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The pathogenetic mechanisms responsible for the induction of immune-mediated disorders, such as psoriasis, remain not well
characterized. Molecular signaling pathways are not well described in psoriasis, as well as psoriatic arthritis, which is seen in up to
40% of patients with psoriasis. Signaling pathway defects have long been hypothesized to participate in the pathology of psoriasis,
yet their implication in the altered psoriatic gene expression still remains unclear. Emerging data suggest a potential pathogenic role
for mitogen activated protein kinases p38 (p38 MAPK) extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun N-terminal
kinase (JNK) in the development of psoriasis. The data are still limited, though, for psoriatic arthritis. This review discusses the
current data suggesting a crucial role for p38 MAPK in the pathogenesis of these disorders.

1. Introduction

Psoriasis is a chronic inflammatory skin disease affecting
1-2% of the population. Clinically, skin lesions are char-
acterized by erythematous plaques covered by scales and
pathologically by keratinocyte hyperproliferation and altered
differentiation, inflammatory infiltrates, and neovasculariza-
tion [1–4]. Up to 40% of patients with psoriasis develop
an inflammatory arthritis called psoriatic arthritis (PsA)
[5, 6].

The mechanisms responsible for skin lesions in psoriasis
and the development of PsA remain elusive [7]. Neverthe-
less, a wealth of data supports the notion that specialized
components of the immune system play an important role
in the pathogenesis of these disorders [8–10]. Thus, psoriatic
patients have elevated levels of circulating neutrophils, and
specialized macrophages and dendritic cells appear early in
skin lesions followed by activated natural killer cells and

T cells that sustain a loop with distinctive Th1- and Th17-
mediated pathology [11–17] (Table 1). PsA is also charac-
terized by pronounced T- and B-cell infiltrates, synovial
hyperplasia, and angiogenesis in the synovial membrane, as
well as by overexpression of inflammatory cytokines and
proteases [18, 19].

Cytokines, such as tumor necrosis factor- (TNF)-𝛼 and
interferon-𝛾 (IFN-𝛾), interleukin- (IL)-1𝛽, IL-6, and IL-8,
and chemokines, such as CXCL9, CXCL10, CXCL11, and
cyclooxygenase-2 (COX-2), are involved in the initiation and
perpetuation of psoriatic lesions [33–36]. Th17 cells with
their signature cytokine IL-17 are also involved in psoriasis
and PsA [37, 38]. Recently, additional cytokines, namely, IL-
21, IL-22, IL-23, and IL-27, as well as certain inflammatory
biomarkers, have been implicated in psoriatic pathologies
[39–45] (Table 1).

The use of cytokine antagonists is an important ther-
apeutic advance in the current management of PsA and
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Table 1: Innate and adaptive immunity mediators likely to be
involved in psoriasis and psoriatic arthritis.

Psoriasis Psoriatic arthritis
(i) Prominent lymphocytic
infiltrate present in skin

(i) Prominent lymphocytic
infiltrate present in joints

(i) TH1, TH17, TH22, NK,
NKT, B cells
(ii) Dendritic cells,
macrophages

(i) TH1, TH17, TH22, NK?,
NKT?, B cells
(ii) Dendritic cells,
macrophages?

(i) IL-12, IL-23, TNF-A, IFN-𝛾 (i) IL-12, IL-23, TNF-A, IFN-𝛾
(i) IL-6, IL-17A, IL-17F, IL-21,
IL-22, IL-26, IL-27
(ii) Cathepsin K, psoriasin
(iii) Keratin 17
(iv) Plasma YKL-40?
(v) Purinergic receptor P2X7
(vi) Trem 1

(i) IL-6, IL-17A, IL-17F, IL-21,
IL-22, IL-26, IL-27
(ii) Cathepsin K?, psoriasin?
(iii) Keratin 17?
(iv) Plasma YKL-40
(v) Purinergic receptor P2X7?
(vi) Trem 1?

(i) MAP kinases ERK1/2, JNK,
P38
(ii) MK2, DUSP-1 MSK-1,
GSK-3𝛽
(iii) NFKB, JAK/STAT-3,
CREB

(i) MAP kinases ERK1/2, JNK,
P38?
(ii) MK2?, DUSP-1?, MSK-1,
GSK-3𝛽?
(iii) NFKB, JAK/STAT-3?,
CREB

Question marks indicate inadequate data.

plaque psoriasis, and new studies evaluate the efficacy and
safety of new cytokine antagonists in these disorders [46].
The novel IL-23/Th17 axis has attracted much attention with
the successful application of ustekinumab, a monoclonal
antibody against IL-12 and IL-23, in psoriasis and PsA
[47–49]. Some success was also reported with anti-IL-17A
and anti-IL-22 agents in animal models of psoriasis [50].
Inhibition of IFN-𝛾 expression is of special interest, since
IFN-𝛾 has been recently shown to enhance IL-22 and IL-23
expressions and subsequently induce Th17 cells in psoriatic
lesions. A single intradermal injection of IFN-𝛾 can induce an
inflammatory state in both nonlesional psoriatic and healthy
skin [51–55].

2. The Role of p38 MAPK in Psoriasis

Signaling pathway defects have long been hypothesized to
participate in the pathology of psoriasis, yet their implication
in the altered psoriatic gene expression still remains elusive
[56, 57]. The application of immunohistochemistry and
Western blotting techniques has provided some information
regarding the signaling cascades in psoriatic skin. These
experiments identified mitogen-activated protein kinases
p38 (p38 MAPKs), extracellular signal-regulated kinase 1/2
(ERK1/2), and c-Jun N-terminal kinase (JNK) to be involved
in the pathogenesis of psoriasis [20–22, 58, 59] (Table 2). The
MAPK kinases constitute an important set of three signaling
pathways, namely, p38, ERK1/2, and JNK, which control
several important functions within the cell, such as cell
proliferation, differentiation, gene expression, and apoptosis
[60]. The extensive thickening of the epidermis is indicative
of imbalance in the homeostasis between proliferation and

apoptosis. Indeed, the expression of various apoptosis-related
molecules is increased in the psoriatic hyperproliferative
epidermis [61].

Kinase assays further confirmed the increased activation
of p38 and demonstrated increased activity of the p38
isoforms p38𝛼, p38𝛽, and p38𝛿 in lesional compared to
nonlesional psoriatic skin [20]. Phosphorylated p38 was
widely detected in lesional psoriatic epidermis and exhibited
a distinct nuclear localization indicative of the kinase partic-
ipation in the induction of active gene expression. Recently,
the antimicrobial peptide S100A8, known to be upregulated
in lesional psoriatic skin, was found to be regulated by
a p38-MAPK-dependent mechanism [29]. Similarly, p38-
dependent expression was demonstrated for the antimicro-
bial peptides cathelicidin, human 𝛽-defensin-2, human 𝛽-
defensin-3, and S100A7 in human keratinocytes [30].

The p38 MAPK signaling pathway is a critical mediator
in the regulation of both cellular and humoral autoimmune
responses [62]. Usually initiated by cellular stresses, T-cell
receptor or inflammatory cytokines, p38 MAPK regulates
cytokine gene expression by means of transcriptional and
posttranscriptional mechanisms, such as stabilization of
mRNA transcripts [63–65]. Defects in p38 MAPK pathway
can explain the increased expression of proinflammatory
cytokines in several immune-mediated diseases, and several
pharmaceutical companies have invested heavily in the devel-
opment of agents that inhibit p38 MAPK activation [66–68].
An increasing number of novel p38 MAPK inhibitors have
been tested in experimental models and clinical trials and
have advanced our knowledge on the role of p38MAPK [69].

Therapeutic inhibition of p38 MAPK pathway is mainly
based on the notion that natural-negative-feedback mech-
anisms exist to guarantee that MAPKs are not activated
ad infinitum. In this regard, MAP kinases can themselves
induce different types of protein phosphatases called dual-
specificity phosphatases (DUSPs). DUSPs dephosphorylate
MAP kinases and cease their function [70, 71]. Interestingly,
the p38 MAPK-negative-feedback mechanism provided by
DUSP1 seems to be impaired in psoriasis sinceDUSP1mRNA
expression was significantly downregulated in psoriatic skin
lesions compared to nonlesional psoriatic skin [26].

MAPKs are activated by phosphorylation of both threo-
nine and tyrosine residues, and in turn they phosphorylate
other downstream intracellular kinases and transcription
factors. One of the downstream targets of p38 MAPK sig-
naling cascade is MAPK-activated protein kinase 2 (MK2).
Increased levels of activated MK2 were found in psoriatic
lesions [72]. The activity of MK2 was located in the psoriatic
epidermis but not in nonlesional psoriatic skin. Additionally,
keratinocytes transfectedwithMK2-specific small interfering
RNA had a significant decrease in the MK2 expression, and
subsequently a significant reduction in the protein expression
of IFN-𝛾, TNF-𝛼, IL-6, and IL-8. The mechanism by which
p38 MAPK mediates its regulatory effects through down-
stream kinases has been studied in cells isolated from mice
with deletedMK2 [73]. Particularly interesting characteristics
of MK2 knockouts are their increased survival and increased
stress resistance upon LPS challenge.Thesemice are deficient
in the LPS-induced biosynthesis of several proinflammatory
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Table 2: Evidence for p38 MAPK involvement in psoriasis and psoriatic arthritis.

Diseases References

Psoriasis

(1) p38 MAPK is phosphorylated in lesional psoriatic epidermis [20–23]
(2) Phosphorylated p38 is widely detectable in the keratinocyte nuclei indicative of the kinase strong
participation in active gene expression [21]

(3) Among the p38 MAPK isoforms, p38alpha, p38beta, and p38delta are detectable in lesional
psoriatic skin [20]

(4) p38-activated kinases MK-2 and MSK-1 are also phosphorylated in psoriatic lesional skin and
regulate the production of proinflammatory cytokines such as TNF-𝛼 [23–25]

(5) Dual-specificity phosphatase 1 (DUSP1) is an important negative regulator of p38 MAPK activity
DUSP1 mRNA expression is downregulated in psoriatic skin lesions compared with paired samples of
nonlesional psoriatic skin

[26]

(6) p38-MAPK induced Ser727 phosphorylation of STAT-1 and STAT-3 is detected in psoriatic skin [27, 28]
(7) p38-MAPK-dependent expression of cathelicidin antimicrobial peptide, human 𝛽-defensin-2,
human 𝛽-defensin-3, S100A7, and S100A8 [29, 30]

Psoriatic arthritis

(1) Phosphorylated p38 MAPK is detectable in both lining and sublining synovial area [31]
(2) P38 positive cells are also detected in inflammatory infiltrates, in perivascular zones, and in the
endothelium [31]

(3) IL-36𝛼 is upregulated in PsA and RA synovia and leads to IL-6 and IL-8 production by synovial
fibroblasts through p38/NFkB activation [32]

cytokines regulated by p38, including TNF-𝛼, IFN-𝛾, IL-6,
and IL-1. They survive LPS-induced endotoxic shock due to
a reduction of almost 90% in the secretion of TNF-𝛼 [74].
MK2 has been regarded as a key molecule participating in
host defense against intracellular bacteria through regulation
of both TNF-𝛼 and IFN-𝛾 production [75, 76].

Mitogen- and stress-activated protein kinase 1 (MSK1) is
another downstream target of both p38 and ERK1/2 MAPKs
which regulates the expression of pro-inflammatory cytokine
genes through activation of transcription factors. Western
blotting analysis revealed a consistent and significant increase
in phosphorylated MSK1 (Ser376) in lesional psoriatic skin
[24, 77]. Cultured human keratinocytes incubated with ani-
somycin or IL-1beta resulted in the phosphorylation of both
p38 MAPK and MSK1 (Ser376), whereas MSK1 (Ser376)
phosphorylation was inhibited by preincubation with p38
inhibitors or dimethyl fumarate [78]. In addition, transcrip-
tion factors, such as cAMP/calcium responsive element bind-
ing protein (CREB) associatedwith cellular proliferation gene
expression, are also phosphorylated in psoriatic skin [21].
Activation of CREB through ERK1/2 is directly linked with
the expression of TNF-𝛼, IL-6, and IL-8 [79].These cytokines
are also under direct regulation by the p38 pathway as well
[80, 81]. p38 MAPK-induced phosphorylation of STAT-3
and of STAT-1 at serine 727 has also been demonstrated in
lesional psoriatic skin [27, 28]. Thus, keratinocytes in the
psoriatic epidermis are characterized not only by abnormal
proliferation and apoptosis but also by increased expression
of inflammatory cytokines [81]. This seems to be regulated
by the same signals arising from the activation of MAPK
signaling cascades of p38 and ERK1/2 [20, 23, 82].

3. The Role of p38 MAPK in PsA

Information about the involvement of MAPK signaling in
the pathogenesis of PsA is very scarce despite the fact

that activation of MAPKs, specifically p38 and downstream
MK2, has been described in rheumatoid arthritis (RA)
synovium and the collagen-induced arthritis model of RA
[67, 74]. Inflammatory cytokines upregulated in psoriasis
appear to be involved in the pathogenesis of PsA and other
spondyloarthritides as well [41, 83, 84]. For example, the
administration of infliximab, an anti-TNF-𝛼 agent, to patients
with PsA improved patients with active PsA and persistently
high serum TNF-𝛼 levels [85]. A significant reduction in
several proinflammatory and modulatory cytokines has also
been noted in psoriatic patients with or without arthritis after
treatment with etanercept, another TNF-𝛼 inhibitor [86, 87].
Back in 2000, Danning et al. have linked elevated proinflam-
matory cytokines with NF𝜅B activation in PsA synovium
[88]. More recent findings underlined the participation of
both MAPK signaling and NF𝜅B activation in PsA synovium
before and after treatment with etanercept [31] (Table 2).
Activated p38 was present in both lining and sublining
area of the synovial membrane, and p38 positive cells were
detected in inflammatory infiltrates and perivascular zones.
Activated ERK was mainly present in the sublining area and
mononuclear cell infiltrates, whereas activation of JNK was
observed in cells of the lining layer of the synovial membrane
[31]. This is of particular interest since epidermal deletion of
c-Jun and jun-B proteins also triggers psoriasis and psoriatic
arthritis in mice [89]. In addition, IL-36𝛼 is upregulated in
PsA and RA synovia and leads to IL-6 and IL-8 production
by synovial fibroblasts through p38/NF𝜅B activation [32].

The synovial membrane of PsA is characterized by T-
cell and B-cell infiltrates, synovial hyperplasia, angiogenesis,
and overexpression of inflammatory cytokines. A better
understanding of these cellular populations their signaling
pathways, and associated gene expression is necessary in
order to advance our knowledge on the pathogenesis of
PsA and to successfully identify novel molecular therapeutic
targets. Peripheral blood mononuclear cell (PBMC) analyses
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have also aided in providing gene expression profiles of
patients with systemic autoimmune disorders, such as RA,
multiple sclerosis, and systemic lupus erythematosus. One of
such studies in PBMCof patientswith PsA identified a unique
gene expression signature with MAPK signaling members
being among the genes with reduced levels of expression [90].
One interpretation could be that the reduced mRNA levels
of certain MAPK pathway members create an imbalance
that favors the development of proinflammatory cells in PsA.
However, it should be noted that the activation status of
MAPK pathway is regulated at the posttranslational level.
There was also reduced expression of B-cell specific genes
including those of cell activation and T-cell activation genes.
These observations from peripheral blood need to be con-
sidered with caution in relation to infiltrating lymphocytes
from psoriatic skin biopsies [91, 92]. Studies of skin biopsies
have identified several upregulated proinflammatory genes
including IL-1, IL-6, and IL-8.

Yet, peripheral blood signature studies are of great impor-
tance and can provide a lot of information regarding new
immune regulatory molecules [93]. For instance, we have
optimized a PB flow cytometry-based assay that details cel-
lular phenotypic status, signaling status, and gene expression
analysis, all combined [94]. Applications of optimized pro-
tocols based on sensitive phospho flow cytometry have been
recognised as promising alternatives for the investigation of
the phosphorylation of p38 MAPK within different PBMC
populations [95, 96]. Flow cytometry has been so far useful
in revealing the phenotype of psoriatic lesion infiltrating
cells and their secreted cytokines [11, 97]. However, there
has been no information on the kinases and signaling
pathways activated in the rare NK and NKT cells of PsA
patients.We have previously shown that p38MAPK regulates
posttranscriptional IFN-𝛾 gene expression in humanNK and
NKT cells [63].This possibly occurs via anMKK6/p38/MK2-
dependent mechanism for the stabilization of IFN-𝛾 mRNA
in NK and NKT cells and may play an important role in
host defense as well. We have optimized the methodology for
the successful application of phospho-specific flow cytometry
in order to detect phosphorylated p38 MAPK within innate
immune cells, such as NK and NKT [94, 98]. Because of the
critical and bidirectional role of IFN-𝛾 in inflammation and
autoimmunity, the elucidation of the molecular mechanisms
controlling its expression is the focus of ongoing research by
our team [62].

As mentioned previously, NK and NKT cells appear as
key players in the pathogenesis of psoriasis [12, 99, 100]. In
fact, these cells play a significant role in regulating a number
of autoimmune skin disorders [101, 102]. Decreased numbers
of CD56+ cells have been detected in PB of patients with
psoriasis, and impaired function has been documented in
other autoimmune diseases, such as primary biliary cirrhosis,
multiple sclerosis, systemic lupus erythematosus, RA, and
type I diabetes [103–107]. Alterations in killer inhibitory
receptors (KIRs) repertoire expression on NK cells and on
T cells have also been associated with several autoimmune
diseases including multiple sclerosis, type I diabetes, and
psoriasis [108–110]. There is a significant depletion of PB NK
andNKTnumbers in psoriatic patients that is probably due to

an increased accumulation of activated NK and T cells bear-
ing NK-associated receptors in psoriatic lesions [103]. The
assessment of MAPK expression levels in cell subpopulations
from psoriatic patients would be very informative.

Lesional T cells analyzed by flow cytometry express cer-
tain classical NK phenotypic markers, such as CD56, CD16,
and CD94, and there is a significant positive correlation
between circulating CD8+ CD94/NKG2A+ T cells and the
severity index of the psoriatic skin lesions [11, 111]. Patterns
of CD1d expression are also observed in keratinocytes in
vitro and in human skin with psoriasis in vivo [99]. NKT
cells can become activated in a CD1d-restricted fashion with
subsequent proliferation and cytokine production, including
IFN-𝛾 and IL-4. The ability of CD1d-positive keratinocytes
to activate NKT cells to produce IFN-𝛾 could represent
a mechanism that contributes to the pathogenesis of PsA,
psoriasis, and other autoimmune skin disorders.

In conclusion, current data suggest that p38 MAPK
plays a role in the pathogenesis of psoriasis. However, more
studies are needed to further advance this interesting topic of
research. At present, the information regarding p38 MAPK
involvement in the pathogenesis of PsA is limited and by no
means conclusive.

Abbreviations

DUSP: Dual-specificity phosphatase
IL: Interleukin
MAPK: Mitogen-activated protein kinase
NK: Natural killer
NKT: NK T cells
PsA: Psoriatic arthritis
RA: Rheumatoid arthritis
TNF: Tumor necrosis factor.

References

[1] M. A. Lowes, A. M. Bowcock, and J. G. Krueger, “Pathogenesis
and therapy of psoriasis,”Nature, vol. 445, no. 7130, pp. 866–873,
2007.

[2] F. O. Nestle, D. H. Kaplan, and J. Barker, “Mechanisms of
disease: psoriasis,” New England Journal of Medicine, vol. 361,
no. 5, pp. 444–509, 2009.

[3] G. Krueger and C. N. Ellis, “Psoriasis—recent advances in
understanding its pathogenesis and treatment,” Journal of the
American Academy of Dermatology, vol. 53, no. 1, supplement,
pp. S94–S100, 2005.

[4] J. D. Bos, M. A. De Rie, M. B. M. Teunissen, and G. Piskin,
“Psoriasis: dysregulation of innate immunity,” British Journal of
Dermatology, vol. 152, no. 6, pp. 1098–1107, 2005.

[5] D. D. Gladman, C. Antoni, P. Mease, D. O. Clegg, and O. Nash,
“Psoriatic arthritis: epidemiology, clinical features, course, and
outcome,” Annals of the Rheumatic Diseases, vol. 64, no. 2, pp.
ii14–ii17, 2005.

[6] W. H. Boehncke and A. Menter, “Burden of disease: psoriasis
and psoriatic arthritis,” American Journal of Clinical Dermatol-
ogy, 2013.

[7] R. K. H. Mak, C. Hundhausen, and F. O. Nestle, “Progress
in understanding the immunopathogenesis of psoriasis,” Actas
Dermo-Sifiliograficas, vol. 100, no. 2, pp. 2–13, 2009.



Clinical and Developmental Immunology 5

[8] D. J. Veale, C. Ritchlin, and O. FitzGerald, “Immunopathology
of psoriasis and psoriatic arthritis,” Annals of the Rheumatic
Diseases, vol. 64, no. 2, supplement, pp. ii26–ii29, 2005.

[9] H. Bachelez, “Immunopathogenesis of psoriasis: recent insights
on the role of adaptive and innate immunity,” Journal of
Autoimmunity, vol. 25, supplement, pp. 69–73, 2005.

[10] F. Villanova, P. Di Meglio, and F. O. Nestle, “Biomarkers
in psoriasis and psoriatic arthritis,” Annals of the Rheumatic
Diseases, vol. 72, supplement 2, pp. 104–110, 2013.

[11] C. Ottaviani, F. Nasorri, C. Bedini, O. de Pità, G. Girolomoni,
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