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Neurodegenerative Parkinson’s Disease (PD) is one of the common incurable diseases

among the elderly. Clinical assessments are characterized as standardized means for

PD diagnosis. However, relying on medical evaluation of a patient’s status can be

subjective to physicians’ experience, making the assessment process susceptible to

human errors. The use of ICT-based tools for capturing the status of patients with PD

can providemore objective and quantitative metrics. In this vein, the Personalized Serious

Game Suite (PGS) and intelligent Motor Assessment Tests (iMAT), produced within the

i-PROGNOSIS European project (www.i-prognosis.eu), are explored in the current study.

More specifically, data from 27 patients with PD at Stage 1 (9) and Stage 3 (18) produced

from their interaction with PGS/iMAT are analyzed. Five feature vector (FV) scenarios are

set, including features from PGS or iMAT scores or their combination, after also taking

into consideration the age of patients with PD. These FVs are fed into three machine

learning classifiers, i.e., K-Nearest Neighbor (KNN), Support Vector Machines (SVM),

and Random Forest (RF), to infer the stage of each patient with PD. A Leave-One-Out

Cross-Validation (LOOCV) method is adopted for testing the classification performance.

The experimental results show that a high (> 90%) classification accuracy is achieved

from both data sources (PGS/iMAT), justifying the effectiveness of PGS/iMAT to efficiently

reflect the motor skill status of patients with PD and further potentiating PGS/iMAT

enhancement with a machine learning a part to infer for the stage of patients with PD.

Clearly, this integrated approach provides new opportunities for remote monitoring of

the stage of patients with PD, contributing to a more efficient organization and set up of

personalized interventions.

Keywords: Parkinson’s Disease (PD), Personalized Serious Game Suite (PGS), intelligent Motor Assessment Tests

(iMAT), machine learning (KNN SVM RF), PD staging, i-PROGNOSIS
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1. INTRODUCTION

Parkinson’s Disease (PD) is one of the most frequent
neurodegenerative diseases affecting approximately 2% of
the population aging 65 years and older, whereas patients of 85
years accumulated 4% of the population (Opara et al., 2017).
The progressive neurological disorder is distinguished by rigidity
and tremors causing patients to exert slowness in movement,
postural instability, and other chronic symptoms (Blochberger
and Jones, 2011). Motor limitations are usually gathered by
clinicians as part of the motor assessment process for the sole
purpose of treatment decisions reflecting the patient’s overall
disability in a standardized measurement tool, such as the
Movement Disorder Society-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS Part III) (Martinez and Forjaz, 2006; Goetz
et al., 2008). However, clinicians’ judgments can be subjective
to their experience affecting the assessment of the PD severity.
Nevertheless, an alternative measuring system can be reasonably
accepted which exhibits a high correlation with the common
globally used standard rating scales, MDS-UPDRS Part III
subscores, for monitoring the progression of PD in patients
(Yang et al., 2016; Dias et al., 2020b). This actively demonstrates
that the healthcare domain has adopted several body-tracking
systems like the Microsoft Kinect R© sensor (Knippenberg et al.,
2017), widely used in neurological rehabilitation programs
for clinical measurements of motor functions for monitoring
patients with PD, assessing their gait, body balance, hand
tracking, and analyzing their posture and limb tasks (Ferraris
et al., 2014; Galna et al., 2014; Stone and Skubic, 2014; Yang et al.,
2014; Rocha et al., 2015). Furthermore, the MentorAge R© sensor
emerged as an alternative tracking system to the Kinect device
manifesting high competence in real-life scenarios (Anzivino
et al., 2018; Petsani et al., 2019).

With the availability of new Natural User Interfaces (NUIs),
combined with the concept of serious games, efforts were
placed in creating personalized serious games (SGs), such
as the PGS Dias et al. (2020c) from the i-PROGNOSIS
project (www.i-prognosis.eu), as both intervention and/or motor
assessment tool for monitoring and tracking the behavioral
change of patients with PD in terms of gait, agility, balance,
and coordination impairments, as well as assess patients in
adhering to physical therapy through enrolling in a gamified
environment (Anzivino et al., 2018). Moreover, one of the
deployed intelligent tools that can be seen as an alternative
solution for the standard rating scales, MDS-UPDRS Part III
subscores, is the intelligent Motor Assessment Tests (iMAT)
(Dias et al., 2020b) from the i-PROGNOSIS project. Although
the diagnosis of PD commonly relies on motor symptoms, non-
motor symptoms such as cognitive changes related to attention
and other conditions have been studied as supportive means for
early diagnosis (Postuma et al., 2015). A revolutionary substitute
by several researchers studied the application ofmachine learning
as measures for PD diagnosis and assessment with the help of
analyzingmotor symptoms, kinematics, andwearable sensor data
(Ahlrichs and Lawo, 2013; Ramdhani et al., 2018; Belić et al.,
2019).

Based on the aforementioned, the present study extends
the study presented in Dias et al. (2020b), by identifying the
potentiality to correctly estimate the severity of the PD, as
measured by clinical metrics, via machine learning analysis of
the iMAT and PGS scores. In this endeavor, the data reported
in Dias et al. (2020b), drawn from 27 patients with early PD,
are further analyzed under various testing scenarios employing
machine learning, leading to encouraging results regarding the
potentiality to combine iMAT with PGS, in order to efficiently
estimate the severity of patients with PD.

The present study is structured as follows: In Section
2, a related background on the main topics addressing
PD rehabilitation, SGs, and i-PROGNOSIS PGS/iMAT
characteristics is presented. In Section 3, the dataset
characteristics along with the proposed methodology are
provided. Furthermore, Section 4 highlights and discusses the
results and the efficiency of the proposed approach along with
the related limitations, including future extensions. Finally,
Section 5, concludes the article.

2. BACKGROUND

2.1. PD Rehabilitation and SGs
Multiple pieces of evidence revealed that patients with PD
suffer from progressive deterioration in their disability, despite
following the recommended medical prescriptions (Ellis et al.,
2008; Abbruzzese et al., 2016). Exercise and physical activity
were found to be directly correlated with enhancing the health
and well-being of patients with PD. Rehabilitation therapies for
PD primarily focus on improving patients’ overall quality of
life, maximizing their level of mobility and activity (Soh et al.,
2012). In spite of several proves of adopting physical activities
in rehabilitation programs is powerful means for reducing the
risk of causing PD, the current conventional programs have
been discovered to be heterogeneous, sub-optimal, and lack
common consensus (Abbruzzese et al., 2016). In addition,
supporting exercise-based rehabilitation programs continues
to face challenges in cost, accessibility, patient adherence, and
acceptability (Barry et al., 2014). Abbruzzese et al. (2016),
proposed an innovative substitute by introducing therapeutic
techniques, such as Motor Imagery (MI) and Action Observation
Therapy (AOT) (Abbruzzese et al., 2016). Through matching the
internal representations with the imagined and observed actions
from these methods, patients’ motor skills are enhanced and new
learning tasks are built. Nevertheless, some practical limitations
occur with its adoption as an intervention for PD rehabilitation
(Abbruzzese et al., 2016). Knippenberg et al. (2017), considered
the use of Motion Capture Systems (MCS), such as the Microsoft
Kinect R© sensor, for patients with neurological disorders like PD.
Assessment results from its use at rehabilitation centers showed
its potential to assess patients in body balance and fall prevention
(Stone and Skubic, 2014; Yang et al., 2014), during their clinical
measurement of motor functions and gait assessments (Galna
et al., 2014; Rocha et al., 2015), body balance, hand tracking,
and analyzing their posture and limb tasks (Ferraris et al., 2014,
2019; Rocha et al., 2015; Otte et al., 2016; Yang et al., 2016).
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Additionally, the MentorAge R© sensor emerged as an alternative
tracking system to the Kinect device, manifesting high
competence and proven to be a better alternative for its
potentiality in real-life scenarios (Anzivino et al., 2018; Petsani
et al., 2019).

Over the years, it has been highlighted that SGs are being
adopted in the healthcare domain, as they benefit patients in
the physical, mental, and social well-being aspects. SGs are
digital games that provide players not only entertainment but
(re)educational value as well (Caserman et al., 2020). Such
health interventions are noticed to enhance old patients’ health,
as well as, increase patients’ adherence in general. The main
benefit of adopting SGs as health interventions is that they
act as incentives for patients to enhance their performance
and challenge themselves to continuous improvement on
higher serious game levels. Besides, they assist doctors and
other healthcare providers in personalizing a plan for each
patient, based on their performance using the SGs as health
interventions. Nonetheless, digital SGs allow on-site data
capturing, which contributes to the collection of data-in-the-
wild, representing the intuitiveness of the user’s interactions with
the SGs.

In fact, the collection of on-site data from the SGs, using
the NUIs of Kinect R© or MentorAge R© sensors, corresponds
to the term “in-game metrics”. The latter is an efficient and
comprehensive research tool that boosts the effectiveness of the
SGs, as they capture the changes in the physical and cognitive
health state of the user. The in-game metrics are collected
during the interaction of patients with a gamified platform.
Also, for diagnostic processes, SGs can be administered in an
unobtrusive ecologically proper environment in an Exercise
Game (ExerGame) fashion (Barry et al., 2014; Konstantinidis
et al., 2014). Several researchers investigated the use of metrics
for the purpose of early detection and post-tests predictions.
Alonso-Fernández et al. (2020), studied the collected in-game
metrics of users from the gameplay and deployed it with machine
learning algorithms to predict patients’ outcomes while playing
(Alonso-Fernández et al., 2020). Aguilar et al. (2017), estimated
the probability of 60 years old participants’ body movement,
recorded by Kinect, using classification algorithms along with
generalized linear models, to distinguish participants’ group age.
Pirovano et al. (2014), developed a solution that provides real-
time feedback alarms during exercise using combined fuzzy-
based monitoring and in-game adaptation. Nonetheless, in
a gamified environment, ExerGames assess patients’ physical
health (Staiano and Calvert, 2011), and the respective derived
data provide objective information to various parties of interest.
The importance of ExerGames for older adults, and especially
the ones with PD, were explored in the studies of Dias et al.
(2020a,b,c, 2021).

2.2. The i-PROGNOSIS PGS/iMAT
2.2.1. PGS Characteristics
The adopted i-PROGNOSIS PGS platform consists of PD-related
SGs (Dias et al., 2021) that refer to exercise (“ExerGames,”)
diet (“DietaryGames,”) emotions (“EmoGames,”) and voice
(“VoiceGames”) (Figure 1). These SGs are co-designed by

various stakeholders that relate to PD (e.g., patients with
PD/older adults, physicians, carers, technology developers, and
healthcare policy makers), in order to holistically address the
needs of patients with PD and assist them in coping with the
PD symptoms in their everyday living. The proposed study
draws information from the use of the PGS ExerGames, and
especially the “Fishing Game” (Figure 2) that mostly targets
the training of the upper body muscles (Figure 2A). Overall,
the objective of the “Fishing Game” is to catch as many fish
as possible to earn points using the body center of mass
as a controlling factor of the boat movement and direction
(Figure 2B). In this way, patients with PD train their upper
body muscles and increase or sustain their balance skills, in a
gamified way.

The patients’ interaction with the PGS is captured by the
Nively MentorAge R©, a depth RGB image sensor that operates
on the Android system and uses an infrared 3D capturing
technology, where it can detect a maximum of four people in
a single room within a range of 0.6–5 m. The MentorAge R©

is the controller that targets the patient’s physical motion and
provides the interface for capturing the body posture and gestures
during their interaction with the platform through extracting
and analyzing the body’s skeleton and silhouette (http://www.
nively.com/). Monitoring and sensing the patient’s status provide
useful feedback information expressed via the collected data.
Furthermore, the anonymization of the collected data from the
PGS platform is essential for preserving the privacy of the
patients. The data that can be inputted and retrieved via the PGS
are listed below:

1. Contact data and account credentials of patients and
physicians.

2. Historical data taken from the game scenarios played by the
patients in the personalized program, are labeled as: {Patient
ID, Date, Game ID, Game Name, Level, Score, Skipped trials,
Achieved goals, Time to achieve goals, and Accuracy}.

3. Statistical data presenting the patients’ game score, goal
achievements, and engagement level.

4. Game friends’ activity data including achievements of the
patient’s connected game friends.

5. Medical history data of the patients and the results of their
clinical assessment tests.

2.2.2. iMAT Characteristics
i-PROGNOSIS iMAT is a set of motor assessment tests (Dias
et al., 2020b) that could be seen as a “digital twin” version of some
conventional tests used in the clinical environment for motor
skills assessment of patients with PD. In particular, the iMAT
design was co-created by neurologists specializing in PD from
Greece, UK, and Germany. Six tests are included (i.e., Test 1-
Test 6), designed and developed following the MDS-UPDRS Part
III examination that places the focus of assessment on postural,
balance, agility, coordination, and hand movements. These are
referenced as MDS-UPDRS Part III Items 18, 23, 24, 25, 26, and
28. Similar to the PGS, iMAT incorporates the data capturing
interfacing of Nively MentorAge R©, and, thus, it can be combined
with the use of PGS. An example of the iMAT use in practice
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FIGURE 1 | The overview of the i-PROGNOSIS PGS environment.

is depicted in Figure 3. As it can be seen from the latter, the
patient with PD (right panel), while being at the premise, tries
to imitate the leg movement of the expert (left panel) during

Assessment Test 2 which examines the leg agility movements.
The identified skeleton is overlaid on the video of a patient
with PD and an accuracy percentage (here 90%) is provided as

Frontiers in Psychology | www.frontiersin.org 4 March 2022 | Volume 13 | Article 857249

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Mahboobeh et al. Machine Learning for PD Staging

FIGURE 2 | Excerpt from the i-PROGNOSIS PGS ExerGame “Fishing Game.” (A) The interface of the game, including the instructional information and visualization of

the targeted muscle groups. (B) The game environment shows a patient with PD controlling the boat movement with his body.

real-time feedback, motivating improvement toward 100%
accuracy. Clearly, the use of iMAT does not require any visit to
the clinical environment, and the accuracy per each test session

is saved and transmitted to the attending physician via the i-
PROGNOSIS Azure-based dashboard. More details about the
iMAT could be found in Dias et al. (2020b).
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FIGURE 3 | The i-PROGNOSIS iMAT assessment environment during its use by a patient with PD (right panel), trying to imitate the expert’s leg posture (left panel),

achieving high accuracy of 90%.

3. MATERIALS AND METHODS

3.1. Dataset
3.1.1. Data Characteristics
For the proposed analysis, data drawn from patients with PD
interacting with the “Fishing Game” and iMAT are used. These
data corresponded to the clinical motor assessment data of
patients with PD, performed by neurologists from the three
different European medical centers (i.e., Greece, Germany, and
the UK). The main characteristics embedded in the clinical
dataset correspond to patients’ username, ID, demographics,
whether on medication or not, Hoehn and Yahr (H&Y) clinical
rating scale, and their score in MDS-UPDRS Part III Items 18,
23, 24, 25, 26, and 28. The H&Y is a standard clinical rating
scale that stages the functional disability associated with PD.
The original H&Y scale consists of five stages, where Stage 1
has unilateral involvement, Stage 2 bilateral without impairment
of balance, Stage 3 bilateral with impairment of posture, Stage
4 represents the severity of the disease associated with lack
of physical independence, and finally, Stage 5 is for patients

bounded by a bed or wheelchair (Goetz et al., 2004). However,
based on the present dataset, the H&Y stages in this study are
limited to one and three, labeled here as class 1 (Stage 1) and class
2 (Stage 3), respectively.

3.1.2. Participants’ Demographics
The dataset of the present study involved a total of 27 PD
patients with a distribution of class1/class2 as 9/18. Patients
undergoing this study ranged between the age of 43 and 79
years, with 69 years old as the highest number of patients and
62 years as the mean age. The patients in this study enrolled
from three different countries, i.e., Greece, Germany, and the UK.
The gender distribution was a ratio of 1 to 2, having 9 women
and 18 men patients with PD, where the majority were male
patients with PD. All patients were under PD medication except
one participant. The data acquisition took place from September
2019 to January 2020, during periodic sessions (1 per month) of
the iMAT within a controlled environment at the three medical
centers. Each patient with PD performed each Assessment Test
up to four times per session. Moreover, periodic sessions of the
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FIGURE 4 | Block diagram of the steps employed in the proposed analysis.

“Fishing Game” were also combined. It should be noted, however,
that 21 (6/15) out of 27 patients with PD have provided combined
scores from both PGS and iMAT. More details about the patients’
selection process can be found in Dias et al. (2020b).

3.2. Proposed Analysis
The objective of the proposed analysis is to find and use the
appropriate features from the PGS and iMAT scores that could
efficiently classify the patients with PD into H&Y stage 1 or
stage 2 of PD. This potentiates the use of PGS/iMAT as a
means to monitor the symptom status of patients with PD in a
non-clinical setting and capture any deterioration; hence, their
possible transition from a lower to higher H&Y stage. The steps
of the proposed analysis are schematically depicted in Figure 4

and described below.

3.2.1. Feature Vector (FV) Selection
In order to form the FV that could provide the best classification
output, various characteristics have been estimated from the
captured data. In particular, the statistical parameters of average
(avg), median (med), standard deviation (std), minimum (min),
and maximum (max) values of the “Fishing Game” scores were
used as features related to the PGS. In addition, based on the
findings from Dias et al. (2020b), the median value of the iMAT
test scores, i.e., Timed, i = 1, 2, . . . , 6, provided with the highest

(absolute) correlation with the PD clinical scores when compared
to the corresponding avg, std, min, and max values. Hence, the
Timed, i = 1, 2, . . . , 6 values were used here as features related to
the iMAT. Moreover, the participants’ demographics of age and
gender were also considered as features. In this vein, the following
versions of the FV were initially adopted:

1. iMAT median scores,
2. iMAT median scores + demographics,
3. Statistical parameters of the “Fishing Game” score,
4. Statistical parameters of the “Fishing Game” score +

demographics,
5. iMAT median scores + Statistical parameters of the “Fishing

Game” score,
6. iMAT median scores + Statistical parameters of the “Fishing

Game” score + demographics.

Figure 5 depicts the distribution of the employed features
in the form of boxplots. In particular, for the two classes,
i.e., class 1 and class 2, Figure 5A shows the boxplots of the
Timed, i = 1, 2, . . . , 6, Figure 5B depicts the boxplots of the
statistical parameters of the “Fishing Game” score, whereas
Figure 5C illustrates the boxplots of the age parameter. As it
can be seen from Figure 5, there are distinct differences between
the two classes in many of the selected features; however, their
combination, as reflected in the constructed scenarios, provides a
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FIGURE 5 | The distribution per class (class 1-cyan; class 2-orange) of (A) Timed, i = 1, 2, . . . , 6, (B) statistical parameters of the “Fishing Game” score, and (C) age,

in the form of box-plotting. Each box ranges from the first quartile (Q1) to the third quartile (Q3) of the distribution and the range represents the interquartile range

(IQR); the median is indicated by a line across the box and the “whiskers” on box plots extend from Q1 and Q3 to the most extreme data points; outliers are indicated

with circles.

TABLE 1 | Classification performance metrics used in the study.

Evaluation

metric

Definition Calculation

Accuracy Evaluates the model’s

percentage of correct predictions

TP+TN
TP+TN+FP+FN

Recall Analyzes delays as true positive TP
TP+FN

Precision Identifies true positive in the

ground truth

TP
TP+FP

F1 score Analyzes the equilibrium

between precision and recall

2×Precision×Recall
Precision+Recall

MCC A correlation coefficient between

the observed and predicted

binary classifications

TP×TN−FP×FN√
(TP+FP )(TP+FN )(TN+FP )(TN+FN )

TP,TN , FP, FN denote the true positive, true negative, false positive, and false negative,

respectively. MCC: Matthew’s Correlation Coefficient.

robust representation of the two classes, explored by the adopted
machine learning scheme (Figure 4).

3.2.2. Employed Machine Learning
The aforementioned selected FVs were fed to two machine
learning systems to perform the PD severity classification. The
K-Nearest Neighbors (KNN) (Altman, 1992), Support Vector
Machine (SVM) (Cortes and Vapnik, 1995), and Random Forest

(RF) (Shi and Horvath, 2006) machine learning methods were
adopted. KNN is mostly used in classification and regression
problems, where existing nearby features are considered to be
relatable. KNN estimates the similarity between two points
by calculating the Euclidean distance between these adjacent
features or points on a specific graph. SVM follows the concept
of separating the features from one another, as the same types
of features come on one plane, and another feature comes on
another plane. The classifier is using a line for 1D, a plane for
2D, and hyperplanes for 3D data. The Ensemble classification
learning method RF, which is also known as Random Decision
Forests, relies during training on building stacks of decision
trees. The final decision of the classification problem using RF
classifiers is based on taking the average of all the decision trees
outcomes, improving by that the accuracy of the prediction. In
order to accommodate for the size of the analyzed dataset and
avoid over-fitting, a Leave-One-Out Cross-Validation (LOOCV)
method was adopted. In fact, LOOCV excludes one observation
out of the training set of the dataset and performs validation
only on that left out observation. This process is repeated as
many as the number of observations included in the training
set, computing by that the overall accuracy of the classifications
of those left out observations to evaluate the performance of
the classifier.
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TABLE 2 | Estimated p-values from the demographics linear regression analysis.

PGS score-related features iMAT score-related features

Avg Med Std Min Max T1med T2med T3med T4med T5med T6med

Age 0.66 0.703 0.79 0.26 0.97 0.001 0.075 0.018 0.23 0.012 0.0007

Gender 0.56 0.49 0.99 0.79 0.84 0.88 0.55 0.56 0.66 0.19 0.64

Statistically significance level: p < 0.05, denoted with boldface p-values.

3.2.3. Classification Performance Metrics
For each classifier (KNN, SVM, RF) and different FVs (1-6),
the overall classification accuracy from the LOOCV scheme
is computed, along with the metrics of recall and precision,
all included in a confusion matrix, and F1 score along with
Matthew’s Correlation Coefficient (MCC), tabulated in Table 1.
MCC is also included here, as it does not have the undesired
characteristics of F1 score, i.e., not being normalized and not
being symmetric (when swapping positive and negative cases),
and is considered as a balanced measure, even when the classes
are of very different sizes (Boughorbel et al., 2017). MCC
returns a value ∈ [−1, 1], with MCC=1 representing a perfect
prediction, MCC=0 shows no better than random prediction
and MCC=-1 indicates a total disagreement between prediction
and observation.

4. RESULTS AND DISCUSSION

4.1. Demographics Impact
To study the impact of patients’ demographics, i.e., age and
gender, on the corresponding FVs (i.e., 2, 4, and 6) across the
two classes (H&Y stage 1 and stage 2), a linear regression analysis
was initially performed. Table 2 lists the estimated statistical
significance level (p-value) for age and gender with the features
related to the PGS and iMAT; boldface values denote statistically
significant difference, i.e., p < 0.05. From the results presented
in Table 2, age impacts only some of the iMAT score-related
features, such as T1med, T3med, T5med, and T6med, and has
no impact on the PGS score-related features. Moreover, gender
shows no significant impact on all features; i.e., both from the
PGS and iMAT.

4.2. FVs Update
Based on the findings of Table 2, the initial versions of the
FVs considered (1–6) are updated to the ones tabulated
in Table 3, creating five scenarios for the classification
process. In this way, the impact of age is only considered
in the construction of the different FVs that include
impactful demographics.

4.3. Classification Results
The classification performance for all scenarios of Table 3 and for
the KNN, SVM, and RF classifiers is depicted in Figure 6 (FV
scenarios 1-3) and Figure 7 (FV scenarios 4, 5), respectively. Both
figures present the related confusion matrices, which include
the accuracy, precision, and recall metrics (Table 1), accordingly.
Moreover, Table 4 tabulates the accuracy for each FV scenario

TABLE 3 | The selected features per each feature vector (FV) scenario used as

input to the K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and

Random Forest (RF) classifiers.

FV scenarios Selected features

Scenario 1 (N=27) {Timed|i ∈ (1, .., 6)}
Scenario 2 (N=27) {age, Timed|i ∈ (1, .., 6)}
Scenario 3 (N=21) {jFishingscore|j ∈ (max,min, avg, std,median)}
Scenario 4 (N=21) {Timed, jFishingscore|i ∈ (1, .., 6)&j ∈

(max,min, avg, std,median)}
Scenario 5 (N=21) {age, Timed, jFishingscore|i ∈ (1, .., 6)&j ∈

(max,min, avg, std,median)}

N denotes the number of patients with PD included in each FV scenario.

(Table 3), combined with the corresponding F1 score and the
MCC (Table 1).

Based on the results reported in Figures 6, 7, and Table 4,
it is clear that in most cases, the information that is provided
by the PGS/iMAT scores and their FV results has quite a
satisfactory classification performance, in terms of the resulted
metrics. More specifically, the FV scenario 1, which is solely
based on the iMAT-related features, achieves a classification
accuracy that ranges from 81.5% (RF) up to 92.6% (KNN, SVM).
This performance is improved when the iMAT-related FVs are
combined with the age information (FV scenario 2), extending
the accuracy range from 88.9% (RF, SVM) up to 96.3% (KNN).
When the PGS-related FVs are solely employed (FV scenario 3),
the classification accuracy is increased in all classifiers’ output,
ranging from 95.2% (KNN, SVM) up to 100% (RF). When there
is a combination of the PGS/iMAT-related FVs (FV scenario 4),
the classification accuracy is still sustained high, ranging from
90.5% (KNN) up to 95.2% (SVM, RF). Finally, when the age
is also combined (FV scenario 5), all classifiers converge to a
95.2% accuracy.

Considering the performance of the there classifiers, KNN
sustains values greater than 90% accuracy across all FV scenarios,
whereas SVM and RF have a wider range of performance,
depending on the different FV scenarios, ranging from 88.9 up to
95.2% and from 81.5 up to 100%, respectively. This performance
is also reflected in the corresponding values of F1 score/MCC
(Table 4), with the RF exhibiting the lowest (0.737/0.596; FV
scenario 1) and the highest (1/1; FV scenario 3) estimated values
across the three classifiers. These results indicate that the least
number of features (five in FV scenario 3) have produced the
best performance in the case of RF, showing an ability to better
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FIGURE 6 | Confusion matrices generated from the K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and RF classifiers for the feature vector (FV)

scenarios of 1, 2, and 3 (Table 3).

capture the difference between the two classes, when compared
to other FV scenarios (intra-comparison) and classifiers (inter-
comparison). More stable performance is achieved by KNN,
followed by the SVM, achieving an increased classification
accuracy, as the FV is enriched with the two sources of
information, i.e., PGS and iMAT scores, combined with the age.
This showcases the potentiality of not only separately using PGS
or iMAT to identify the current PD effect in a patient’s motor
skills but using them in a combinatory way as well.

Regarding the nature of the PGS and iMAT characteristics,
it is evident that each of them provides useful information,

captured in different settings. In fact, during the “Fishing Game,”
the patient uses their trunk to control the game (Figure 2) and
follows the flow of the game, which differs across the levels of the
game and its sessions. Hence, it could be considered a task with
variant content and unpredictability (e.g., game surprises, game
challenges), in terms of motor interaction that the game demands
from the user. This allows for more spontaneous, uncontrolled
movements by the patient with PD. iMAT, however, requires
the patient to follow specific movements that are performed
by the expert (Figure 3), controlling as much as possible their
movement, according to the specific test protocols. Hence, the
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FIGURE 7 | Confusion matrices generated from the KNN, SVM, and RF classifiers for the FV scenarios of 4 and 5 (Table 3).

TABLE 4 | Leave-One-Out Cross-Validation (LOOCV) accuracy, F1 score, and MCC values achieved by all the scenarios using KNN, SVM, and RF classifiers.

Weighted KNN Linear SVM RF

Sc1 Sc2 Sc3 Sc4 Sc5 Sc1 Sc2 Sc3 Sc4 Sc5 Sc1 Sc2 Sc3 Sc4 Sc5

Accuracy 0.926 0.963 0.952 0.905 0.952 0.926 0.889 0.952 0.952 0.952 0.815 0.889 1 0.952 0.952

F1 score 0.889 0.947 0.909 0.800 0.909 0.889 0.842 0.909 0.909 0.909 0.737 0.824 1 0.909 0.909

MCC 0.833 0.922 0.884 0.767 0.884 0.833 0.759 0.884 0.884 0.884 0.596 0.745 1 0.884 0.884

Sc1-Sc5 corresponds to the FV Scenario 1-Scenario 5 of Table 3, respectively.

related score expresses the patients’ motor skills in controlled, less
spontaneous, movements.

Clearly, the combination of both information sources, as
seen by the employed classifiers, reveals their importance to
arrive at an efficient classification of the stage of patients
with PD (early or more advanced). This is further supported
by the fact that the PGS/iMAT were designed following a
co-creation approach, trying to gamify clinical assessment
processes and quantify the PD symptoms in a more intuitive
and naturalistic way. Hence, patients from their premises can
have an intermediate use (e.g., every 10–15 days) of iMAT
between periodic sessions of PGSs (e.g., daily or every 2
days per week), providing data that the proposed classification
pipeline would use to infer for the improvement/deterioration

of patients’ PD motor skills in a longitudinal fashion. In this
way, constructive feedback could be provided, both to the patient
and his/her attending doctor, guiding more personalized and
targeted interventions.

The proposed study continues the study presented in Dias
et al. (2020b) and showcases the potentialities of the PGS
and iMAT to efficiently monitor the motor skill status of
patients with PD. Moreover, our results extend the work of
Grammatikopoulou et al. (2019), where they analyzed the
movement patterns of PD patients with early (6 patients)
and advanced (12 patients) PD symptoms during playing a
body motion-based video game. Their effort was to detect
statistically significant differences between groups of different
motor impairment levels based on their game performance.

Frontiers in Psychology | www.frontiersin.org 11 March 2022 | Volume 13 | Article 857249

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Mahboobeh et al. Machine Learning for PD Staging

Their analysis resulted in statistically significant differences
focused on the game duration, rather the game score per se,
and body skeleton-based classification using deep learning that
resulted in an accuracy of 77.7% between the two patient groups.
Apparently, the results presented here showcase that the “Fishing
Game” and iMAT scores provide better opportunities to evaluate
the severity of PD and its effect on the motor skills of patients
with PD. This is in line with the findings of the systematic review
of Gallou-Guyot et al. (2022), who found that home-based active
video games seem feasible, enjoyable, and safe and could be
effective for the improvement of gait and balance functionality
of patients with PD, being, at the same time, comparable to the
usual care and conventional therapy.

The combinatory approach of PGS/iMAT suggested here
could be used to connect the predominantly subjective evaluation
in the clinical assessment of the PD patients’ motor skills with a
more enhanced technology-driven evaluation scheme. The latter
could provide accurate indications about the disease staging,
assisting the selection of personalized therapeutic interventions.
As PD has a long prodromal phase, the PGS/iMAT could also
be employed as an early PD stage monitoring tool, promoting
physical activity and motor behavioral changes via a personalized
gaming experience and different types of assessment.

4.4. Limitations and Future Work
Apparently, the limited number of patients with PD involved in
the study constrains the generalization power of the findings.
However, the latter is supported by the controlled environment
used for data capturing and the clinical validation processes
that were involved. Hence, the proposed study potentiates the
extension of the current analysis to a larger scale of cohorts of
patients with PD. This would also support the collection of big
data from patients with PD at various disease severity stages,
extending the binary classification problem examined here to a
multi-class one. In addition, data acquired from the same patient
for a long period of time could give rise to further validation
and generalization of the classifiers’ performance to inter/intra-
subjects variability.

The study presented here examines one ExerGame from the
PGS (“Fishing Game,”) also combined with the iMAT. However,
PGS includes more ExerGames and additional categories of
SGs (Figure 1). Further analysis will include data from pilots
with an increased variety of PD patients’ interaction with
the PGS for a long (> 6 months) period of time. This
would allow the examination of the effect of the ExerGame
characteristics on better revealing the motor skill status of
patients with PD across time. Moreover, the extension of the
iMAT to include fine motor skills assessment (e.g., handwriting
testing) and/or additional assessment test that would target
non-motor symptoms, such as voice degradation, emotional
distress, unhealthy nutrition, low sleep quality, could lead to
a holistic PD assessment tool. This could be combined with
the whole range of SGs included in the PGS, enriching the
information from integrated sources. Apparently, in that case,
the adopted machine learning would be extended to deep
learning classification schemes, that could create FV in the
embedding space for efficient representation of the health

status of patients with PD (Jiang et al., 2021). Finally, the
transfer of the PGS/iMAT to an immersive (e.g., virtual reality)
environment is also foreseen, in an effort to evaluate the level
of user engagement and performance under more experiential
interaction settings.

5. CONCLUSION

A machine learning-based approach for the estimation of the
PD severity using features from the scores produced by the
PD patients’ interaction with PGS/iMAT was presented here.
Data from 27 patients with PD at Stage 1 (9) and Stage 3 (18)
from Greece, Germany, and the UK were used in the present
study. Five feature vector scenarios, which either solely use
the data from PGS or iMAT or data from their combination
with the addition of the age, were explored for their efficiency
to accurately represent the PD stage. Three machine learning
classifiers (KNN, SVM, RF) were employed for the PD stage
classification under an LOOCV scheme. The experimental results
have shown that a high (> 90%) classification accuracy of the PD
stage is feasible from both data sources, i.e., PGS/iMAT. Clearly,
these findings reinforce the role of the serious exergaming
(and PGS, in general), along with the digital motor skill
assessment, both combined in a unified NUI environment, to
reflect the stage of patients with PD via machine learning.
This perspective extends the horizon of the PD assessment
to include more quantitative and objective means that could
provide fine-grained metrics for remote symptoms’ monitoring
(such as motor skills degradation), shifting the locus of PD
stage assessment from the clinic to the premise of the patient
with PD.
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