such 
as cervical cancer, skin cancer, breast cancer, and prostate 
cancer. The effects of stain color augmentation and stain color 
normalization are studied, and an unsupervised approach for 
stain color normalization was proposed using neural networks 

for computational pathology.[11] The use of convolution neural 
networks (CNN) for segmentation, detection, and classification 
in common histologic primitives were explored by Janowczyk 
and Madabhushi.[12] Multi‑instance learning is proposed for 
image‑level classification and annotating relevant regions 
for histology image analysis.[13] Focusing on cervical cancer, 
Wang et al.[14] presented a block segmentation method to 
extract textural feature information for CIN classification 
using support vector machines. Superpixel‑based DL nuclei 
detection was explored in cervical histology images.[15] The 
problems of inter‑observer variability and the advantages of 
the use of computer‑aided systems as a secondary decision 
for classifying precursor lesions were presented by Albayrak 
et al.[16] Li et al.[17] detailed the use of various machine learning 
techniques for cervical histopathology image analysis.

The current study leverages various DL models and specifically 
seeks to automate the diagnosis of cervical cancer by scanning 
histopathological WSIs. This is an end‑to‑end prototype tool 
that assists pathologists with valuable information like the 
location of epithelium regions, and can also coarsely segment 
the epithelium regions from the background and unwanted 
tissue regions and classify these epithelium regions with added 
contributions of local regions for the overall classification. The 
major contributions of this work are: (1) The introduction of an 
epithelium detection network from WSIs for the identification 
of epithelium regions. (2) The design and implementation 
of a multi‑stage toolbox to extract useful information for 
epithelium and precervical cancer (CIN) assessment. This 
toolbox uses a combination of the proposed epithelium 
detection network with the previously developed EpithNet[18] 
and DeepCIN[19] networks to deliver an end‑to‑end WSI 
analysis pipeline.

This is a novel toolbox that is inspired from the way 
pathologists analyze the glass slides under a microscope: 
looking along the outer edges of the tissue and identifying 
the epithelium regions; zooming in and observing the cell 
distribution and patterns across the epithelium in detail; and 



Figure 2: Overview of the proposed toolbox

Figure 3: Steps for region of interest extraction. (a) Finding the contour 
on the edge of the tissue sample, (b) piece‑wise curve for drawing 
tangents, (c) rectangular boxes drawn with reference to tangents, and 
(d) region of interest boxes on the original masked image
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quantifying the CIN grades along the epithelium regions as 
depicted in Figures 1 and 2.

Methodology

The toolbox incorporates a four‑step sequential procedure 
[Figure 2]. First, the outer region of interest (ROI) is identified, 
and the regions are filtered with the epithelium detection 
network. Second, pixel‑level epithelium segmentation takes 
place. Third, localization occurs to generate vertical segments. 
Fourth, CIN grade classification with attention‑based 
sequential feature modeling is completed.

Epithelium detection
We propose the epithelium detection process with an initial 
preprocessing that includes the extraction of ROIs from the 
low‑resolution WSIs (refer Section “Data”). This is followed 
by a classifier network that identifies the epithelium ROIs by 
reading the high‑resolution versions (refer Section “Data”) of 
the extracted ROIs.

Region of interest extraction
Initially, we process the low‑resolution version of raw cervical 
histology WSI to generate a mask for the tissue region, 
determine the contour, and draw boxes around the outer region 
of the digitized tissue sample. The WSIs usually have a tissue 
specimen with a white background. Since the background is 
uniform, a simple threshold operation can create a mask for the 
WSI. This mask is further processed to remove small unwanted 
object regions and close the holes in the object regions.

Instead of using grid‑based region creation, we optimize the 
selection of epithelium regions by only focusing on the outer 
regions where the epithelium layer is present. The contour of 
the mask provides the outer edge information. This contour 
curve is cut into a piece‑wise curve at a frequency of 40 points 
per cut (chosen empirically based on the low‑resolution 
slide images). In order to draw boxes of ROIs, a polygon 
is fit based on the points from each piece‑wise curve and a 

tangent is drawn at the midpoint of these piecewise curves. 
Based on the tangential lines, rectangular boxes were drawn 
facing the object region of the mask, as shown in Figure 3. 
The width of the ROI is determined by the maximum and the 
minimum values of horizontal coordinates and the height is 
chosen to be 40 pixels (chosen empirically) to accommodate 
the entire epithelium cross‑section. These rectangular box 
coordinates were normalized and recorded. The high‑resolution 
ROIs (at ×10) were finally created by cropping out the 
image regions from the high‑resolution slide image using 
the normalized rectangular bounding box coordinates data as 
shown in Figure 4.

Epithelium detection network
The epithelium detection network is a binary classifier that 
categories an input image as epithelium or nonepithelium. 
The high‑resolution ROIs are fed to this network to filter and 
retain only the ROIs‑containing epithelium. An example is 
shown in Figure 5.

Table 1 presents the network architecture that was investigated. 
This is a customized version of the VGG‑19 model.[20] The 
initial layers contain a series of convolution block and 
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max‑pooling layers. The end feature maps generated from 
these layers are vectorized and passed through fully connected 
layers. All the aforementioned layers were activated with 
rectified linear unit nonlinearity functions, except the last 
fully connected layer that contains two neurons to compute 
the classification probability for each class using the SoftMax 
activation function. In order to reduce overfitting, the output 
of the first fully connected layer is constrained by randomly 
dropping 50% of the values to zero.

Epithelium segmentation
From Figure 2, epithelium segmentation is the second step in 
the slide analysis process. We utilize the EpithNet model from 
our previous studies[18] to coarsely segment the high‑resolution 
epithelium ROIs to generate an epithelium segmentation mask. 
The segmentation model is a pixel‑wise epithelial probability 
estimator and is developed based on the information provided 
by a pixel depending on the surrounding spatial proximity 
in the image plane. The epithelium ROI is preprocessed by 
splitting into tiles, and each tile is further processed to generate 
64 × 64 × 3 RGB patch image data. These patches are created 
with a sliding window technique with stride 4. From,[18] the 
EpithNet‑64 regression model was utilized to process these 
patch data to output an estimated probability of the center 
pixel of being an epithelium. These pixel probabilities are 
gathered and treated as pixel intensities to form a mask. This 
mask is postprocessed using thresholding, morphology, and 
smoothing filter operations for object formation to generate a 
binary segmentation mask.

Localization
CIN is the growth of atypical cervical cells in the epithelium. 
This abnormal growth is clearly understood when observed 
locally. Thus, standard width vertical segments[19] are generated 

from the epithelium ROIs based on their automatically 
determined medial axes. The medial axes are found from 
the epithelium segmentation mask, as illustrated in Figure 6. 
Algorithm and implementation details are given in our previous 
work.[19]

Cervical intraepithelial neoplasia classification
For each segmented epithelium, CIN classification is 
performed. The DeepCIN[19] is a 2‑fold learning process. First, 
a segment‑level sequence generator is a weakly supervised 
network that scans each localized vertical segment image to 
generate the best sequence representation of the input image. 
This is built as an encoder‑decoder model, where the encoder 
is a CNN model that extracts and encodes convolutional spatial 
feature information to a sequential feature. The decoder is a 
many‑to‑one model that consists of two layers of bidirectional 
long‑short‑term memory network and a single layer neural 
network. Second, an attention‑based fusion network is an 
image‑level classifier that sequentially interprets the vertical 
segment sequences. This provides a contextual understanding 
of local information that not only helps in providing the 
multi‑class CIN classification result, but also provides 
the contribution of each vertical segment toward the final 
classification as shown in Figure 7. This is built with gated 

Table 1: Epithelium detection network architecture

Layers Configurations Size
Input ‑ 3 × 250 × 250
Convolution block 1 [k: 3 × 3, s: 1, p: 1] × 2 64 × 250 × 250
Pool 1 mp: 2 × 2, s: 2 64 × 125 × 125
Convolution block 2 [k: 3 × 3, s: 1, p: 1] × 2 128 × 125 × 125
Pool 2 mp: 2 × 2, s: 2 128 × 62 × 62
Convolution block 3 [k: 3 × 3, s: 1, p: 1] × 4 256 × 62 × 62
Pool 3 mp: 2 × 2, s: 2 256 × 31 × 31
Convolution block 4 [k: 3 × 3, s: 1, p: 1] × 4 512 × 31 × 31
Pool 4 mp: 2 × 2, s: 2 512 × 15 × 15
Convolution block 5 [k: 3 × 3, s: 1, p: 1] × 4 512 × 15 × 15
Pool 5 mp: 2 × 2, s: 2 512 × 7  ×  7
Flatten ‑ 25088 × 1
FC 1 nh: 1024 1024 × 1
Dropout prob: 0.5 1024 × 1
FC 2 nh: 1024 1024 × 1
FC 3 nh: 2 2 × 1
Output softmax 2 × 1
k, s, p, mp, nh, prob are kernel, stride size, padding size, max pooling, 
number of neurons, and probability, respectively. FC: Fully connected 
single‑layer neural network

Figure 4: Mapping of high‑resolution region of interest (right) to its 
low‑resolution image (left)

Figure 6: (a) Epithelium segmentation mask overlaid as a contour on the 
epithelium region of interest. (b) Vertical segments generation through 
the localization process

ba

Figure 5: Filtering of epithelium region of interests with the results from 
the epithelium detection network



J Pathol Inform 2021, 1:26 http://www.jpathinformatics.org/content/12/1/26

Journal of Pathology Informatics 5

recurrent units and attentional neural network layers. The 
detailed model implementation can be found in the work of 
Sornapudi et al.[19]

The model was previously trained with five‑fold 
cross‑validation, and we ensemble the five trained models to 
produce the CIN classification result on the proposed toolbox.

experIMents

Data
The study uses 150 H and E stained cervical histopathological 
slides (WSI) provided by the Department of Pathology at the 
University of Oklahoma Medical Center in collaboration with 
the National Library of Medicine. The glass slides were scanned 
using the Aperio ScanScope slide scanner with ×20 objective, 
producing WSIs in a pyramidal tiled format with the file 
extension “SVS.” These SVS files are large (they typically 
range from 1 gigabyte to 100 megabytes). Each pixel has a size 
of 0.25 µm2. The pyramidal tile level varies from 0 to 2/3/4. In 
this paper, we often refer to a ×1 image (highest pyramid level) 
as a low‑resolution image and ×20 image (pyramid level 0) 
down sampled to ×10 as a high‑resolution image. This is 
explicitly performed to maintain the same image resolutions 
used in our previous works.[18,19] There are three sets of WSIs 
captured during the years 2013, 2015, and 2016, and hence 
named OU13, OU15, and OU16, respectively. Each of these 
sets contains 50 WSIs. The higher resolution images were 
annotated by an expert pathologist with more than 30 years 
examination experience. The study uses 50 WSIs from the 
OU13 set for training and validation of the epithelium detection 
model, and 100 WSIs from both the OU15 set and the OU16 
set for testing our toolbox. With our automated ROI extraction 
technique, we could generate high‑resolution arbitrary size 
images that contain epithelium and nonepithelium regions. The 
distribution of the image blocks can be observed in Table 2. 
The images from Table 2 were evaluated for the correctness of 
the epithelium segmentation process in Section “Performance 
of epithelium detection network”.

The data set examined in this research for evaluating 
CIN classification model [Figure 2] consists of a total 
of 947 expert‑labeled epithelium images (a subset of obtained 
epithelium ROIs), 723 images from OU15‑set, and 224 images 
from OU16‑set. The class distribution of the data is shown in 
Table 3. It should be noted that these 947 epithelium images 
are an independent set of images extracted from the proposed 
approach and are mutually exclusive from the manually 
extracted epithelium images that are used for training the CIN 
classification model.[19]

Implementation details
The architecture of the epithelium detection network is 
summarized in Table 1. The network incorporates a transfer 
learning scheme. The convolutional module is initialized 
with ImageNet weights and left frozen. The rest of the layer 
weights (fully connected layers) are reinitialized with random 
Gaussian distributions to update through the training steps. In 

the training phase, the weights are iteratively updated with the 
gradients of the cross‑entropy loss function, which is computed 
using RMSprop optimization over a mini‑batch of training 
samples. The initial learning rate is set to 0.0001 and changes 
adaptively as the training progresses.

We have designed the CNN model such that it can read 
RGB input images of size 250 × 250 × 3. To maintain a 
standard resolution of the input images, the extracted ROIs 
are padded with zeros, center cropped to size 500 × 500 × 3 
and finally resized to 250 × 250 × 3. We incorporated data 
augmentation techniques to avoid the problem of highly 
imbalanced data in the training set [Table 2]. The epithelium 
ROI images were augmented to create a dataset equivalent in 
the number of images to the non‑epithelium ROIs (20,841). 
The epithelium ROI images were augmented using random 
rotate, vertical and horizontal flipping, random blur, etc. 
RMSprop, with a mini‑batch of size 32, is used to train the 
network for 100 epochs. Early stopping is applied to monitor 
the generalization error and avoid overfitting.

In the testing phase, the ROIs categorized as epithelium 
are further processed with previously trained models in 
the toolbox: EpithNet‑64 and DeepCIN. We obtained an 
epithelium segmentation mask with EpithNet‑64 for the 
generation of vertical segments that are consumed by DeepCIN 

Table 2: Data distribution for epithelium detection

Dataset WSIs Epithelium ROIs Nonepithelium ROIs
OU13 50 2998 20,841
OU15 50 4915 12,595
OU16 50 4106 8601
WSI: Whole‑slide image, ROI: Region of interest

Table 3: Subset of epithelium region of interest images for 
evaluating cervical intraepithelial neoplasia classification

Class OU15 OU16 Combined set
Normal 451 133 584
CIN1 90 11 101
CIN2 128 41 169
CIN3 54 39 93
Total 723 224 947
CIN: Cervical intraepithelial neoplasia

Figure 7: A cervical intraepithelial neoplasia 3 grade epithelial image 
with (a) localized vertical segments, and (b) their contribution towards 
image‑level cervical intraepithelial neoplasia classification represented as 
probability distribution over the segments (attentional weights)

ba
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to deliver the CIN classification results and the contribution 
of the vertical segments toward the classification output. The 
models are run on the PyTorch v1.4 platform[21] using Nvidia 
Quadro P4000 GPU with 8GB of memory. The time taken to 
process a WSI varies depending on the size of the image and 
the presence of epithelium in a tissue sample. On average the 
time taken to process and grade a WSI (~ 520MB) through 
entire pipeline was around 27.6 min.

Evaluation metrics
We evaluated the proposed epithelium detection network 
for classification as epithelium/non‑epithelium ROIs. The 
performance evaluation metrics include specificity (Sp), 
sensitivity (Se), harmonic mean (Hmean), F1‑score (F1), 
accuracy (ACC), and area under the ROC curve (AUC). Sp 
measures the proportion of correctly identified nonepithelium 
ROIs, Se measures the proportion of correctly identified 
epithelium ROIs, Hmean is the harmonic mean Sp of and Se (which 
is better at measuring under imbalance data distribution), F1 
is the harmonic mean of precision and recall, and ACC is the 
global accuracy. AUC is the area under the receiver operating 
characteristic curve and is plotted with varying thresholds on 
final classification scores.

We also evaluated the final CIN classification results from 
the detected epithelium ROIs. The scoring metrics used 
are precision (P), recall (R), F1‑score (F1), classification 
accuracy (ACC), area under Receiver Operating Characteristic 
curve (AUC), average precision (AP), Matthews correlation 
coefficient (MCC), and Cohen’s kappa score (κ).[19] The 
percentage weighted average scores were computed to account 
for the imbalance in the data distribution.

results

We evaluated the toolbox performance by comparing the 
epithelium detection network results and the CIN classification 
results against the expert pathologist annotated ground truths 
on the OU15 and OU16 WSI datasets.

Performance of epithelium detection network
Tab le  4  shows  the  c l a s s i f i ca t ion  pe r fo rmance 
(Sp, Se, Hmean, F1,ACC and AUC) of the proposed epithelium 
detection network. The objective of this network is to sort the 
extracted ROI images into epithelium and nonepithelium. Since 
there are more non‑epithelium ROIs compared to epithelium 
ROIs [Table 2], the Sp is always observed to be higher than Se. 
Harmonic mean (Hmean) gives a better‑balanced score between 
and , and is found to have a mean value of 97.3%, 92.7%, and 
95.0% among OU15, OU16, and OU15 and OU16 combined 
datasets, respectively. We observed that the trained network 
has better generalization on the OU15‑set, compared to the 
OU16‑set. The combined dataset results were also reported. 
We could not compare the performance of the network with 
other works because, to our knowledge, this is the first study 
on cervical epithelium detection.

Figure 8 contains examples of correctly classified epithelium 
ROIs (true positive) and misclassified epithelium ROIs 

(false positive). Typically, the cancer cells are manifested 
in the epithelium, and hence the identification of epithelium 
is our top priority. The network is observed to identify the 
epithelium regions even under challenging conditions. The 
falsely identified ROIs closely resemble the epithelium regions, 
which makes the classification task difficult. Nevertheless, 
the network has provided good performance accuracy results 
of 97.8% on OU15‑set, 95.2% on OU‑16, and 96.5% on the 
combined set.

Performance of cervical intraepithelial neoplasia 
classification model
We evaluate and compare the performance of the CIN 
classification model on the high‑resolution epithelium images 
extracted through the proposed automated epithelium detection 
and segmentation process, against manually cropped and 
segmented images. We employ five scoring schemes[19] to 
analyze the classification results for the different evaluation 
metrics from section “Evaluation metrics”. They are exact class 
labels, CIN versus Normal, CIN3‑CIN2 versus CIN1‑Normal, 
CIN3 versus CIN2‑CIN1‑Normal, and off‑by‑one class.

The classification results from the DeepCIN classification 
model for OU15 and OU16 image sets are presented in 
Tables 5 and 6, respectively. The results show that the DeepCIN 
model performed better on the OU16 dataset compared 
to the OU15 dataset. This may be due to the presence of 
relatively fewer artifacts during the preparation of the OU16 
WSIs compared to OU15 WSIs. Table 7 gives the results of 
the combined dataset. We observe that the model has few 
misclassifications. The misclassifications are usually off by 
one CIN grade, which is manifested with higher accuracy 
for the off‑by‑one class results. The off‑by‑one disparity in 
CIN classification is also observed to happen among expert 
pathologists with interobserver variability. If we rank the scoring 
schemes based on the results, the off‑by‑one class is followed by 
CIN versus Normal (abnormal vs. normal), CIN3‑CIN2 versus 
CIN1‑Normal, CIN3 versus CIN2‑CIN1‑Normal, and exact 
class labels. High CIN versus normal discrimination facilitates 
distinguishing the abnormal precancerous epithelium regions 
from the normal epithelium regions.

The proposed toolbox is observed to face difficulty in correctly 
identifying the CIN 3 epithelium images. There is primarily an 
off‑by‑one grade error with misclassification as CIN 2. This 
is supported from the metric values of CIN3‑CIN2 versus 
CIN1‑Normal and CIN3 versus CIN2‑CIN1‑Normal scoring 
schemes in Table 7.

The performance of the proposed toolbox for automated cervical 
diagnosis is benchmarked against CIN classification results on the 
manually cropped and segmented epithelium images [Table 8]. 
The manually extracted epithelium images were chosen carefully 
to capture and focus on the epithelium regions along with accurate 
annotations for epithelium masks. These images are close to 
the ideal conditions, and we compare them with the epithelium 
images from an automated realistic toolbox. We observed that 
the proposed toolbox has a closer performance to the benchmark 



Figure 8: Examples of epithelium detection results. Correctly classified (top row) and misclassified (bottom row) epithelium region of interests
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results. This highlights the potential of the proposed prototype 
as an assistive tool to be used in clinical settings.

dIscussIon

The cervical histopathology data suffers from three major 
limitations in the data collection and preparation. First, unlike 
scenic images used in the public challenges, biomedical image 
data requires a lot of approvals to gather patient data and hence, 
the amount of data is relatively very low. Second, gathering 
expert labeled data are always challenging since this requires 
skills to identify the regions and grade the cancer. There is 
always an inter‑pathologist variation related to interpretation of 
the results. A study[22] has shown that there is an interobserver 
variability of 0.799–0.887 in terms of kappa score among 
four expert pathologists who have CIN grading experience 
of 8–30 years. Third, the distribution of the data is always 
skewed/imbalanced as shown in Tables 2 and 3.

We observed that our proposed four‑stage pipeline is superior 
to the end‑to‑end WSI‑to‑grade model. Unlike natural images, 
WSIs are digitized microscopic images, usually very large 

Table 4: Epithelium detection results

Test set Sp Se Hmean F1 ACC AUC
OU15 98.3 96.6 97.3 95.6 97.8 97.4
OU16 96.3 90.8 92.7 91.4 95.2 93.5
OU15/OU16 97.3 93.7 95.0 93.5 96.5 95.5
Sp: Specificity, Se: Sensitivity, Hmean: Harmonic mean, F1: F1‑score, 
ACC: Accuracy, AUC: Area under the ROC curve, ROC: Receiver 
operating characteristic

Table 5: Cervical intraepithelial neoplasia classification results on OU15‑set

Scoring scheme Precision Recall F1 ACC AUC AP MCC κ
Exact class label 83.1 83.8 82.8 83.8 94.4 86.8 70.35 70.1
CIN versus normal 91.1 91.1 91.1 91.1 90.1 95.7 81.0 81.0
CIN3‑CIN2 versus CIN1‑normal 93.2 93.2 93.8 93.2 89.1 97.8 81.6 81.3
CIN3 versus CIN2‑CIN1‑normal 93.6 94.2 92.8 94.2 63.7 95.5 46.1 39.4
Off‑by‑one ‑ ‑ ‑ 96.3 ‑ ‑ ‑ ‑
CIN: Cervical intraepithelial neoplasia, F1: F1‑score, ACC: Accuracy, AUC: Area under the ROC curve, ROC: Receiver operating characteristic, AP: Average 
precision, MCC: Matthews correlation coefficient, κ: Cohen’s kappa score

images with pyramidal tile format. A four‑stage pipeline 
helps in better memory utilization and faster processing. 
We use low‑resolution image to extract blocks of ROIs at 
high‑resolution. DL models are applied on these ROIs to 
determine their CIN grade. Additionally, the proposed pipeline 
can provide intermediate results if needed by a pathologist for 
further investigation. A WSI‑to‑grade model is like a black 
box which inhibits any deeper analysis. Pathologists find this 
localized CIN estimation very useful to identify the abnormal 
regions and their respective grade.

This paper is intended to compare the proposed automated 
digitized histology slide analysis for CIN classification 
of epithelium regions with the manually segmented 
epithelium regions. Fewer epithelium regions in WSIs 
were considered for evaluation due to limited availability 
of expert pathologist labeling. Future studies will explore 
the interpretation of WSI‑level CIN classification for the 
complete end‑to‑end digitized slide analysis. The inclusion 
of techniques like graph theory for deeper understanding 
of spatial context and data fusion might help in further 
improving the CIN classification results. Stacked models can 
be created to handle the lack of consensus pathology, that 
is, the designed models should have the ability to interpret 
the disagreements among the pathologists’ ground truth 
labeling. The resolution of WSI scanners should be a concern 
too. There is variability across manufacturers which leads 
to issues with different image resolutions. The future work 
will be also be focused on designing models that can handle 
WSIs from various sources.
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The deployment of this AI toolbox could be used as a 
virtual assistant to pathologists in a clinical setting for faster 
examination of histology slides. The toolbox can: (1) save 
pathologists time and effort in locating and analyzing the 
epithelium and (2) mitigate pathologist CIN assessment errors 
and interobserver variability utilizing the CIN classification 
capability. From a clinical setting or research perspective, the 
toolbox does not need to be used in real‑time. The toolbox 
can be applied to digitized histology slides offline and record 
findings, including epithelium location, segmentation, and CIN 
assessment to facilitate pathologist or researcher diagnostic 
analysis.

conclusIon

Our pipeline draws inspiration from the examination strategy 
of an expert pathologist, where he/she scrutinizes the growth 
of abnormal cells across small portions of the epithelium. This 
is realized by scanning the cervical histopathological WSI and 
extracting the epithelium ROIs present on the outer layer of 
the tissue sample. Since there are regions without epithelium, 
filtering the ROIs is crucial to retain only the epithelium 
ROIs and this is accomplished by the proposed epithelium 
detection network. With the help of our previous studies, 

we incorporated the EpithNet‑64 model for segmenting the 
epithelium regions in the epithelium ROIs. Small vertical 
portions are extracted for a localized cell growth pattern 
analysis, which is performed by the DeepCIN model. The 
results sequences are fused with attentional observation to 
determine the final CIN grade for the epithelium ROI. Even 
the significance of the local regions was identified in this 
process of CIN classification. Furthermore, the CIN grade for 
the entire WSI can be generated by voting CIN classification 
results from the portions of epithelium ROIs.

We observed that our novel approach for an automated CIN 
diagnosis from a WSI has achieved expert pathologist level 
accuracy for the experimental dataset. This highlights the 
potential of our proposed pipeline as an assisting tool to an 
expert pathologist both in terms of quality of diagnosis and 
time. The interpretation of the results for the proposed pipeline 
must be put in the context of the data samples and expert 
annotated WSI‑level labels utilized in this study. If there is 
the availability of more data from various sources, the toolbox 
could be better generalized for use by everyone. The tool can 
be further improved by considering additional information of 
patients’ metadata and genetic codes.

Table 8: Benchmark cervical intraepithelial neoplasia classification results[19]

Scoring scheme Precision Recall F1 ACC AUC AP MCC κ
Exact class label 88.6 88.5 88.0 88.5 96.5 91.5 82.0 81.5
CIN versus normal 94.6 94.1 94.0 94.1 93.8 97.7 88.5 87.9
CIN3‑CIN2 versus CIN1‑normal 96.8 96.7 96.7 96.7 96.0 98.9 92.7 92.5
CIN3 versus CIN2‑CIN1‑normal 96.2 96.0 96.0 96.0 88.4 98.3 85.3 84.8
Off‑by‑one ‑ ‑ ‑ 98.9 ‑ ‑ ‑ ‑
CIN: Cervical intraepithelial neoplasia, F1: F1‑score, ACC: Accuracy, AUC: Area under the ROC curve, ROC: Receiver operating characteristic,  
AP: Average precision, MCC: Matthews correlation coefficient, κ: Cohen’s kappa score

Table 6: Cervical intraepithelial neoplasia classification results on OU16‑set

Scoring scheme Precision Recall F1 ACC AUC AP MCC κ
Exact class label 90.2 88.4 88.2 88.4 98.0 93.1 80.5 80.0
CIN versus normal 97.3 97.3 97.3 97.3 97.2 99.7 94.4 94.4
CIN3‑CIN2 versus CIN1‑normal 95.7 95.6 95.5 95.5 94.0 99.1 90.3 90.0
CIN3 versus CIN2‑CIN1‑normal 93.0 92.4 91.5 92.4 78.2 97.0 71.9 68.1
Off‑by‑one ‑ ‑ ‑ 98.2 ‑ ‑ ‑ ‑
CIN: Cervical intraepithelial neoplasia, F1: F1‑score, ACC: Accuracy, AUC: Area under the ROC curve, ROC: Receiver operating characteristic, AP: Average 
precision, MCC: Matthews correlation coefficient, κ: Cohen’s kappa score

Table 7: Cervical intraepithelial neoplasia classification results on the combined set

Scoring scheme Precision Recall F1 ACC AUC AP MCC κ
Exact class label 85.0 85.0 84.2 85.0 95.5 88.3 73.0 72.7
CIN versus normal 92.6 92.6 92.6 92.6 92.0 96.9 84.3 84.3
CIN3‑CIN2 versus CIN1‑normal 93.8 93.8 93.7 93.8 90.5 98.3 84.1 83.9
CIN3 versus CIN2‑CIN1‑normal 93.7 93.8 92.6 93.8 69.7 96.0 58.3 52.9
Off‑by‑one ‑ ‑ ‑ 96.7 ‑ ‑ ‑ ‑
CIN: Cervical intraepithelial neoplasia, F1: F1‑score, ACC: Accuracy, AUC: Area under the ROC curve, ROC: Receiver operating characteristic, AP: Average 
precision, MCC: Matthews correlation coefficient, κ: Cohen’s kappa score
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