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ABSTRACT Objective: Hepatocellular  carcinoma  (HCC)  is  a  common  malignancy  associated  with  high  morbidity  and  mortality  rates

worldwide. Early diagnosis plays an important role in the improvement of HCC prognosis.

Methods: In this  study,  we conducted a comprehensive analysis  of  HCC DNA methylation and gene expression datasets  in The

Cancer Genome Atlas (TCGA), to identify a prognostic signature for HCC diagnosis and survival prediction. First, we identified

differential methylation CpG (dmCpG) sites in HCC samples and compared them with those in adjacent normal liver tissues; this

was  followed by  univariate  analysis  and Sure  Independence  Screening  (SIS)  in  the  training  set.  The  robustness  of  the  identified

prognostic signature was evaluated using the testing set. To explore the biological processes involved in HCC progression, we also

performed functional enrichment analysis for overlapping genes between genes containing dmCpG sites (DMGs) and differential

expression genes (DEGs) in HCC patients, using data from the Database for Annotation, Visualization, and Integrated Discovery

(DAVID).

Results: As a result, we identified five CpG sites that were significantly associated with HCC survival through univariate analysis

and SIS. Univariate analysis of clinical characteristics identified age and risk factors (including alcohol consumption and smoking)

as  independent  factors  that  indicated  HCC  survival.  Multivariate  analysis  indicated  that  the  integrated  prognostic  signature

(weighted combination of the five CpG sites) that took age and risk factors into consideration resulted in more accurate survival

prediction.

Conclusions: This study provides a novel signature for predicting HCC survival,  and should be helpful for early HCC diagnosis

and personalized treatment.
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Introduction

Hepatocellular  carcinoma (HCC) is  the third cause of  death

from  cancer,  and  one  of  the  few  cancers  for  which  upward

trends  are  observed  in  both  sexes  worldwide1.  Several  risk

factors  have  been  identified  to  induce  HCC,  including

chronic infections with hepatitis B virus (HBV) and hepatitis

C  virus  (HCV),  alcohol  abuse,  diabetes,  and  metabolic

syndrome2,3.  Clinical  statistical  analysis  showed  that  early-

stage HCC patients have a relatively favorable prognosis, with

a  5-year  survival  rate  of  75%4.  However,  after  resection,

recurrence  would  be  observed  in  half  of  these  patients,

causing  the  5-year  survival  rate  to  decrease  to  30%.  In

essence,  hepatocarcinogenesis  is  essentially  a  slow  process,

accompanied  by  genomic  and  epigenetic  changes  that

produce  cellular  intermediates;  this  eventually  evolves  into

hepatocellular  carcinoma5.  Recent  studies  have  explored

genomic  alterations  occurring  during  HCC  using  high-

throughput analysis of gene microarrays, and have identified

frequently  mutated  genes  as  molecular  markers  for  tumor

detection6-8.  However,  the  knowledge  regarding  the

association  between  the  genomic  phenotype  and  clinical

outcome of HCC prediction remains extremely limited.

Genomic  DNA  has  relatively  few  CpG  dinucleotides

(5%–10%) in which a cytosine nucleotide is followed by a

guanine nucleotide in the linear sequence of bases along its 5'

→ 3' direction. In addition, methylating the cytosine of CpG

di-nucleotides within a gene can cause heritable genomic

changes  without  altering  the  DNA  sequence,  which  is

an  important  epigenetic  pattern9,10.  Moreover,  DNA
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hypermethylation in CpG sites can lead to the repression of

tumor-suppressor genes and inactivation of tumor-repair

genes, resulting in a loss of tumor suppression and increased

genetic damage11,12. Recent reports have indicated that DNA

hypermethylation in promoter CpG islands was related to

epidemiological  characteristics,  histological  features,

precancerous lesions,  molecular characteristics,  and HCC

prognosis, in RASSF1A, p16, p53, DLC-1, and GSTP113-17.

However, further molecular investigations are still needed to

obtain more information for predicting recurrence and HCC

patient classification.

In the present study, DNA methylation profiles of HCC

patients  (n  =  317)  in  The Cancer  Genome Atlas  (TCGA)

database  were  analyzed,  to  determine  the  relationship

between  the  aberrant  methylation  of  cancer-specific

methylation  sites  and  clinicopathologic  features.  Five

differential  methylation  CpG  (dmCpG)  sites  that  were

associated with HCC prognosis were distinctly identified by a

combination  of  univariate  Cox  analysis  and  Sure

Independence Screening (SIS). Furthermore, the integration

of  specific  clinical  features  with  the  prognostic  signature

(weighted combination of the five dmCpG sites) resulted in a

more accurate prediction of survival.  This study provides

more insights about HCC survival prediction.

Material and methods

HCC dataset preprocessing

We  downloaded  HCC  datasets  from  TCGA  containing

genome-wide  scale  DNA  methylation  and  gene  expression

profiling  data  for  317  samples.  Fifty  patients  had  DNA

methylation  data  in  both  HCC  tissues  and  adjacent  normal

tissues.  For  DNA  methylation  datasets,  we  filtered  out  CpG

sites  with  a  detection P value  >  0.05  in  more  than  75%

samples.  Samples  were  also  excluded  from  analysis  if  more

than 75% CpG sites were unreliably detected (i.e. detection P

value < 1 × 10–5).  Then, the quantile normalization method

was  applied  for  correcting  background  noises  before

conducting  a  comparison  analysis  between  the  rest  of  the

normal and HCC samples. The dmCpG sites in HCC samples

that  were  compared  with  those  in  adjacent  normal  tissues

were  identified via the  Illumina  Methylation  Analyzer

(IMA)18 bioconductor  package,  which  has  been  specifically

designed for exploratory analysis and summarization of site-

and  region-level  methylation  changes  based  on  the

Illumina  Infinium  HumanMethylation450  BeadChip,  using

the  criteria:  absolute  delta  beta  >  0.3  and  adjusted P

value < 0.001.

For  gene  expression  datasets,  we  first  conducted  the

quartile normalization of raw read count data, followed by

logarithmic transformation, to obtain normal distribution

expression values. Differential expression genes (DEGs) in

HCC samples  that  were compared with those in adjacent

normal  tissues  were  obtained  through  the  DESeq219

bioconductor package, with a thresholds of absolute log2-

based fold change > 1 and adjusted P value < 0.01.

Prognostic signature construction

To  construct  a  methylation  profile-based  prognostic

signature  for  HCC  survival  prediction,  we  conducted  a

combination analysis of univariate and SIS. First, the samples

were randomly divided into two groups, i.e. training set (158

samples)  and  testing  set  (159  samples);  their

clinicopathologic characteristics have been shown in Table 1.

Second,  univariate  survival  analysis  was  conducted  for

dmCpG  sites  in  the  training  set  to  identify  CpG  sites  that

were  significantly  associated  with  HCC survival,  which  have

been abbreviated as SurvCG hereafter. Thirdly, we performed

SIS,  which  is  a  variable  selection  technique  for  model

selection  and  estimation  in  high-dimensional  statistical

models,  for  SurvCG  identification  using  LASSO  regression

analysis via the  SIS  R  package,  to  identify  a  reliable  CpG

combination  for  HCC  survival  prediction.  The  prognostic

signature  is  a  weighted  combination  of  SIS  identified

CpG sites.

Multivariate survival analysis

Clinicopathologic features might also prove to be important

indicators  for  HCC survival.  We  have  studied  four  features,

i.e.  age,  sex,  risk  factors  (including  alcohol  consumption,

smoking,  and  HBV  infection),  and  stage,  to  analyze  their

associations  with  HCC  survival  in  the  training  and  testing

sets.  Prognostic  score,  which  was  based  on  the  prognostic

signature  for  every  sample,  was  calculated  through  the

distinct values for every CpG site included in the prognostic

signature,  and  its  association  with  HCC  survival  was

evaluated through univariate survival analysis in the training

and  testing  sets.  Besides,  we  also  conducted  multivariate

survival analysis for clinicopathologic features and prognostic

scores to obtain the most robust combination of features for

HCC survival prediction.

Functional enrichment analysis

We intersected DEGs in HCC patients with genes containing

dmCpG  sites  (DMGs),  to  obtain  genes  whose  dysregulation

might  be  affected  by  aberrant  DNA  methylation.  The
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functions of the involved overlapping genes should represent

biological processes involved in HCC progression. Hence, we

conducted  a  functional  enrichment  analysis  for  overlapping

genes  using  the  Database  for  Annotation,  Visualization  and

Integrated Discovery (DAVID)20. Gene Ontology (GO) terms

and  KEGG  pathways  with P values  <  0.05  were  identified,

and  biological  process  (BP)  terms  were  further  clustered

through the Enrichment Map Plugin of Cytoscape21,22.

Results

Differential methylation analysis

Preprocessing the DNA methylation dataset retained 479,036

of 485,577 CpG sites  and samples for the following analysis.

Figure  1A illustrated  the  average  beta  value  for  every  CpG

site in adjacent normal tissues (X-axis) and HCC samples (Y-

axis).  Differential  methylation  analysis  identified  10,803

dmCpG  sites  in  HCC  samples,  as  compared  with  those  in

adjacent normal tissues;  of  which 9,373 and 1,430 sites were

hypomethylation  and  hypermethylation  sites,  respectively.

Figure 1B showed the heatmap of beta values of dmCpG sites

(row)  in  HCC  and  adjacent  normal  samples  (column),  in

which  green  and  red  colors  represent  low  and  high

methylation  values,  respectively.  We  then  explored  the

location-wise  distribution  of  hypermethylation  and

hypomethylation  CpG  sites  relative  to  the  CpG  island  and

gene.  As  a  result,  hypermethylation  CpG  sites  tend  to  be

located  in  a  CpG  island  (80.13%)  and  regulatory  elements,

such  as  TSS200  (200bp  upstream/downstream  of

transcription  start  site)  and  TSS1500  (Figure  1C).

Hypomethylated CpG sites tend to be located in the OpenSea

(70.15%,  i.e.  area  far  away  from  CpG  island,  and  usually

4,000 bp or more) and gene body area (62.09%) (Figure 1D).

This was consistent with the fact  that the cancer methylome

is  characterized  by  hypermethylation  in  CpG  islands  of  the

promoter region and hypomethylation in diffuse CpG sites.

Prognostic signature

Univariate  analysis  showed  that  100  CpG  sites  were

significantly  associated  with  HCC  survival.  SIS  identified  5

CpG  sites,  whose  combination  could  robustly  predict  HCC

survival. Figure  2A illustrated  the  beta  value  in  adjacent

normal tissues and HCC samples and regression coefficients

of  the  5  CpG  sites.  Four  of  the  five  CpG  sites  were

hypermethylated  in  HCC  samples  compared  to  those  in

adjacent  normal  tissues.  Prognostic  score  =  1.10  ×

cg05971966 – 0.61 × cg08833577 + 1.23 × cg14826425 + 1.92 ×

cg20980783  +  1.17  ×  cg24085930.  Kaplan-Meier  plots  were

prepared  and  compared  using  the  log-rank  test.  Hence,  we

found  that  a  higher  prognostic  score  is  significantly

associated with poor HCC survival in the training (P = 3.60 ×

10–4)  and  testing  sets  (P =  7.62  ×  10–3)  (Figure  2B).  To

evaluate  the  robustness  of  our  prognostic  signature  further,

we  assigned  the  samples  in  the  testing  set  into  four  groups

with  the  same  sample  size  in  an  increasing  order  of

prognostic  score.  It  was  found  that  HCC  survival  became

poorer  with  an  increase  in  the  prognostic  score  (Figure  2C,

P = 0.017).

Table 1   Clinical characteristics of samples used as training and testing sets.

Characteristics Training set Testing set P

Censor rate 63.9% 70.1% NA

Age, median years (range) 65.4 (17.9–86.0) 59.5 (16.1–84.8) NA

Gender, n (%) 0.329

　Male 96 (60.8) 106 (73.0)

　Female 62 (39.2) 53 (27.0)

Risk factor, n (%) 0.290

　Yes 30 (19.0) 39 (24.5)

　No 128 (81.0) 120 (75.5)

Stage, n (%) 0.480

　I, II 120 (75.9) 127 (79.9)

　III, IV 38 (24.1) 32 (20.1)

NA represents not available, P value was obtained through Chi-square test.
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Multivariate survival analysis

As  shown  in Table  2,  age  (>  60  and  <  60)  and  risk  factors

(with  and  without)  were  identified  as  independent  survival

factors in training and testing sets. Combining the prognostic

score and all the four clinicopathologic features could further

separate samples with better survival from those with poorer

survival  in  training  (P =  0.023)  and  testing  sets  (P =  0.042)

(Figure  3).  Multivariate  survival  analysis  indicates  that  a

combination of prognostic scores and ages could provide the

most robust prediction method for HCC survival.

Supplementary  Figure  S1  showed  the  prediction

1.0

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1.0
Average beta of adjacent samples

Island

Island

S_Shore

S_Shore

S_Shelf

S_Shelf

N_Shelf

N_Shelf

OpenSea

N_Shore

N_Shore

Av
er

ag
e 

be
ta

 o
f H

CC
 s

am
pl

es

TSS200

TSS200

1stExon

1stExon

5′UTR

5′UTR

3′UTR

3′UTR

Body

TSS1500

TSS1500

Body

OpenSea

0.8
0.6

A

C

D

B

0.4
0.2

 
Figure 1   Differential methylation analysis. (A) Average beta value of all CpG sites in HCC (Y-axis) and adjacent normal samples (X-axis). (B)

Heatmap of beta values of dmCpG sites in HCC patients and their corresponding adjacent normal samples. Rows represent dmCpG sites

and  columns  represent  samples;  green  and  red  colors  represent  the  low  and  high  beta  values,  respectively.  (C)  Distribution  of

hypermethylation CpG site locations relative to the gene (left panel) and CpG island (right panel). (D) Distribution of hypomethylation CpG

site locations relative to the gene (left panel) and CpG island (right panel).
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performance  of  prognostic  score  in  the  testing  set  after

adjustment for age (A), stage (B), gender (C), and risk factors

(D), respectively, from which we conclude that the prognosis

score could effectively predict HCC prognosis independent of

the main clinicopathologic features. Additionally, receiver

operating characteristic curve (ROC) analysis was conducted

to compare differences in predicting HCC prognosis using a

combination  of  the  prognostic  score  and  different

clinicopathologic  features.  As  shown  in  Supplementary

Figure  S2,  a  combination  of  prognostic  score  and  age
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Figure 2   Prognostic signature and Kaplan-Meier survival analysis. (A) Beta value (left panel) and the regression coefficients (right panel) of

the five CpG sites, identified through a combination of univariate survival analysis and SIS. Blue and red bars at the top of the heatmap (left

panel)  represent adjacent normal and HCC samples.  (B) Kaplan-Meier plot of samples with lower (green line) and higher (red line)

prognostic scores (divided by the median prognostic score) in the training set (left panel) and testing set (right panel). Plus signs are

censored values. (C) Kaplan-Meier plot of samples with different prognostic scores in the testing set. Prognostic scores were sorted in the

decreasing order. The red line represents the first quarter samples; blue line represents the second quarter samples; green line represents

the third quarter samples and black line represents the last quarter samples. Plus signs are censored values.
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distinctly outperformed other combinations, as well as the

prognostic score alone.

Functional enrichment analysis

A  total  of  2,538  DEGs  were  identified  in  HCC  samples

compared  with  adjacent  normal  tissues.  The  dmCpG  sites

were  found  to  be  located  in  3,618  genes,  i.e.  DMGs.  We

identified 580 overlaps between DEGs and DMGs, and those

overlapping  genes  were  significantly  associated  with

biological processes and pathways of cancer progression and

neurodegenerative  diseases. Figure  4 top-right  panel  shows

the cluster analysis of significantly enriched BP terms. A main

cluster  that  was  associated  with  extracellular  matrix  and

vasculature  development  was  obtained. Figure  4 bottom-

right  panel  shows  the  significantly  enriched  pathways  with

gene  number  shown.  Strikingly,  we  found  a  significantly

enrichment  of  nervous  system  disease-related  pathways,

which  indicated  the  potential  associations  between  cancer

and  nervous  system  diseases.  Consistent  with  this  result,

many  studies  have  previously  proven  associations  between

cancer and nervous system disorders23,24.

Discussion

The  value  of  clinical  characteristics  and  initial  performance

status  as  prognostic  factors  for  HCC  survival  has  long  been

recognized25,26.  However,  due  to  the  great  individual

differences  and  complicated  influential  factors,  the

traditional  analytic  strategies  are  often  unable  to  predict  the

prognosis  of  HCC  patients.  DNA  methylation  is  a  type  of

covalent  chemical  modification  and  a  stable  (replication-

coupled)  epigenetic  marker.  It  can  be  detected  in  biological

fluids  and  fresh-frozen  and  paraffin-embedded  tissue

samples,  by  methylome  profiling  in  the  clinical  setting27.

Thus,  the  high-throughput  detection  of  genetic  alterations

Table 2   Cox regression analysis of clinical characteristics and risk scores.

Characteristics

Training set Testing set

Univariable Univariable Univariable Univariable

P (HR, 95% CI) P (HR, 95% CI) P (HR, 95% CI) P (HR, 95% CI)

Risk score 0.00036 (0.74, 0.56–0.89) 0.000135 (0.51, 0.46–0.76) 0.00762 (0.81, 0.68–0.87) 0.00504 (0.79, 0.69–0.85)

Age 0.00192 (0.86, 0.75–0.89) 3.94e–05 (0.45, 0.41–0.69) 0.00783 (0.82, 0.71–0.90) 0.0015 (0.75, 0.62–0.79)

Gender 0.0955 (0.91, 0.85–0.96) 0.000653 (0.42, 0.32–0.50) 0.000202 (0.40, 0.29–0.50) 0.00645 (0.81, 0.75–0.86)

Risk factor 0.0268 (0.82, 0.75–0.90) 6.79e–05 (0.51, 0.43–0.60) 0.0723 (0.89, 0.75–0.92) 0.00467 (0.73, 0.65–0.78)

Stage 0.0777 (0.93, 0.82–0.96) 0.000622 (0.53, 0.42–0.63) 0.0724 (0.88, 0.78–0.92) 0.0107 (0.74, 0.68–0.79)

CI represents confidence interval.
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Figure 3   Kaplan-Meier plot of multivariate survival analysis of prognostic score and clinicopathologic features. (A) Kaplan-Meier plot of

samples with lower (green line) and higher (red line) combined scores (divided by the median combined score) in the training set. Plus signs

are censored values. (B) Kaplan-Meier plot of samples with lower (green line) and higher (red line) combined score (divided by the median

combined score) in the testing set. Plus signs are censored values.
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has  been  widely  used  in  the  early  diagnosis,  individual

treatment,  and  prognosis  prediction  of  various  cancers28.

CpG  island  methylation,  a  common  molecular  tumor

marker, has already been confirmed as a prognostic indicator

in  lung,  prostate,  and  esophageal  cancers,  and  acute

leukemia12.

Aberrant DNA methylation changes in CpG islands as well

as hypermethylation and diffuse genomic hypomethylation

are common phenomena in multiple human cancers,  and

there  is  a  good  chance  that  these  two  changes  are

mechanically  linked29,30 .  In  this  study,  differential

methylation  CpG  sites  (dmCpG)  in  HCC  samples  were

compared  to  those  in  adjacent  normal  tissues  and  were

screened  using  DNA  methylation  microarrays  in  TCGA

samples.  The probes  have  been annotated based on their

relationship  with  the  nearest  gene  and  the  probes  might

belong to any of the following genomic elements: TSS1500,

TSS200, 5’UTR, 1st  exon, gene body, 3’UTR, or intergenic

regions. Genomic regions close to the transcription start site

showed  a  relatively  high  level  of  methylation  (TSS1500,

TSS200 ,  5 ’UTR  and  1 s t exon) ,  and  80%  of  the

hypermethylation sites were located in the CpG island, which

indicated  that  CpG  islands  in  promoters  tend  to  be

hypermethylated  in  HCC  pat ients .  Most  of  the

hypomethylation  dmCpG  sites  were  located  in  regions

further away from the transcription start site (gene body and
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Figure 4   Cross-analysis of DEGs and DMGs. A total of 580 overlaps were identified between DEGs and DMGs (left panel). The top-right

panel shows the cluster analysis of significantly enriched BP terms of overlapping genes. Nodes are BP terms and lines are interactions

among them. The larger node represents more genes contained in the terms and darker color i.e. smaller P value is more significant. Line

thickness represents the number of overlapping genes between two terms. The bottom-right panel represents the significantly enriched

KEGG pathways of overlapping genes. The gene number involved in each pathway is also shown in the pie chart.
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3’UTR) and CpG islands (OpenSea). This is consistent with

the  reported associations  between DNA methylation and

cancer development.

Promoter CpG island hypermethylation has been reported

to occur in chronic liver diseases31,32, whereas genome-wide

hypomethylation takes place at the HCC stage33. As shown in

the previous study, p16 hypermethylation in HCC was found

to be more frequently caused by cirrhotic than non-cirrhotic

inducements, suggesting that the epigenetic modulations of

HCC  may  be  influenced  by  the  disease  state  of  the

background liver34.  However,  the  underlying  mechanism

between CpG island hypermethylation and the background

liver condition remains unclear. The GO term and KEGG

analysis results of overlapping genes between DMG and DEG

in HCC samples were compared to those in para-carcinoma

tissues,  and  they  indicated  a  significant  enrichment  of

molecule activity, extracellular matrix formation, cell-matrix

and cell-cell interactions, cell secretion, cell adhesion, and

vessel  morphogenesis,  suggesting  the  main  signal

transduction pathway regulated by DNA methylation during

the development of HCC. Tumor cells need to grow in the

appropriate  target  organ  microenvironment,  and  cancer

progression depends on the interplay between transformed

cells  and  their  microenvironment,  particularly  the

surrounding extracellular matrix (ECM)35. In human livers,

fibro genes underlie the development of HCC in at least 90%

of cases36, and the overexpression of matrix components and

MMP2  activity  were  strikingly  associated  in  HCCs37.

Microenvironment of the background liver is undoubtedly a

decisive  factor  that  influences  tumor  recurrence  and

metastasis38.

Considering all these factors, we identified five dmCpG

sites that exhibited a significant association between their

aberrant  methylation  and  patient  prognosis  using  a

combination of univariate analysis and sure independence

screening. A prognostic signature of the combination of the

five dmCpG sites was obtained and the prognostic score was

negatively  correlated  with  HCC prognosis.  Furthermore,

multivariate  analysis  revealed  that  the  prognostic  score

showed  significant  relevance  together  with  clinical

characteristics such as age and risk factors, which affected the

overall survival of HCC patients. It has been proven that CpG

island  hypermethylation  in  HCC  tumors  was  closely

associated with the condition of the background liver and

sex39. In addition, our study indicates that the combination

of age, risk factors, and the prognostic score provides a more

robust prediction for HCC prognosis than any one of these

alone.

Conclusions

In  this  study,  we  performed  a  comprehensive  analysis  of

DNA methylation and gene expression datasets of HCC data

obtained from TCGA and identified an important prognostic

signature. This should be helpful for HCC survival prediction

and personalized treatment.
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Figure S1   The prediction performance of prognostic score in the testing set after adjustment for age (A), stage (B), gender (C), and risk

factors (D), respectively.
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Figure S2   Receiver operating characteristic curve (ROC) analysis

was  conducted  to  compare  differences  inpredicting  HCC

prognosis  using  a  combination  of  the  prognostic  score  and

different clinicopathologic features.

434 Fang et al. CpG sites for hepatocellular carcinoma survival prediction


