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Abstract Metastasis is the main cause of death in cancer patients but remains a poorly

understood process. Small cell lung cancer (SCLC) is one of the most lethal and most metastatic

cancer types. SCLC cells normally express neuroendocrine and neuronal gene programs but

accumulating evidence indicates that these cancer cells become relatively more neuronal and less

neuroendocrine as they gain the ability to metastasize. Here we show that mouse and human SCLC

cells in culture and in vivo can grow cellular protrusions that resemble axons. The formation of

these protrusions is controlled by multiple neuronal factors implicated in axonogenesis, axon

guidance, and neuroblast migration. Disruption of these axon-like protrusions impairs cell migration

in culture and inhibits metastatic ability in vivo. The co-option of developmental neuronal programs

is a novel molecular and cellular mechanism that contributes to the high metastatic ability of SCLC.

Introduction
Metastases are a major cause of cancer-related morbidity and mortality. By the time cancer cells

leave their primary site and spread to distant sites, they have acquired the ability to migrate and

invade, as well as characteristics that enable them to survive and proliferate within new microenvir-

onments. These phenotypes are likely driven by changes in gene expression and epigenetic pro-

grams that allow cancer cells to overcome the many hurdles that normally constrain the metastatic

process. Despite recent advances, our understanding of the principles and mechanisms underlying

metastasis remains incomplete, including how changes in molecular programs can translate into

selective advantages that enable cancer cells to spread to other organs (Fidler, 2003; Obenauf and

Massagué, 2015; Lambert et al., 2017).

Small cell lung carcinoma (SCLC) is a high-grade neuroendocrine cancer that accounts for ~15%

of all lung cancers and causes over 200,000 deaths worldwide each year (Sabari et al., 2017). The

ability of SCLC cells to leave the primary tumor and establish inoperable metastases is a major cause

of death and a serious impediment to successful therapy (van Meerbeeck et al., 2011; Farago and

Keane, 2018). SCLC is one of the most metastatic human cancers, with over 60% of SCLC patients

presenting with disseminated disease at the time of diagnosis, often including liver, bone, brain, and

secondary lung metastases (Nakazawa et al., 2012; Riihimäki et al., 2014).

Molecular analyses to understand metastatic progression of human cancer are often limited by

difficulties in accessing tumor samples at defined stages. This problem is especially true for SCLC,
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since patients with metastatic disease rarely undergo surgery (Barnes et al., 2017). Genetically engi-

neered mouse models of human SCLC recapitulate the genetics, histology, therapeutic response,

and highly metastatic nature of the human disease (Kwon and Berns, 2013; Gazdar et al., 2015;

Rudin et al., 2019). These genetically engineered mouse models recapitulate cancer progression in

a controlled manner and allow for the isolation of primary tumors and metastases directly from their

native microenvironment. Recently, we and others have used mouse models to uncover gene expres-

sion programs that are altered in SCLC metastases (Denny et al., 2016; Semenova et al., 2016;

Wu et al., 2016; Yang et al., 2018). While SCLC cells display features of neuroendocrine cells, the

gene expression programs in metastatic SCLC include not only genes normally expressed in pulmo-

nary neuroendocrine cells but also those expressed in neurons (Carney et al., 1982; Cutz, 1982;

Broers et al., 1987; Anderson et al., 1988). Higher levels of the neuronal markers such as NSE (neu-

ron-specific enolase) correlate with shorter survival and more metastatic disease in SCLC patients

(Carney et al., 1982; van Zandwijk et al., 1992; Dong et al., 2019). Broad neuronal gene expres-

sion programs are enriched in metastases from mouse models of SCLC, however, whether SCLC

cells actually gain neuronal characteristics and whether neuronal features are key regulators of meta-

static ability has not been previously characterized (Denny et al., 2016; Wu et al., 2016;

Yang et al., 2018; Böttger et al., 2019).

Here we find that the metastatic state of SCLC can include the growth of protrusions that resem-

ble axons. These axon-like growths increase the ability of SCLC cells to migrate and metastasize,

thus representing a cellular mechanism that enhances the metastatic ability of SCLC cells that have

transitioned to a more neuronal cell state.

Results

SCLC cells can form long cellular protrusions in culture and in vivo
To investigate SCLC migration, we developed an assay in which SCLC cells, which classically grow in

culture as floating spheres or aggregates, are grown as a monolayer under Matrigel (Denny et al.,

2016 and Materials and methods). Unexpectedly, we noticed that cells from some SCLC cell lines

(N2N1G, 16T, 6PF) derived from the Rbf/f;Trp53f/f (DKO) and Rbf/f;Trp53 f/f;p130f/f (TKO) genetically

engineered mouse models form long cellular protrusions into cell-free spaces (Figure 1A–B). To

determine whether these structures specifically project into cell-free areas or they also exist within

monolayers, we cultured a minor fraction of fluorescently-labeled, GFPpositive SCLC cells with control

SCLC cells. We found that SCLC cells also form protrusions when they are in close contact with sur-

rounding cancer cells (Figure 1—figure supplement 1A). Similar mixing experiments performed in

subcutaneous allografts also documented the growth of protrusions by SCLC cells in vivo

(Figure 1C–D). Finally, similar structures also extend from SCLC micro-metastases in the liver in the

autochthonous TKO mouse model and after intravenous transplantations of SCLC cells (Figure 1—

figure supplement 1B–C).

Human SCLC patient-derived xenografts (PDXs) recapitulate many important features of the

human disease (e.g. Saunders et al., 2015; Gardner et al., 2017). To label rare cancer cells within

human SCLC PDXs and identify whether they had protrusions in unperturbed tumors, we used DiI

tracing. DiI is a lipophilic dye that diffuses within cell membranes and has been widely employed to

label projections from individual neurons (Mufson et al., 1990; Heilingoetter and Jensen, 2016).

Protrusions from SCLC cells were easily identifiable in two out of three PDX models (Figure 1E–F).

Furthermore, human NCI-H446 SCLC cells formed long protrusions into cell-free areas in the 2D cul-

ture system (Figure 1—figure supplement 1D–E) and when grown as xenografts (Figure 1—figure

supplement 1F). Other human and mouse cells had a variable capacity to form protrusions (Fig-

ure 1—figure supplement 1G–H, Supplementary file 1: Key Resources table, and

Supplementary file 2–table 1).

These observations indicated that at least a subset of SCLC cells, which are often described as

being ‘small round blue’ cells, can develop long cellular protrusions. We next sought to investigate

the nature of these protrusions and uncover their possible role in metastatic SCLC.
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SCLC protrusions resemble axons and SCLC cells with protrusions
migrate similar to neuroblasts
SCLC cells express typical neuroendocrine genes but also neural and neuronal genes (Carney et al.,

1982; Cutz, 1982). This observation led us to investigate whether the protrusions were similar to

neuronal axons or dendrites. We identified a list of 69 genes classically associated in the scientific lit-

erature with axonogenesis and axon guidance, and found that many of these genes are expressed in

at least subsets of primary human SCLCs (George et al., 2015) (Supplementary file 2–table 2).

Thus, the gene expression programs controlling axonal growth in neuronal cells are also present in

SCLC cells. We previously performed gene expression analyses on purified cancer cells from primary

tumors and metastases from two mouse models of SCLC (Denny et al., 2016; Yang et al., 2018). In

these studies, we found a general increase in the expression of neuronal gene expression programs
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Figure 1. SCLC cells grow protrusions in culture and in vivo. (A) Representative bright field images of three murine SCLC (mSCLC) cell lines (KP22,

N2N1G, and 16T). Cells extend protrusions into a cell-free scratch generated in monolayer cultures. Protrusions are indicated by white arrowheads.

Scale bars, 100 mm. N = 3 replicates. (B) Quantification of the number of protrusions that form from each mSCLC cell line as cultured in (A). Each

symbol corresponds to the average of two technical replicates of an independent experiment. Mean + /- s.d. is shown, unpaired t-test. (C)

Representative images of mSCLC cells (6PF and 16T) growing as subcutaneous tumors. At the time of injection, 10% SCLC cells stably expressing

membrane-GFP (mGFP) were mixed with 90% GFP-negative SCLC cells. Immunostaining for GFP generates a brown signal. Examples of protrusions are

indicated by white arrowheads. Hematoxylin (blue) stains the nuclei of the cells. (N = 5/allograft, from one biological replicate). Scale bar, 20 mm. (D)

Quantification of (C). Each symbol represents an allograft tumor (N = 4/allograft, from one biological replicate). Mean + /- s.d. is shown. (E)

Representative images of human SCLC (hSCLC) patient-derived xenografts growing subcutaneously (LX102, LU86, and LU102 models). Tumors were

injected with the red fluorescent tracer DiI. Protrusions are indicated by white arrowheads. Scale bar, 20 mm. (F) Quantification of (E). Each symbol

represents a xenograft tumor (N = 6/xenograft, from one biological replicate). Mean + /- s.d. is shown, unpaired t-test.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. SCLC cells grow protrusions in culture and in vivo.
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during tumor progression, with broad expression of the selected candidate genes in metastatic

SCLCs, indicating that murine SCLC tumors and cell lines derived from these tumors represent a

tractable system with which to investigate neuronal programs in SCLC (Supplementary file 2–table

3). Pathway and process enrichment analysis on these 69 genes confirmed their connection with

axon guidance, neuron migration, and nervous system development (Supplementary file 2–table 4).

To further investigate the nature of these SCLC protrusions, we assessed their expression of

canonical axonal and dendritic proteins. The protrusions that form from murine and human SCLC

cell lines uniformly expressed neuron-specific class III beta-tubulin (Tuj1). More importantly, these

protrusions were positive for the axonal marker TAU while expression of the dendritic marker MAP2

was undetectable (Figure 2A–B and Figure 2—figure supplement 1A–C). Tuj1positive, TAUpositive

protrusions were also observed in vivo emanating from SCLC cells in the liver of TKO mice (Fig-

ure 2—figure supplement 2A). Furthermore, 29/79 (37%) human primary SCLC tumors stained

moderately or strongly positive for TAU (Figure 2—figure supplement 2B). Most axonogenesis and

neuronal migration genes were undetectable in a single-cell RNA-seq analysis of adult lung epithelial

cells, which included neuroendocrine cell, further suggesting that these programs are turned on dur-

ing tumorigenesis (Figure 2—figure supplement 2C) (Ouadah et al., 2019). Immunostaining for the

axonal marker GAP43 (which is highly expressed in the metastatic SCLC state; see below) did not

uncover any positive normal lung epithelial cells (Figure 2—figure supplement 2D). Together, these

observations indicate that axonal programs are gained during SCLC progression and suggested that

the protrusions from SCLC cells are axon-like.

We quantified the length of protrusions and found that they were often 5 to 10 times longer than

the diameter of the cell body (~8 mm) (Figure 2C). The length and the frequency of these axon-like

protrusions suggested that they might influence the behavior of SCLC cells. We investigated and

quantified the features of SCLC cells with and without protrusions using time-lapse microscopy. Ini-

tial observations of mouse SCLC cells showed that the protrusions were very dynamic (Figure 2D

and Video 1). In these videos, we noticed that the protrusions resembled cellular processes that

have been described in neuroblasts and with the movement of SCLC cells along these protrusions

reminiscent of neuronal tangential migration exhibited by neuroblasts (Lois et al., 1996;

Oudin et al., 2011; Zhou et al., 2015) and interneurons (Leclech et al., 2019). Indeed, when we

quantified the movement of SCLC cell along protrusions, SCLC cell lines that form protrusions (16T

and N2N1G cell lines) displayed increased saltatory activity compared to SCLC cells that do not

form protrusions (KP22 cell line) (Figure 2D–H and Video 2, 3, and 4). The velocity of SCLC cells

that form protrusions was also greatly increased compared to cells that do not form protrusions (Fig-

ure 2—figure supplement 1D).

Together, these results indicate that SCLC cells can generate axon-like protrusions and that these

projections facilitate migration in a manner that is qualitatively similar to neuroblast migration during

brain development.

Expression of a gene signature for axonogenesis and neuronal
migration across SCLC subtypes
To investigate the functional importance of these axon-like protrusions and their regulation, we

focused on 13 genes (out of the 69 genes selected above) that encode for proteins functionally

involved in diverse aspects of axon formation, axon guidance, and neuronal migration

(Supplementary file 2–table 5). These 13 genes are all expressed in at least a subset of human

SCLC tumors (Figure 3—figure supplement 1A) (data from George et al., 2015). We excluded

gene families for which functional overlap and compensatory mechanism were likely. STRING analy-

sis and literature searches confirmed that these 13 candidates had a significant connection with bio-

logical processes related to neurogenesis and the regulation of neuron projection development.

These proteins were not often connected with one another and thus likely contribute to distinct

aspects of these biological processes (Figure 3—figure supplement 1B and Supplementary file 2–

table 6).

A better understanding of the mechanisms that lead to the upregulation of gene programs linked

to axonogenesis and neuronal migration may help us understand the functional role of these gene

programs in SCLC cells. SCLC tumors have been divided in major subtypes driven by key transcrip-

tion factors (Rudin et al., 2019). In human tumors (George et al., 2015), the 13-gene signature cor-

related more closely with the ‘SCLC-N’ subtype, driven by the transcription factor NEUROD1, and
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Figure 2. SCLC cells with protrusions migrate in a saltatory fashion similar to neuroblasts. (A) Representative immunofluorescence images of N2N1G

mSCLC cells expressing membrane-GFP (GFP, green) and stained (red) for expression of the neuronal marker Tuj1, the axonal marker TAU, or the

dentritic marker MAP2. DAPI marks the nucleus of cells in blue. Scale bars, 50 mm. (B) Quantification of (A) for two mouse SCLC cell lines (16T, N2N1G)

and one human SCLC cell line (NCI-H446). Images for 16T and NCI-H446 are shown in Figure 2—figure supplement 1B–C. N = 5/cell line. The bar is

the mean. (C) Quantification of the length of protrusions in three mSCLC cell lines (KP22, no visible protrusions, 16T and N2N1G with protrusions). The

average cell size in these experiments was ~8 mm. Each dot represents a cell. N > 10 fields were quantified in one biological replicate. Mean + /- s.d. is

shown, Mann-Whitney test. (D) Representative still images from time-lapse videomicroscopy analysis of 16T SCLC cells showing the dynamic nature of

the protrusions (from Video 1). (E) Quantification of the saltatory movements of three mSCLC cell lines as indicated. Note the correlation between the

presence of protrusions and the ability of making longer steps (longer than the average cell size). Each dot represents a cell. N > 10 fields were

Figure 2 continued on next page
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both human cell line NCI-H446 and the PDX model LU86 (Saunders et al., 2015) belong to this sub-

type (Figure 3—figure supplement 1C). The murine cell lines used to study protrusions in this study

are of the ‘SCLC-A’ subtype (driven by the transcription factor ASCL1), even though the correlation

between the 13-gene signature and ASCL1 expression was weak in mouse tumors (Yang et al.,

2018) (Figure 3—figure supplement 1C). We also found no correlation between ASCL1 and NEU-

ROD1 expression and the ability to grow protrusions in other human cell lines (Figure 3—figure sup-

plement 1D and Supplementary file 2–table 1). Thus, the ability to grow protrusions may exist

across SCLC subtypes. We and others have identified a role for the NFIB transcription factor in SCLC

metastasis and the induction of gene programs linked with neuronal differentiation (Denny et al.,

2016; Semenova et al., 2016; Wu et al., 2016). Notably, the 13-gene signature correlated with

high NFIB expression (Figure 3—figure supplement 1C). NFIB knock-down in mouse SCLC cells

that had high NFIB levels and formed protrusions did not result in the global downregulation of the

13-gene signature, but was sufficient to reduce the formation of protrusions (Figure 3—figure sup-

plement 1E–F). Overexpression of NFIB in SCLC mouse cells with low NFIB levels and without pro-

trusions was not sufficient to lead to the upregulation of the entire set of 13 genes or to induce the

growth of protrusions (Figure 3—figure supplement 1E,G). Thus, while NFIB upregulation may be

important in the induction of neuronal programs in SCLC cells, the upstream factors that control

neuronal programs specifically associated with axonogenesis and migration in SCLC remain to be

fully characterized. These experiments led us to more specifically test the role of the 13 selected

genes in the formation of protrusions and the role of these protrusions in cell migration and

metastasis.

Loss of Axon-like protrusions inhibits the migration of SCLC cells
In the 25 human SCLC cell lines analyzed in the Cancer Dependency Map project, knock-down of

these 13 genes rarely affected the growth of SCLC cells in culture, consistent with these genes influ-

encing aspects of cell physiology not related to the cell cycle (Supplementary file 2–table 7 and Fig-

ure 3—figure supplement 2A). We performed immunostaining for one of these 13 proteins

(GAP43) and found that ~50% of human primary SCLC tumors stained moderately or strongly posi-

tive (Figure 3—figure supplement 2B), further supporting a role for neuronal programs linked to

axonogenesis and migration in SCLC.

The 13-gene signature was overall more

highly expressed in N2N1G cells, which are

derived from a lymph node metastasis and grow

protrusions compared to KP22 cells that do not

grow protrusions (Figure 3—figure supplement

2C). We first knocked-down each of these 13

genes with two shRNAs in N2N1G cells. We con-

firmed stable knock-down by RT-qPCR

(Supplementary file 2–table 8) and quantified

the development of protrusions in the monolayer

culture assay. Knock-down of 11 of the 13 genes

significantly reduced the number of protrusions

with at least one shRNA (Figure 3A–B and Fig-

ure 3—figure supplement 3A). Knock-down of

multiple factors normally implicated in distinct

steps of axonal growth reduced the develop-

ment of protrusions from SCLC cells, thus further

Figure 2 continued

quantified in one biological replicate. Mean + /- s.d. is shown, Mann-Whitney test. (F–H) Example of single cell movement over time for each of the

three mSCLC cell lines.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. SCLC protrusions resemble axons and enable rapid cell movement.

Figure supplement 2. Mouse and human SCLC cells express axonal markers in vivo.

Video 1. Time-lapse video of 16T mouse SCLC cells

(images collected every 15 min).

https://elifesciences.org/articles/50616#video1
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bolstering the notion that these protrusions are

similar to neuronal axons. Knock-down of the many genes involved in axon formation, axonal guid-

ance, and neuronal migration also reduced cell migration (Figure 3B). Quantification of cell migra-

tion showed that inhibition of migration correlated with loss of the axon-like protrusions (Figure 3C–

D). We validated the knock-down for two of the top candidates, Gap43 and Fez1 genes, by immuno-

blot for the corresponding proteins in N2N1G cells (Figure 3—figure supplement 3B–C). We fur-

ther validated the effects of knocking down these two factors on the growth of protrusions and cell

migration in a second SCLC cell line (16T; Figure 3E–J and Figure 3—figure supplement 3D–E).

Finally, we found that knock-down of Gap43 and Fez1 reduced the ability of SCLC 16T and N2N1G

cells to migrate out of 3D spheroids in Matrigel (Figure 3—figure supplement 3F–G).

Together, these data show that SCLC cells with axon-like protrusions migrate in culture similar to

what has been described for neuroblasts and that disruption of these protrusions by knocking down

a variety of diverse genes involved in axonogenesis and neuronal migration also reduces SCLC

migration.

Knock-down of genes associated with the formation of protrusions
decreases metastatic potential
The link between axon-like protrusions and migration in vitro led us to investigate whether these

axon-like protrusions promote the metastatic ability of SCLC cells in vivo. In support of this idea, we

found that the expression of neuron-specific class III beta-tubulin and TAU was barely detectable in

non-metastatic tumors in the lungs of TKO mice 3 months after cancer initiation while a majority of

later stage tumors stained strongly positive for both proteins (Figure 4—figure supplement 1A–B).

GAP43 was detectable in 6/9 human SCLC

metastases analyzed (Figure 4—figure supple-

ment 1C). We also found a significant increase

of key genes involved in axonogenesis and neu-

ronal migration in metastases compared to pri-

mary tumors in a mouse model of SCLC

(Figure 4—figure supplement 1D).

To test the role of these protrusions in the

metastatic process in vivo, we investigated

whether SCLC cells with Gap43 or Fez1

knocked-down had reduced metastatic ability.

The products of these genes are thought to reg-

ulate axonal development in distinct manners

but knock-down of each reduced the formation

of protrusions and cell migration in culture. We

first assessed whether Gap43 and Fez1 knock-

Video 2. Time-lapse video of KP22 mouse SCLC cells

(images collected every 15 min).

https://elifesciences.org/articles/50616#video2

Video 3. Time-lapse video of 16T mouse SCLC cells

(images collected every 15 min).

https://elifesciences.org/articles/50616#video3

Video 4. Time-lapse video of N2N1G mouse SCLC

cells (images collected every 15 min).

https://elifesciences.org/articles/50616#video4
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Figure 3. The axonal-like protrusions contribute to the migratory ability of SCLC cells in culture. (A) Quantification of the number of cells with

protrusions when mGFP-labeled N2N1G mSCLC cells were allowed to grow into a cell-free scratch generated in monolayer cultures under Matrigel.

N = 3 independent experiments (shControl, N = 3 per experiment, total N = 9 plotted together). An unpaired t-test was used for statistical analysis and

p-values are shown. Only significant p-values are shown. The dotted line represents a 60% reduction compared to the mean value of the controls. (B)

Representative images of the data quantified in (A) and (C) with knock-down of Gap43. Scale bars, 100 mm. (C) Quantification of the migration of cells

with protrusions when mGFP-labeled N2N1G mSCLC cells were allowed to grow into a cell-free scratch generated in monolayer cultures under

Matrigel. N = 3 independent experiments. An unpaired t-test was used for statistical analysis and p-values are shown. Only significant p-values are

shown. The dotted line represents a 60% reduction compared to the mean value of the controls. (D) Correlation of the data in (A) and (C) using the

mean value for each knock-down. Pearson correlation R2 value is shown. (E and H) Immunoblot analysis of GAP43 or FEZ1 levels, respectively, in control

and knock-down 16T mSCLC cells. HSP90 is a loading control. (F and I) Quantification of the number of cells with protrusions as in (A) with 16T mSCLC

cells and Gap43 or Fez1 knock-down, respectively (N = 3). An unpaired t-test was used for statistical analysis and p-values are shown. (G and J)

Quantification of the migration of cells with protrusions as in (B) with 16T mSCLC cells and Gap43 or Fez1 knock-down, respectively (N = 3). An

unpaired t-test was used for statistical analysis and p-values are shown.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The expression of the 13 genes selected for their possible role in the formation of protrusions is in part regulated by NFIB.

Figure 3 continued on next page
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down reduced the metastatic ability of mouse N2N1G SCLC cells after intravenous transplantation

of control and knock-down cells into recipient mice. Knock-down of each of these pro-protrusion fac-

tors significantly reduced the number of metastases as assessed by tumor counts at the surface of

the liver 4–5 weeks after intravenous injection (Figure 4—figure supplement 2A–B). To determine

whether GAP43 and FEZ1 are simply required for tumor growth in vivo, we transplanted Gap43 and

Fez1 knock-down cells subcutaneously and quantified tumor growth. Knock-down of these genes

had no effect on subcutaneous tumor growth suggesting that the effects on metastatic ability likely

represent the disruption of phenotypes uniquely associated with the metastatic process (Figure 4—

figure supplement 2C). We repeated these experiments with two independent shRNAs for each

gene in both N2N1G and 16T SCLC cells, which confirmed that Gap43 and Fez1 knock-down

reduced the formation of liver metastases after intravenous injection of SCLC cells (Figure 4A–H

and Figure 4—figure supplement 2D–E).

The absence of growth defects in subcutaneous tumors following Gap43 and Fez1 knock-down

suggested that these genes may affect earlier steps of the metastatic cascade. To test this, we per-

formed similar intravenous transplant experiments but quantified the presence of SCLC cells in the

liver 2 days after injection (Figure 4I). Quantification of GFPpositive cancer cells in the liver by flow

cytometry documented a significant reduction in metastatic seeding by SCLC cells with Gap43 or

Fez1 knocked-down (Figure 4J–M and Figure 4—figure supplement 2F–I). Thus, reduced expres-

sion of genes associated with the formation of axon-like protrusions affects early metastatic seeding

of SCLC cells in the liver, which ultimately translates to reduced metastatic burden.

Discussion
While metastasis remains a major cause of morbidity and mortality in SCLC patients, its underlying

mechanisms remain poorly understood and no therapeutic strategies exist to prevent metastatic

spread or specifically treat metastatic SCLC. Here we investigated the function of neuronal gene

expression programs in metastatic SCLC. We found that SCLC cells can grow axon-like protrusions

and that these protrusions contribute to the migratory and metastatic phenotypes of these cells.

This study identifies a cellular mechanism by which a neuroendocrine-to-neuronal transition pro-

motes metastasis of SCLC cells.

The expression of neuronal factors in SCLC has been known for more than three decades and has

been used as a marker for disease progression (Carney et al., 1982; Cutz, 1982; Broers et al.,

1987; Anderson et al., 1988). However, whether neuronal programs in SCLC cells play a direct role

in SCLC progression has not been rigorously investigated. We uncovered the formation of axon-like

protrusions as one functional aspect of neuronal differentiation in SCLC and provide data to support

a role for these protrusions in migration and metastasis. It is likely that other phenotypes usually

associated with neurons beyond these axon-like protrusions also contribute to the expansion and

the spread of SCLC cells. Furthermore, these axon-like protrusions may have other functions beyond

facilitating metastatic seeding to the liver, which may including facilitating SCLC cell migration within

the primary tumor, intravasation into the bloodstream, and movement within the parenchyma during

metastatic expansion (Shibue et al., 2012). Future investigation of the roles of axon-like protrusions

in SCLC will likely benefit from additional genetic analyses as well as high-resolution in vivo imaging

methods. Recent evidence suggests that several other human tumor types also increase the expres-

sion of neuronal programs as they become more metastatic, especially to the brain

(Wingrove et al., 2019). It will be important for future studies to determine if aspects of the neuro-

nal program also contribute to the striking ability of SCLC cells to seed and expand in the brain

(Lukas et al., 2017).

Our data indicate that SCLC metastasis is facilitated by the development of axon-like protrusions,

however other molecular mechanisms certainly also increase the probability that a cancer cell will

successfully overcome all the hurdles that limit the development of tissue destructive metastases.

Figure 3 continued

Figure supplement 2. The 13 genes selected for their possible role in the formation of protrusions are expressed in human SCLC but do not play a key

role in the expansion of SCLC cell populations.

Figure supplement 3. Knock-down of GAP43 and FEZ1 disrupts the formation of protrusions and cell migration in mouse SCLC cell lines in culture.
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Figure 4. Genes involved in the generation of protrusions also control the formation of metastases. (A) Diagram of the approach to investigate the

formation of liver metastases (met.) after intravenous injection of SCLC cells. (B–C) Quantification of the number of metastases 4 and 5 weeks after

intravenous injection of N2N1G and 16T mSCLC cells, respectively, with control knock-down or knock-down of Gap43 with two independent shRNAs.

For N2N1G, tumors at the surface of the liver were quantified on the liver surface, as shown in Figure 4—figure supplement 2D. Too many tumors

were present with the 16 T cell line and the control shRNA, and quantification was thus performed by measuring liver weight. N = 4–5 mice per

condition in one biological replicate. Mean + /- s.d. unpaired t-test. (D) Representative hematoxylin and eosin (H and E) images of liver sections of mice

in (B–C). Scale bars, 5 mm. (E–H) As shown in (A–D) for Fez1 knock-down. See Figure 4—figure supplement 2E for representative images with N2N1G

cells for the quantification in (F–G) of tumors at the surface of the liver. Arrows point to metastases. N = 4–5 mice per condition in one biological

replicate. Mean + /- s.d. is shown, unpaired t-test. (I) Diagram of the approach to investigate early steps in liver metastasis, 2 days after intravenous

injection. (J–M) Quantification of the number of GFPpositiveN2N1G and 16T mSCLC cells 2 days after intravenous injection. See Figure 4—figure

supplement 2F-ID for representative flow cytometry. N = 5 mice per condition in one biological replicate. Mean + /- s.d., unpaired t-test.

Figure 4 continued on next page
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For instance, we found that knock-down of Dcx (coding for Doublecortin) has little to no effect on

the number of protrusions but strongly inhibits migration in our 2D Matrigel assay (Figure 3A–B),

thus Doublecortin may promote SCLC migration independent from an impact on protrusion

formation.

The formation of protrusions in SCLC cells is controlled by pathways previously implicated in the

formation of axons and the migration of neuronal cells but it is unclear how the expression of these

pro-protrusion genes is coordinated. Existing data support a role for the NFIB transcription factor

across SCLC subtypes in the up-regulation of neuronal gene programs in general and gene pro-

grams associated more specifically with axonogenesis and neuronal migration (this study and

Denny et al., 2016; Semenova et al., 2016; Wu et al., 2016). However, it is likely that a combina-

tion of genetic and epigenetic factors contributes to the ability of SCLC to grow protrusions

(Qadeer et al., 2019). Adhesion molecules and other factors in the tumor microenvironment are

also likely to contribute to the formation of protrusions in vivo (Guo et al., 2000).

Could an understanding of the molecular and cellular processes related to axon-like protrusions

in SCLC cells ultimately be translated into clinical benefit for SCLC patients? Because NFIB is an

important regulator of neuronal gene programs in SCLC cells, targeting this transcription factor may

help inhibit SCLC metastatic potential in the future; one possible strategy could be the use of tar-

geted proteolysis (Paiva and Crews, 2019). Another option could be to target individual factors in

the axonogenesis and neuronal migration programs. Several of these factors may be required to

drive these programs and these programs may not be as critical for brain function in adults as they

are during development. Previous studies on SCLC have targeted the CXCR4 chemokine receptor

due to its role in cell adhesion and migration and its expression in SCLC cells (Burger et al., 2003;

Teicher, 2014; Taromi et al., 2016). Interestingly, CXCR4 also contributes to the formation of axon-

like protrusions (Figure 3). In a recent clinical trial in SCLC patients, CXCR4 inhibition was well toler-

ated but this inhibition did not significantly reduce disease progression (Salgia et al., 2017). How-

ever, agents that reduce the ability of cancer cells to overcome early barriers of metastatic seeding

will likely need to be employed in specific settings where inhibition of the metastatic process would

logically provide clinical benefit. For example, in patients with resectable SCLC, inhibition of pro-

metastatic pathways in the neo-adjuvant and/or adjuvant setting could reduce the frequency or mul-

tiplicity of metastatic relapse.

More generally, the transition from a neuroendocrine state to a state where neuroendocrine dif-

ferentiation is decreased but neuronal differentiation is increased may be related to the exceptional

plasticity of SCLC cells (reviewed in Yuan et al., 2019). The epithelial-to-mesenchymal transition

(EMT) is thought to contribute to migration, metastasis, and resistance to treatment in many cancer

contexts and may play a role in SCLC (Singh and Settleman, 2010; Cañadas et al., 2014;

Krohn et al., 2014; Allison Stewart et al., 2017; O’Brien-Ball and Biddle, 2017). Vascular mimicry

(or epithelial-to-endothelial transition (EET) Yuan et al., 2019) may also contribute to tumor growth

and response to treatment in SCLC (Williamson et al., 2016). Similarly, Notch-induced dedifferentia-

tion to a non-neuroendocrine state can generate an intra-tumoral niche that protects neuroendo-

crine SCLC cells (Lim et al., 2017). Based on our results and recent observations in other cancers

(Wingrove et al., 2019), we propose that an epithelial-to-neuronal transition contributes to key

aspects of cancer metastasis. Further characterization of this neuronal state in both neuroendocrine

and non-neuroendocrine cancers is likely to uncover novel mechanisms of cancer progression and

may ultimately offer new insight into anti-metastasis strategies in the clinic.

Figure 4 continued

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Increased expression of axonal markers in metastatic SCLC.

Figure supplement 2. Reduced formation of metastasis upon knock-down of GAP43 and FEZ1 in SCLC cells.
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Materials and methods

Mouse model
All experiments were performed in accordance with Stanford University Institutional Animal Care

and Use Committee guidelines. Trp53flox, Rb1flox, p130flox, and R26mTmG mice have been described

(Muzumdar et al., 2007; Schaffer et al., 2010; Denny et al., 2016) (RRID:MMRRC_043692-UCD).

Tumors were initiated by inhalation of Adeno-CMV-Cre (University of Iowa Vector Core, Iowa city,

Iowa) as described in Denny et al. (2016), following a published protocol (DuPage et al., 2009).

Cell culture
All murine and human SCLC cell lines used in this study grow as floating aggregates and were cul-

tured in RPMI with 10% FBS, 1 � GlutaMax, and 100 U/mL penicillin-streptomycin (Gibco, Thermo

Fisher Scientific, Waltham, MA). Human cell lines were originally purchased from ATCC and cell iden-

tities were validated by Genetica DNA Laboratories using STR analysis. NJH29 SCLC cells were

derived from a patient-derived xenograft (PDX), which has been described (Jahchan et al., 2013).

The LU86 and LU102 models were obtained from Stemcentrx (Saunders et al., 2015). The JHU-

LX102 (LX102) model was a kind gift from Dr. Watkins (Leong et al., 2014). The murine cell lines

were described (Denny et al., 2016; Yang et al., 2018). Briefly, 16T and KP22 cells are from individ-

ual primary tumors from the lungs of Rb/p53 DKO mice. N2N1G cells were derived from a lymph

node metastasis in an Rb/p53/p130 TKO; Rosa26mTmG mouse. 6PF cells were derived from meta-

static cells in the plural fluid in an Rb/p53/p130 TKO; Rosa26mTmG mouse. All cell lines were con-

firmed to be mycoplasma-negative (MycoAlert Detection Kit, Lonza, Basel, Switzerland).

In vitro 2d matrigel migration and protrusion assay
Silicone inserts (ibidi 80209, Grafelfing, Germany) were attached to wells in 12-well (up to two

inserts) or 24-well (one insert) plates pre-coated with poly-D-lysine for 15 min (Sigma-Aldrich, St.

Louis, MO).~8�105 cells were seeded to each chamber of the insert in 100 mL resulting in cells

at ~80–90% confluency. After at least 6 hr, the inserts were carefully removed and 0.75–1 mL of a

1:1 Matrigel (Corning, Corning, NY): cell culture media mix was slowly added to cover each well. 1

mL of cell culture media was added on top of the solidified Matrigel to prevent drying. For quantifi-

cation of cell migration and protrusions, the number of cells and the number of protrusions were

counted in the gap at 10x under the microscope. The time points (between 36 hr and 96 hr) were

dependent on the growth rate of the cell populations.

In vitro emigration assay
1:1 Matrigel (Corning, Corning, NY):cell culture media mix containing SCLC spheres were added to

Corning 12-well plates. The plates were incubated at 37˚C, 5% CO2 for 48 hr. Images were obtained

using a Keyence BZ-X710 microscope at 10X. Image analysis was carried out using ImageJ by mea-

suring the area covered by cells that migrated out the aggregates/spheres. nine spheres in total

were analyzed per condition in two independent experiments and the emigration efficiency was cal-

culated by normalizing the area of emigration to the area of each sphere analyzed.

Live imaging of cell migration and quantification
SCLC cells were plated as described in the 2D Matrigel migration assay and cultured for 24 hr before

imaging. Then 10x DIC images were collected every 15 min for 25 hr using a Zeiss LSM 710 confocal

microscope (Zeiss, Oberkochen, Germany) with a live imaging chamber set to 37˚C, 5% CO2. To

quantify the time-lapse videos, we examined nuclear movement and process length (as described in

Oudin et al., 2011) using the FIJI software (NIH, Bethesda, USA). The position of the cell nucleus

was tracked in each frame using the Manual Tracking plugin to obtain the distance migrated by the

nucleus per frame and the average cell velocity over the entire video. Neuronal cell migration occurs

via three steps: the cell extends a leading process, the nucleus translocates into the leading process

via nucleokinesis, and the cell loses its trailing process. To quantify translocation events, we quanti-

fied the fractions of steps taken by each cell that were over 8 mm, which represents the length of

one cell body and a nuclear translocation event. The process length was calculated by tracing a line
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from the cell body to the tip of the leading process about 6 hr into the video. Over 30 cells were

tracked and analyzed per condition.

Immunostaining of cells in culture and human and mouse tissues
Cells were fixed with 4% PFA for 15 min, permeabilized with 0.1% Triton and stained for Tuj1 (BioLe-

gend 801213, San Diego, CA, RRID:AB_2728521), TAU (Dako A0024, Santa Clara, CA, RRID:AB_

10013724), and MAP2 (1:500, EMD Millipore AB5622, Burlington, MA, RRID:AB_91939), and with a

goat anti-rabbit secondary antibody (Invitrogen, Cat # A32733, Waltham, MA, RRID:AB_2633282).

Membrane GFP was stained (Abcam ab13970, Cambridge, UK, RRID:AB_300798) to mark SCLC cells

and the expression of the other neuronal markers were checked using a fluorescence scope (Zeiss

LSM 880). Staining was quantified by counting directly under the microscope (at 40x magnification).

For immunofluorescence, mouse brain and lungs were fixed in 4% PFA and embedded in paraffin.

Tissues were stained for GAP43 (Abcam ab16053, Cambridge, UK, RRID:AB_443303) or CGRP

(Sigma C7113, Darmstadt, Germany, RRID:AB_259000) to label neuroendocrine cells. For immuno-

histochemistry, mouse tumor samples were fixed in 4% formalin and paraffin embedded. Hematoxy-

lin and Eosin (H and E) staining was performed using standard methods. For immunohistochemistry,

we used antibodies to GFP (Abcam ab6673, RRID:AB_305643), UCHL1 (Sigma-Aldrich HPA005993,

RRID:AB_1858560), Tuj1 (BioLegend 801213, RRID:AB_2728521), and TAU (Dako A0024, RRID:AB_

10013724).

Tissue microarrays (LC818a, US Biomax, Rockville, MD) were stained for TAU and scored by a

board-certified pathologist on a three point scale as follows: 0 = negative or weak staining of less

than 10% cells, 1 = moderate intensity staining, 2 = strong intensity staining.

Whole mount immunofluorescence staining and imaging of tumors
Detailed methods for whole mount immunofluorescence staining have been described (Yang et al.,

2018). Subcutaneous tumors with 5–10% GFPpositive cells mixed with non-GFP labeled SCLC tumor

cells were dissected and were fixed in 4% paraformaldehyde and sectioned with a vibrating blade

microtome at 500 mm thickness. Tumor slices were optically cleared using the CUBIC method, com-

prised of a three-hour incubation at room temperature in CUBIC one reagent and long-term storage

in CUBIC 2 at 4˚C (Susaki et al., 2015). Sections were imaged using a Zeiss LSM 780 laser scanning

confocal microscope.

For DiI staining and imaging, subcutaneously transplanted human SCLC xenograft were harvested

after 3 weeks of growth and cut into 500mm ~ 1 cm thick slices. Tumor pieces were stained with the

red fluorescent tracer DiI (D282, Thermo Fisher Scientific) in a spot-wise manner, incubated in 37˚C,

5% CO2 chamber for 20 min and washed three times with PBS+10%FBS to remove excess DiI before

imaging. Images were collected using a Leica SP5 scope (Leica, Buffalo Grove, IL) with a water

immersion lens.

Candidate gene knockdown
Stable knockdown of candidate genes was performed using lentiviral pLKO vectors and puromycin-

resistance selection (Sigma-Aldrich). For lentivirus production, 7.5 � 106 HEK293T cells were seeded

into 10 cm dishes and transfected with the vector of interest using PEI (Polysciences 23966–2, War-

rington, PA) along with pCMV-VSV-G (Addgene #8454) envelope plasmid and pCMV-dR8.2 dvpr

(Addgene #8455) packaging plasmid. The medium was changed 24 hr later. Supernatants were col-

lected at 36 hr and 48 hr, passed through a 40 mm filter and applied at full concentration to target

cells. Two days after transduction cells were selected with Puromycin (2 mg/mL, Thermo Fisher Scien-

tific, Waltham, MA) for at least 1 week. Knockdown was confirmed by RT-qPCR as in Denny et al.

(2016) and immunoblot analysis. NFIB knock-down and its validation is described in Denny et al.

(2016). Table S8 shows the sequences of the oligonucleotides used to knock down the candidate

genes. Note that the expression of the shRNAs targeting GFP partially decreased GFP expression,

but cancer cells were still GFPpositive and could be detected by flow cytometry and microscopy.

Immunoblot analysis
GAP43 (Abcam ab16053, Cambridge, UK, RRID:AB_443303), FEZ1 (Cell Signaling 42480, Danvers,

MA, RRID:AB_2799222), and HSP90 (BD Transduction Laboratories 610418, San Jose, CA, RRID:AB_
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397798) antibodies were used to confirm the knockdown of each gene at the protein level. Briefly,

denatured protein samples were run on 4–12% Bis-Tris gels (NuPage, Thermo Fisher Scientific, Wal-

tham, MA) and transferred onto PVDF membrane. Primary antibody incubations were followed by

secondary HRP-conjugated anti-mouse (Santa Cruz Biotechnology sc-2005, Santa Cruz, CA, RRID:

AB_631736) and anti-rabbit (Santa Cruz Biotechnology sc-2030, Santa Cruz, CA, RRID:AB_631747)

antibodies and membranes were developed with the ECL2 Western Blotting Substrate (Pierce Pro-

tein Biology, Thermo Fisher Scientific).

Transplantation assays
For long-term metastasis assays, 3 � 104 of N2N1G cells or 1 � 105 of 16 T cells were injected intra-

venously injected into the lateral tail vein of NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice (The

Jackson Laboratories, Bar Harbor, ME - Stock number 005557, RRID:IMSR_JAX:005557). Mouse liv-

ers were harvested at 4–6 weeks after injection. Tumor number was quantified by directly counting

on liver surface and also quantified by counting metastasis number or areas on the H and E sections.

For subcutaneous injection, 5 � 104 cells were resuspended in 100 mL PBS and mixed with 100 mL

Matrigel (Corning, 356231, Corning, NY) with four injection sites per mouse. For both subcutaneous

and intravenous injections, SCLC cells were transplanted into age-matched gender-matched NSG

mice. For short-term tumor seeding assays, 2 � 107 of N2N1G cells or 5 � 107 of 16 T cells were

transplanted intravenously into the lateral tail vein of NSG mice. N2N1G, derived from Rb/p53/p130

TKO; Rosa26mTmG mouse, has endogenous GFP expression and 16T, derived from Rb/p53 TKO

mouse, was stained by live cell stain CFSE (Thermo Fisher Scientific, C34554) and washed prior to

intravenous injection. 2 days after transplantation, mouse livers were harvested, dissociated into a

single cell suspension and analyzed by FACS to determine the percentage of GFPpositive cancer cells.

FACS data were analyzed by FlowJo.

Single-cell RNA-seq analysis
Single-cell sequencing data from normal pulmonary neuroendocrine cells and other major airway

epithelial cell types previously annotated (Ouadah et al., 2019) were analyzed for expression of a

curated list of genes. The methods for measuring expressing of each gene in transcripts per million

(tpm) are previously described (Ouadah et al., 2019). In this report, we imported the tpm (JO_tpm-

Genes_noERCCs.txt) into Seurat v2.0 to create a seurat object and normalized using standardized

methods previously described (Butler et al., 2018). Gene expression data were represented using

heatmaps.

Pathway and process enrichment analysis
Metascape (metascape.org, RRID:SCR_016620) was used to analyze the lists of genes involved in

axonogenesis and neuronal migration. Metascape integrates data from KEGG Pathway, GO Biologi-

cal Processes, Reactome Gene Sets, Canonical Pathways and CORUM (Zhou et al., 2019). The analy-

sis of interactions between the top 13 candidate genes was performed using STRING (string-db.org)

(Szklarczyk et al., 2019). The analysis of dependency upon knock-down was performed using the in

the Cancer Dependency Map project (depmap.org/portal/) in February 2019 with the Combined

RNAi (Broad, Novartis, Marcotte) data (Tsherniak et al., 2017). The human RNA-seq datasets for

human SCLC are from George et al. (2015). Data from the Cancer Cell Line Encyclopedia (CCLE)

are available at the Expression Atlas (https://www.ebi.ac.uk/gxa/home). The complete RNA-seq

analysis of KP22 and N2N1G mouse cells will be published elsewhere, but the data are available in

Supplementary file 2–table 9. The mouse primary tumors and metastases datasets are from

Denny et al. (2016); Yang et al. (2018).

Statistics
Statistical significance was assayed with GraphPad Prism software (RRID:SCR_002798). The statistical

tests used, the numerical p-values, and the number of independent replicates is indicated in the fig-

ure legends.
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