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Abstract: The number of deaths due to cardiovascular and respiratory diseases is increasing annually.
Cardiovascular diseases with high mortality rates, such as strokes, are frequently caused by atrial
fibrillation without subjective symptoms. Chronic obstructive pulmonary disease is another condition
in which early detection is difficult owing to the slow progression of the disease. Hence, a device
that enables the early diagnosis of both diseases is necessary. In our previous study, a sensor for
monitoring biological sounds such as vascular and respiratory sounds was developed and a noise
reduction method based on semi-supervised convolutive non-negative matrix factorization (SCNMF)
was proposed for the noisy environments of users. However, SCNMF attenuated part of the biological
sound in addition to the noise. Therefore, this paper proposes a novel noise reduction method that
achieves less distortion by imposing orthogonality constraints on the SCNMF. The effectiveness
of the proposed method was verified experimentally using the biological sounds of 21 subjects.
The experimental results showed an average improvement of 1.4 dB in the signal-to-noise ratio and
2.1 dB in the signal-to-distortion ratio over the conventional method. These results demonstrate the
capability of the proposed approach to measure biological sounds even in noisy environments.

Keywords: noise reduction; biological sound; vascular sound; respiratory sound; wearable device;
biomedical signal processing; machine leaning; non-negative matrix factorization

1. Introduction

The number of deaths from cardiovascular diseases such as ischemic heart disease,
angina pectoris, and arrhythmia is increasing annually worldwide [1]. Atrial fibrillation is
a cardiovascular disease that may cause serious cerebrovascular issues. Atrial fibrillation
manifests as an abnormal electrical signal in the atria and causes irregular pulsing and
inability to pump sufficient blood [2]. In 2010, 33.5 million patients worldwide were
estimated to suffer from this disease. In 2017, this number had increased to 37.6 million [3].
The incidence of this disease has been increasing since the 1990s [4] owing to the population
aging. The initial symptoms of atrial fibrillation include abnormalities in the conduction
system, such as an irregular pulse. The chronicity of these symptoms can lead to severe
cerebral infarction [5,6]. The majority of affected individuals are unaware of the disease
because they have no subjective symptoms [7]. Similarly, chronic obstructive pulmonary
disease (COPD) is a respiratory disease responsible for an increasing number of deaths.
COPD is also a slowly progressing disease and its symptoms originate from limitation of
the airflow [8]. This disease is the third leading cause of death worldwide and is expected
to become the first in 15 years [9,10]. The initial symptoms of COPD include respiratory
abnormalities such as shortness of breath [11].
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The initial symptoms of these cardiovascular and respiratory diseases are difficult
to detect early by the patient because they are subtle and progress slowly. Currently, the
diagnosis of COPD and atrial fibrillation is not automated and requires a visit to a clini-
cian. To improve the efficiency of medical treatment for both diseases, it is necessary to
perform repeated objective and accurate tests. This problem can be solved by developing a
sensor device that can continuously measure cardiovascular and respiratory conditions.
The detection of abnormal signals generated from cardiovascular and respiratory organs
by the device will enable clinicians to detect and treat diseases at an early stage. In ad-
dition, the collection and analysis of measurement data can be applied as a diagnostic
aid for physicians or for automated diagnosis. Several biological measurement devices
have already been commercialized, such as bedside monitors and electronic stethoscopes
used in hospitals [12,13]. The bedside monitor displays multiple vital signs, such as the
electrocardiogram, respiratory information, and body temperature of the patient. The elec-
tronic stethoscope can record vascular and respiratory sounds even in noisy environments.
However, these devices are not always available for measurement and it is difficult for
people without medical knowledge to evaluate the measured data. Hence, simultaneous
evaluation systems for vascular and respiratory sounds are being researched worldwide. In
prior research, we developed a biological sound sensor system that could measure vascular
and respiratory sounds simultaneously [14]. This system simultaneously measures these
sounds from the trachea and arteries through contact with the human body, and extracts
these sounds through biomedical signal processing. This development enabled patients to
easily measure their own vascular and respiratory sounds. However, the biological sound
sensor was negatively affected by noise from the user’s surroundings.

Over the years, researchers have proposed methods to reduce noise in measured
sounds. Examples of noise reduction methods include the application of Wiener filters,
spectral subtraction, and empirical mode decomposition (EMD) [15–19]. These reduction
effects are related to the number of microphones and the computational complexity. From
the viewpoint of miniaturization in wearable devices, a noise reduction method that
functions with only a single microphone is desirable. A noise reduction method for
monaural sources was formulated based on non-negative matrix factorization (NMF). It
has been reported that the noise reduction performance of NMF is superior to those of
methods using EMD and other methods described above [20]. NMF decomposes a non-
negative matrix into two matrices; it has been widely applied in various fields such as
image processing, text analysis, and speech processing [21–23]. In our previous study, we
proposed a noise reduction method based on semi-supervised convolutive non-negative
matrix factorization (SCNMF), which is an extension of NMF [24]. Vascular and respiratory
sounds have a time dependence on the frequency; SCNMF was developed for the analysis
of these sounds. Nevertheless, this method may misclassify some parts of biological sounds
as noise and consequently distort biological sounds. In this paper, we propose a novel
NMF extension model, orthogonality-constrained convolutive NMF (OCNMF), which
imposes a similarity constraint between noise and biological sounds on the SCNMF. The
OCNMF-based noise reduction method can prevent the distortion of biological sounds
due to misclassification. The proposed noise reduction can contribute greatly to health
care innovations in biomedical signal processing, such as heartbeat analysis and blood
pressure prediction [25,26]. The effectiveness of OCNMF was verified experimentally by
using biological sounds acquired from 21 subjects.

This paper is organized as follows. Section 2 explains the vascular and respiratory
sounds and the structure and principles of biological sound sensors. Section 3 discusses the
related research and explains the proposed OCNMF. Section 4 describes the experimental
setup and verification process. Finally, Section 5 concludes the paper.

2. Biological Sound Sensor

Biological sounds such as vascular, respiratory, and swallowing sounds are generated
in the body through physiological functions. Biological sounds are one of the most impor-
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tant sources of information about a person’s health status. Hence, physicians perform initial
diagnosis through auscultation. We designed a sensor to measure vascular and respiratory
sounds for diagnosing cardiac and pulmonary diseases. In the following subsections, we
explain vascular and respiratory sounds and the structure and principle of the biological
sound sensor used in this study.

2.1. Vascular Sound

Vascular sound is generated by the opening and closing of the heart valves due to
beating. This sound is divided into four sounds: S1, S2, S3, and S4. S1 is generated by the
closing the mitral and tricuspid valves and S2 is generated by the closing of the aortic and
pulmonary valves. S3 and S4 have low-frequency components and are identified by their
very low amplitude. Therefore, it is difficult to hear S3 and S4 [27]. Vascular sounds have a
main frequency range of 75–200 Hz [28].

2.2. Respiratory Sound

Respiratory sounds are generated by the flow of air through the airway during ex-
halation and inhalation [29]. This sound has a frequency range of 200–2000 Hz for both
exhalation and inhalation. The high-frequency components are attenuated by the propaga-
tion medium in the body, such as bone and soft tissue. For example, the respiratory sound
generated by the chest has a frequency range of approximately 200–600 Hz [30].

2.3. Biological Sound Sensor

The biological sound sensor shown in Figure 1 is a wearable sensor that can measure
vascular and respiratory sounds [14]. The sensor used in this study consists of two parts:
a holding unit and a sensor unit. Figure 2 shows the photograph and cross-sectional
illustration of the sensor unit. The holding unit is made of an elastoplastic material. The
unit is designed to keep the sensor unit in contact with the human body. The sensor unit
consists of an electret condenser microphone (ECM), a contact part, and a case. The ECM
EM-258 (Primo Co., Ltd., Tokyo, Japan) was designed with its diaphragm exposed to
accurately measure biological sounds. Figure 3 shows the ECM before and after exposure.
The ECM is housed in a light-curing resin case, and its exposed diaphragm is covered
with a polyurethane elastomer with a hardness of 15 HITOHADA gel (Exseal Co., Ltd.,
Gifu, Japan).
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The ECM is a condenser microphone with an electret. The condenser microphone
consists of a capacitor with two electrodes and a diaphragm. The distance between the two
electrodes is lengthened or shortened by vibrations of the input sound wave. This mech-
anism converts the sound vibrations into voltage changes, which enables the condenser
microphone to receive sound as an electrical signal. The condenser microphones require a
high voltage, known as a phantom source, for charging. In contrast, the ECM can be used at
low voltages because it has an electret element that can be charged semi-permanently [31].
The ECM is suitable for wearable devices because of its small size and non-requirement
of additional power supply. Signal processing is necessary to compensate for the lower
sound quality of the ECM when compared with condenser microphones.

The polyurethane elastomer is used to accurately measure biological sounds with
the ECM. The biological sounds are attenuated at the interface between the skin and
the sensor because of the natural law that sound waves propagating in a medium with
different acoustic properties will be reflected. Their acoustic impedances are matched by
passing through a polyurethane elastomer, which has acoustic properties similar to those
of the skin.

We decided to measure the biological sound around the mastoid process of the subjects.
The mastoid process is a cone-shaped bony prominence located in the posterior inferior
portion of the temporal bone [32]. This position enables simultaneous measurement of
vascular and respiratory sounds because of its proximity to blood vessels and the trachea.
Furthermore, it alleviates the discomfort felt by the user when wearing the sensor. Figure 4
shows a photograph of a subject wearing the biological sound sensor.
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3. Noise Reduction Methods
3.1. Related Research

In the field of audio signal processing, noise reduction methods have been designed
with a focus on time and frequency properties. In the following subsections, we introduce
non-negative matrix factorization (NMF), a monaural noise reduction method that has
been studied extensively in recent years, and its extended models.

3.1.1. NMF and Semi-Supervised NMF

NMF is a method for decomposing non-negative data into additive components [21–23].
Based on previous studies, additivity is assumed valid in an amplitude spectrogram, which
is an absolute value of the audio signal processed by short-time Fourier transform (STFT).
Given a non-negative matrix Y ∈ RF×T

+ , NMF approximates it by the product Y ∼= HU of
a basis matrix H ∈ RF×R

+ and an activation matrix U ∈ RR×T
+ , where the input Y is the

amplitude spectrogram of the audio signal, F is the number of frequency bins, T is the num-
ber of frames, and R is the number of bases of the NMF. H contains the spectral patterns
found in the original spectrogram and U contains the time variation of the amplitude of
each spectral pattern. The computational complexity and decomposition accuracy of NMF
depend on an objective function that represents the norm between the target matrix and
the output.

The objective functions of the NMF have been proposed by many researchers. In
this study, we focus on β-divergence, which was devised in previous studies [33,34]. The
β-divergence is expressed in Equation (1) using the variables β, x, and y. In Equation (1),
Dβ(y|x) is the pseudodistance of y to x. This is the Itakura–Saito (IS) distance when β = 0,
the Kullback–Leibler (KL) distance when β = 1, and the Euclidean distance when β = 2.

Dβ(y|x) =
yβ

β(β− 1)
+

xβ

β
− yxβ−1

β− 1
(1)

The objective function of the NMF with β-divergence as the norm is expressed in
Equation (2).

Eβ(θ)= Dβ(Y|HU), (2)

where θ is the parameter to be optimized. NMF estimates H and U such that Eβ(θ) is
minimized. It is not possible to solve this optimization problem analytically. However, the
solution can be obtained indirectly by iteratively minimizing the auxiliary function, which
is the upper bound of the objective function [35]. The multiplicative update rules for the
objective function with β-divergence are expressed as follows:

H ← H
⊙(

(HU)β−2YUT

(HU)β−1UT

)ϕ(β)

, (3)
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U ← U
⊙(

HT(HU)β−2Y

HT(HU)β−1

)ϕ(β)

, (4)

where the operator
⊙

represents the adamantine product, and the operator (·)T represents
the transpose operation. ϕ(β) is defined using the following equation:

ϕ(β) =


1/(2− β) (β < 1)

1 (1 ≤ β ≤ 2)
1/(β− 1) (2 < β)

. (5)

It is difficult to interpret the meaning of the spectral patterns represented by each
basis because NMF is an unsupervised learning process. In addition, a single basis may
contain extensive signal information. Thus, the extraction of the target signal using NMF is
very problematic.

Target signal extraction methods have been devised using the spectral patterns of the
signal as supervised information [36–38]. Semi-supervised NMF (SNMF) is an extension
of NMF to supervised clustering. SNMF consists of two phases: pre-training and noise
analysis. In pre-training, the amplitude spectrogram Ytarget ∈ RF×T

+ of the target signal
sound without noise is decomposed to the product of H ∈ RF×R

+ and Q ∈ RR×T
+ through

NMF. The basis matrix H is incorporated into the NMF as supervised information for the
target signal. In noise analysis, Q is not necessary because it represents the activity level
of the pre-trained sound. SNMF decomposes the amplitude spectrogram Y ∈ RF×T

+ of the
unknown mixed signal, as shown in the following equation:

Y ∼= HU + FG, (6)

where F ∈ RF×J
+ is the basis matrix that contains information other than the signal to

be extracted in the noisy input signal, G ∈ RJ×T
+ is the activation matrix corresponding

to F, and J is the number of bases in the basis matrix F. H is the basis matrix of the
extraction target signal obtained through pre-training. Note that H is not updated during
the decomposition of Equation (6) because H contains the spectral pattern of the extraction
target signal. The extraction target signal can be separated from the other signals by
decomposing the input sound into additive components, as described above. The objective
function Iβ(y|x) of SNMF with β-divergence is defined as follows:

Iβ(θ)= Dβ(Y|HU + FG ). (7)

The multiplicative update rules that minimize the objective function of SNMF using
the auxiliary function as well as Equations (3) and (4) can be derived as follows:

F ← F
⊙(

(HU + FG)β−2YGT

(HU + FG)β−1GT

)ϕ(β)

, (8)

G ← G
⊙(

FT(HU + FG)β−2Y

FT(HU + FG)β−1

)ϕ(β)

, (9)

U ← U
⊙(

HT(HU + FG)β−2Y

HT(HU + FG)β−1

)ϕ(β)

. (10)

SNMF is utilized as a noise reduction method by reconstructing the sound from the
information HU of the target signal in the mixed signal obtained in this manner.

SNMF is based on the regular NMF, which assumes that the spectral pattern of the
audio signal is time-invariant. This assumption has been reported to deteriorate the
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extraction accuracy for signals with time-varying amplitude spectra, such as voices [39]. In
the next subsection, we describe the convolutive NMF for time-varying signal analysis.

3.1.2. Convolutive NMF and Semi-Supervised Convolutive NMF

Convolutive NMF (CNMF) is an extended NMF capable of analyzing audio signals
with a time-varying amplitude spectrum [40]. Convolution is an operation used to estimate
the relationship between the neighboring spectra on the time axis. CNMF decomposes the
amplitude spectrogram Y of the audio signal as follows:

Y ∼=
K−1

∑
τ = 0

Hτ
τ
→
U, (11)

where Hτ∈RF×R
+ represents the basis matrix and K represents the number of time frames

to be convolved. Note that the operator τ
→
U shifts the matrix column to the right by τ and

sets the elements of the shifted column to zero from outside the matrix. In contrast, the

operator
←
U

τ

shifts the matrix column to the left by τ and sets the elements of the shifted
column to zero from outside the matrix. As shown in Equation (11), CNMF decomposes
the amplitude spectrogram of the audio signal into a shared activation matrix and a set
of time-frame-shifted basis matrices. From this calculation, CNMF can estimate the time
variation and relationship between the neighboring spectra.

Semi-supervised CNMF (SCNMF) is an extended model of SNMF that utilizes CNMF
for pre-training and noise analysis. Figure 5 shows a conceptual diagram of SNMF and
SCNMF. It is noteworthy that the spectral pattern of respiratory sounds changes from
the beginning to the end of the respiratory cycle. We have already reported that SCNMF
has a high noise reduction effect in respiratory sounds with a time-varying frequency
distribution [24].
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The objective function Lβ(θ) of SCNMF and its multiplicative update rules derived
as followed in Equations (8)–(10) are given below. Note that the estimated result of the
SCNMF, Z, is defined in Equation (12).

Z =
K−1

∑
τ = 0

Hτ
τ
→
U +

K−1

∑
τ = 0

Fτ
τ
→
G (12)

Lβ(θ)= Dβ(Y|Z), (13)
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Fτ ← Fτ

⊙Z β−2Y τ
→
U

T

Z β−1τ
→
G

T

ϕ(β)

, (14)

G ← G
⊙FT

τ

←
Z

τ
β−2
←
Y

τ

FT
τ

←
Z

τ β−1

ϕ(β)

, (15)

U ← U
⊙HT

τ

←
Z

τ
β−2
←
Y

τ

HT
τ

←
Z

τ β−1

ϕ(β)

. (16)

Through these multiplicative update rules, information other than the target signal
in the input spectrogram is contained in the basis matrix F. However, NMF and SCNMF
have the risk of incorrectly storing the target signal in F, because NMF originally has
no uniqueness and has high dependency on the initial value in the solution. In the
next subsection, we describe the details of an extended model of the SNMF, called the
orthogonality-constrained NMF, which solves this problem.

3.1.3. Orthogonality-Constrained NMF

A method has been devised to improve the separation accuracy of the target signal
by imposing constraints on the multiplicative update rules of the SNMF. Orthogonality-
constrained NMF (ONMF) imposes a constraint that maximizes the cosine distance between
the pre-training basis matrix and the other basis matrices [41]. By orthogonalizing the basis
vectors of the pre-training basis matrix H with those of the other basis matrices F, they
become uncorrelated. ONMF imposes the following constraints on the product of F and H.

min
F

(HF)2 (17)

With the imposition of this constraint, the objective function converges by normalizing
each column of the basis matrix. The update rule for each element Ff ,j of the basis matrix
F other than the target signal can be obtained by solving the optimization problem of the
auxiliary function, which is the upper bound of the objective function. The update rule is
as follows:

Ff ,j ← F f ,j

 ∑t

(
∑r H f ,rUr,t + ∑j Ff ,jGj,t

)β−2
Yf ,tGj,t

∑t

(
∑r H f ,rUr,t + ∑j Ff ,jGj,t

)β−1
Gj,t+µF f ,j ∑r H2

f ,r


ϕ(β)

, (18)

where H f ,r denotes each element of the basis matrix H, Ur,t belongs to the activation matrix
U, Gj,t belongs to the activation matrix G, and Yf ,t is the input amplitude spectrogram
Y. The parameter µ is the weight variable of the orthogonality constraint. When the
parameter µ = 0, the ONMF process is the same as that of the regular SNMF. In the next
subsection, a novel noise reduction method based on these NMF models is proposed to
prevent distortion of the respiratory sound signal information.

3.2. Proposed Method

We propose an orthogonality-constrained convolutive NMF (OCNMF) framework
for noise reduction, as shown in Figure 6. First, the biological sound measured by the
sensor is preprocessed using a band-pass filter (BPF) and harmonic percussion sound
separation (HPSS), as described below, to separate the sound into vascular and respiratory
sounds. The purpose of this preprocessing is to independently learn vascular and respira-
tory sounds, which have different characteristics, as described above. We used BPF and
HPSS, which are fast processing methods, because the focus of this study is to improve the
efficiency of healthcare. Second, the separated respiratory sounds are converted into an am-
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plitude spectrogram by using STFT for OCNMF analysis. OCNMF consists of pre-training
and noise analysis phases as well as SNMF. In pre-training, OCNMF learns a dataset, Ytrain

∈ RF×Ttrain
+ , which consists only of signal information because it requires no information of

unknown noise. In the noise analysis, OCNMF decomposes the preprocessed as well as
the pre-training input amplitude spectrogram Y. The mask M shown in Equation (19) is
generated from the matrices obtained through OCNMF and post-processed with a Wiener
filter multiplied by Y to reconstruct the amplitude spectrogram of the denoising result.

M =

(
∑K−1

τ = 0 Hτ
τ
→
U
)2

(
∑K−1

τ = 0 Hτ
τ
→
U
)2

+

(
∑K−1

τ = 0 Fτ
τ
→
G
)2 (19)

Finally, the product of the denoised amplitude spectrogram and the phase of the input
signal Yp are processed using inverse STFT (ISTFT) to obtain the denoised signal. In the
following subsections, we explain the preprocessing and details of the proposed OCNMF.
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Figure 6. Proposed noise reduction framework based on orthogonality-constrained CNMF.

3.2.1. Preprocessing with BPF and HPSS

To pre-determine the number of bases other than the target signal, the SNMF should
narrow down the types of sounds in the preprocessing. Frequency filters designed to match
the frequency distribution of vascular and respiratory sounds can extract the respective
sounds [14]. The specifications of the BPF designed in this study are listed in Table 1. Our
system is intended for practical use in telemedicine and is expected to demonstrate real-
time performance. Hence, we designed an infinite impulse response (IIR) filter with low
computational complexity. A Butterworth filter was selected because the signal distortion
caused by the passband ripple is more detrimental to OSCNMF than the slower out-of-band
attenuation. The order was set to 12 to sufficiently attenuate the out-of-band frequency
components. Nevertheless, this BPF process is not sufficient to completely extract only
the respiratory sounds. The reasons for this are the wide range of secondary frequency
components of vascular sounds and the pressure of these sounds, which is approximately
20 dB higher than that of the respiratory sounds.
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Table 1. Specification of frequency filters for vascular sound signal (VSS) and respiratory sound
signal (RSS).

Target Frequency [Hz] Response Filter Order

VSS 75–200 Infinite impulse response Butterworth 12RSS 200–2000

In this paragraph, we describe the characteristics of vascular and respiratory sounds
and explain the process of removing residual vascular noise from respiratory sounds.
As mentioned in the previous paragraph, vascular sounds are short in the time axis and
wide in the frequency axis. In contrast, respiratory sounds are longer in the time axis
and narrower in the frequency axis. HPSS can be used to separate such sources with
temporal and frequency differences [42]. Vascular sounds have percussive characteristics
and respiratory sounds have harmonic characteristics. HPSS first applies a one-dimensional
median filter with a predefined filter width to each column and row of the amplitude
spectrogram of the mixed signal. While setting this filter width in the HPSS, it is necessary
to consider the time width of the harmonic and percussive sounds to be extracted. The
following conditional equation is imposed on the filter width mt in the time axis direction
for harmonic extraction, which depends on the time width pt of the percussive sound and
time width ht of the harmonic sound.

2pt < mt < ht (20)

In this study, the filter width was set to a time frame equivalent to 0.61 s based on
the time length of the respiratory and vascular sounds. A mask was calculated from the
respiratory sound enhanced by the median filter, as in Equation (19), and multiplied by the
original mixture signal to obtain the separation result.

The HPSS processes any signal with a predefined filter width. Hence, it has the risk of
causing musical noise by over-reducing when unexpected noise characteristics are mixed
in [43]. Our proposed OCNMF is expected to recover from the degradation caused by
non-adaptive HPSS because it reduces the noise of the input based on the supervised signal.

3.2.2. Noise Reduction with OCNMF

As mentioned in the previous subsection, CNMF is effective in analyzing signals with
time-varying frequency patterns, such as biological sounds. Based on Equation (11), the
multiplicative update rules for the basis matrix Hτ and activation matrix Q of the target
signal information are given as follows:

Hτ ← Hτ

⊙Zβ−2Ytrain
τ
→
Q

T

Z β−1τ
→
Q

T

ϕ(β)

, (21)

Q ← Q
⊙HT

τ

←
Z

τ
β−2

←
Ytrain

τ

HT
τ

←
Z

τ β−1

ϕ(β)

, (22)

where Z is the estimated result of CNMF. The procedure for pre-training using CNMF is
outlined in Algorithm 1. iCNMF represents the number of update rule iterations required
for solution convergence. The number of iterations, iCNMF, depends on the size of the input
matrix and the number of shift frames K. A previous study reported that it converged
at approximately 100 [39]. The β-divergence should be determined based on the NMF
model characteristics and the target sound generation process. NMF with the IS, KL,
and Euclidean distances as norms is equivalent to the maximum likelihood estimation
assuming exponential, Poisson, and Gaussian distributions for the generation process [44].
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Algorithm 1. Signal basis training using CNMF

Input: Spectrogram of signal dataset Ytrain, priori basis number R, shift length of CNMF K, type
of β-divergence β

number of iterations in CNMF iCNMF
Output: The basis matrix of signal Hτ

1: Initialize Hτ and Q with random non-negative values
2: Normalize columns of Hτ

3: for i = 1, · · · , iCNMF do
4: for τ = 0, · · · , K − 1 do
5: Compute Z
6: Update Hτ and Q using Equations (21) and (22)
7: Normalize columns of Hτ

8: end for
9: end for

OCNMF imposes a constraint similar to Equation (17) on the product of the basis
matrix Hτ of the target signal information and the basis matrix Fτ of the noise. Based on
the constraints, the update rule for each element Fτ, f ,j of Fτ in OCNMF is given as follows:

Fτ, f ,j ← Fτ, f ,j

(
∑t Z f ,t

β−2Yf ,tGj,t

∑t Z f ,t
β−1Gj,t+µFτ, f ,j ∑r H2

τ, f ,r

)ϕ(β)

, (23)

where Z is the estimated result of the OCNMF denoted by Equation (12). Note that the
convergence of OCNMF is conditional on the normalization of the basis vectors, as is the
case with ONMF. Noise analysis using OCNMF and noise reduction through masking are
performed as shown in Algorithm 2. Figure 7 shows the amplitude spectrograms of the
four types of respiratory sounds (Figure 7a: noiseless, Figure 7b: noise added, Figure 7c:
processed using SCNMF, Figure 7d: processed using the proposed OCNMF method). Based
on preliminary experiments investigating the time length of changes in the frequency
pattern of the respiratory sound, the number of shift frames K is set to be equivalent to
0.3 s. To scale the two terms in the denominator of the right side of Equation (23), the
weight parameter µ of the orthogonality constraint was set to 1.0 × 106. As shown in
Figure 7c,d, our proposed OCNMF has less respiratory sound distortion than the SCNMF.

Algorithm 2. Noise analysis and reduction using OCNMF

Input: Spectrogram of an input signal Y, priori basis number R, an undesired basis number J, type
of β-divergence β,

number of iterations in OCNMF iOCNMF, shift length of CNMF K, signal basis matrix Hτ ,
weight parameter µ, phase matrix of the input signal Yp

Output: Noise reduced signal Ycl
1: Initialize Fτ , U, and G with random non-negative values
2: Normalize columns of Fτ

3: for i = 1, · · · , iOCNMF do
4: for τ = 0, · · · , R − 1 do
5: Compute Z
6: Update Fτ , U, and G using Equations (15), (16) and (23)
7: Normalize columns of Fτ

8: end for
9: end for
10: Compute M using Equation (19) and Ycl = Y

⊙
M

11: ISTFT (Ycl
⊙

Yp)
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4. Experimental Verification
4.1. Setup

An experiment was conducted to verify the effectiveness of the noise reduction based
on our proposed OCNMF. Sounds that were measured in noiseless environments were
used as the pre-training data, and sounds to which noise was added on the computer
were used as the test data. The method of separating the pre-training data and test data
is explained in the next subsection. As shown in Figure 3, the biological sound sensor
was attached to the area around the mastoid process of a subject in a seated resting
state. The sensor was connected directly to the PC with a phone connector for power
supply and recording control. Biological sounds were measured for 10 s in 21 subjects
who consented to participate in this study. The health status of the subjects is shown
in Table 2. The experimental design was approved by the Institutional Review Board of
Yamaguchi University (Approval number: H2021-031). The respiratory rate was arbitrarily
set by the subjects. The sampling frequency and bit depth of the measurement were set
to 44.1 kHz and 16 bits, respectively, which assured the same sound quality as that from
a CD. This was because the future goal of our research is to realize telemedicine and
automated auscultation. Two types of noises were added: a sine wave of 800 Hz and a male
voice with frequency range similar to that of the respiratory sound. The sine wave noise
simulated stationary noise, while the male voice speaking Japanese sentences simulated
non-stationary noise. To quantitatively evaluate the noise reduction results, the noises
were adjusted to have the same maximum amplitude as the respiratory sounds. Table 3
lists the parameters of STFT and OCNMF. To reduce respiratory sound distortion, the
cost function was set to the Euclidean distance (β = 2), which evaluates both positive and
negative norms equally. The effectiveness of the proposed OCNMF method was evaluated
by comparing the signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) with
the results of the conventional SCNMF method. SNR is commonly used to evaluate the
sound quality after noise reduction and SDR is commonly used to evaluate the accuracy
of noise separation [45–47]. The details of the evaluation method are described in the
following subsection.
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Table 2. Characteristics of subjects.

Target Age [years] Gender Disease

A 73 Male Asthma and chronic obstructive pulmonary disease
B 74 Male Chronic obstructive pulmonary disease
C 73 Male Asthma
D 72 Male Chronic obstructive pulmonary disease
E 72 Female Asthma
F 74 Male Asthma
G 77 Male Chronic obstructive pulmonary disease
H 87 Male Chronic obstructive pulmonary disease
I 62 Female Asthma
J 58 Female Asthma and Chronic obstructive pulmonary disease
K 65 Female Asthma
L 72 Female Asthma and chronic bronchitis
M 72 Male Chronic obstructive pulmonary disease
N 63 Male Asthma and chronic bronchitis
O 56 Male Asthma and chronic bronchitis
P 81 Female Asthma
Q 57 Female Chronic obstructive pulmonary disease
R 24 Male No disease
S 24 Male No disease
T 24 Male No disease
U 22 Male No disease

Table 3. Predetermined parameters in short-time Fourier transform (STFT), harmonic percussion
sound separation (HPSS), CNMF, SCNMF, and OCNMF.

Sampling frequency 44.1 kHz

Bit depth 16 bits

Window function in STFT Hann window

Window length in STFT 1024 points

Shift length in STFT 512 points

Input SNR 0 dB

Parameters in HPSS mt = 23

Parameters in CNMF R = 30, K = 10,
iCNMF = 200, β = 2

Parameters in SCNMF J = 15, K = 10,
iSCNMF = 200, β = 2

Parameters in OCNMF J = 15, K = 10,
iOCNMF = 200, β = 2, µ = 1.0 × 106

4.2. Evaluation Methodology

The measured biological sound signals were divided into one unit of test data and
the remaining as pre-training data based on the leave-one-out method [48]. The leave-
one-out method is a type of cross-validation that is used in cases where a large amount
of data cannot be prepared. In this experiment, it was difficult to collect a large number
of biological sounds because we used our own sensors. Hence, the leave-one-out method
was adopted.

To verify the effectiveness of noise reduction using both methods, noise was added to
the test data on the computer. The test data were adjusted such that 0 to 5 s consisted of
biological sound only, 5 to 10 s consisted of the biological sound and noise, and 10 to 15 s
consisted of noise only, for a total of 15 s. The SNR was calculated from the time signals of
the first 5 s and the last 5 s, and the SDR was calculated from the time signal of the first



Sensors 2021, 21, 7981 14 of 19

10 s. The SNR was defined using the time signal s(t) of only the biological sound and the
time signal n(t) of only noise, as shown in the following equation:

SNR = 10 log10
max(|s(t)|)
max(|n(t)|) [dB], (24)

where the operator |·| denotes the absolute value. As shown in Equation (24), the SNR can
evaluate sound quality using the amplitude ratio of the signal to noise in mixed sounds.
Note that the higher the SNR, the higher the sound quality. The SNR of the test data before
noise reduction in this experiment was set to 0 dB and the difference between this value and
the SNR after noise reduction quantitatively evaluates the effectiveness of noise reduction.
The SDR was calculated from the time signals before and after the noise reduction process;
it indicates the level of signal distortion caused by the noise reduction process. The defining
equation of SDR based on the time signal before the noise reduction process b(t) and the
time signal after the process a(t) is as follows:

SDR = 10 log10
∑S − 1

t b2(t)

∑S−1
t {b(t)− λa(t)}2 [dB], (25)

where S represents the number of samples for the time signal and S = 441 × 103 (equivalent
to 10 s). λ is a parameter that adjusts the volume before and after noise reduction and is
defined as the following equation:

λ =

√
∑S−1

t b2(t)

∑S − 1
t a2(t)

. (26)

4.3. Results and Discussion

Figure 8 shows the average values of the SNR and SDR for all subjects for the con-
ventional and proposed methods. Table A1 in Appendix A shows the SNR and SDR for
each subject in the case of sine wave noise and Table A2 shows the SNR and SDR for each
subject in the case of male voice noise. The SNR and SDR of our proposed OCNMF were
significantly higher than those of the SCNMF for both noises (p < 0.001).
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The following is a discussion of the experimental results. In the case of sine wave
noise, the SNR of the proposed OCNMF method exceeded that of the conventional SCNMF
method for almost all subjects. The reason for this result is that the noise basis matrix
contains a sine wave with a different frequency pattern from the signal basis vector owing
to the orthogonality constraint imposed on the noise basis matrix. This result suggests
that OCNMF is effective in reducing stationary noise. The SDR of OCNMF exceeded
that of SCNMF for all subjects, with a minimum difference of 0.2 dB and a maximum
difference of 5.5 dB. This was because OCNMF was able to solve the problem of SCNMF,
wherein the respiratory sound in the noise mixture signal was incorrectly contained in the
noise basis matrix. This finding indicates that the orthogonality constraint is useful for
reducing respiratory sound distortion. Likewise, the SNR of OCNMF exceeded the SNR of
SCNMF for almost all subjects in the case of male voice noise. A previous study reported
that an SNR of approximately 20 dB is sufficient for calculating the respiratory rate from
respiratory sounds [24]. The SNRs of the experimental results were mostly above 20 dB,
suggesting that our proposed method is sufficiently reliable for biological measurements.
However, the SNR of subject L was 1.34 dB lower. The reason for this result could be
that the frequency pattern of the added noise was similar to that of subject L’s respiratory
sound. The order of the parameter µ in the signal and noise similarity constraint was set
on the basis of the number of elements in the input spectrogram in the experiments. For
commercialization as a wearable healthcare device, the parameter µ should be carefully
set according to the quality of the pre-training data and applications such as the detection
of abnormal respiratory sounds. For example, in the case of pre-training with normal
respiratory sounds that are relatively easy to collect and utilize in the abnormal respiratory
sound detection system, a very high value of the parameter µ will cause the abnormal
respiratory sounds to be removed as noise. The results of SDR using OCNMF in male
voice noise exceeded those of the conventional method in almost all subjects. These results
support the premise of our proposed method that orthogonality constraints can emphasize
respiratory sounds without distortion.

Incidentally, the experimental results should be interpreted with caution, as they may
be influenced by the similarity of the subjects’ respiratory sounds. Most of the subjects
in this experiment were patients with respiratory diseases, such as asthma or COPD. It
has been reported that the spectral distribution of respiratory sounds differs for each
individual [49,50]; thus, it is necessary to further verify whether the spectral distribution
added to the signal basis matrix by pre-training is a generalized respiratory sound. Future
studies are required to analyze the effects of individual differences in respiratory sounds
by examining a large sample size, including people with other diseases.

5. Conclusions

The aging population has resulted in increasing mortality due to cardiovascular and
respiratory diseases. To detect the early symptoms of these diseases, a device that can
constantly evaluate biological sounds in a user’s daily life is required. A noise reduction
method based on SCNMF for biological sound measurement was proposed in our previous
study. This method may distort the biological sound signal because the correlation between
the basis matrices of the signal and noise was not considered. In this paper, we proposed a
novel noise reduction system based on OCNMF, in which each vector of the basis matrix
imposed the constraint of maximizing the cosine distance. The effectiveness of the proposed
method was verified by experimentally comparing the SNR and SDR with the conventional
method. The experimental results indicated that the SNR was significantly improved by
1.4 dB on average over the conventional method and the SDR by 2.1 dB on average. The
findings proved that the proposed OCNMF-based system is advantageous for biological
sound measurement in noisy environments. The proposed method can be applied to
systems that assist medical professionals in diagnosis and automatically evaluate a user’s
health condition.
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To utilize our proposed method for automatic diagnosis, it is necessary to reconstruct
the phase of the biological sound signal and improve the speed of the model. In the future,
we will extend the model to include phase estimation and attempt to improve its speed
based on the sparsity of the matrix. In addition, we will study the optimization of the
number of bases to cope with a large number of noise species.
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Appendix A

Table A1 shows the SNR and SDR for each subject in the case of sine wave noise and
Table A2 shows the SNR and SDR for each subject in the case of male voice noise.

Table A1. SNR and SDR for each subject in the case of sine wave noise.

Subject
SNR [dB] SDR [dB]

SCNMF OCNMF SCNMF OCNMF

A 20.5 20.5 15.9 18.1
B 23.4 24.3 14.8 15.0
C 22.7 24.2 11.3 16.7
D 21.1 22.8 12.4 13.2
E 22.3 25.7 13.2 18.7
F 21.8 21.6 11.5 11.9
G 20.9 22.3 11.2 12.3
H 21.2 22.4 15.7 17.2
I 21.1 24.1 11.2 14.2
J 22.6 23.2 14.1 16.7
K 22.0 24.9 12.1 14.8
L 21.4 22.3 11.5 13.9
M 23.2 24.1 12.3 12.6
N 20.1 21.2 14.2 17.1
O 20.3 21.5 14.8 15.7
P 20.6 22.4 12.0 13.4
Q 21.2 24.3 11.9 14.8
R 21.4 22.6 13.1 16.2
S 21.2 22.9 14.1 17.1
T 20.7 22.1 12.6 15.3
U 21.3 21.4 13.2 14.2
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Table A2. SNR and SDR for each subject in the case of male voice noise.

Subject
SNR [dB] SDR [dB]

SCNMF OCNMF SCNMF OCNMF

A 19.6 20.8 13.8 16.0
B 21.7 22.4 14.1 13.3
C 21.5 23.5 9.0 16.1
D 18.9 23.7 10.2 11.6
E 20.9 22.9 13.9 18.5
F 20.4 20.9 9.1 12.4
G 21.6 22.4 10.2 10.1
H 21.2 23.5 15.1 17.7
I 21.3 22.8 10.6 14.0
J 22.5 22.5 12.7 14.7
K 22.3 23.4 11.2 13.4
L 22.5 24.1 11.7 12.4
M 22.3 21.0 10.4 12.6
N 21.2 20.8 13.1 14.7
O 18.6 20.7 13.5 15.8
P 19.4 22.9 11.0 12.0
Q 20.6 21.5 12.0 13.0
R 20.1 22.0 13.2 16.9
S 19.8 22.3 14.3 17.1
T 22.0 23.3 11.5 12.8
U 20.6 20.4 13.8 13.1
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