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Abstract

We developed a generalized framework for multiplexed resequencing of targeted regions of the 

human genome on the Illumina Genome Analyzer using degenerate indexed DNA sequence 

barcodes ligated to fragmented DNA prior to sequencing. Using this method, the DNA of multiple 

HapMap individuals was simultaneously sequenced at several ENCODE (ENCyclopedia of DNA 

Elements) regions. We then evaluated the use of Bayes factors for discovering and genotyping 

polymorphisms from aligned sequenced reads. If we required that predicted polymorphisms be 

either previously identified by dbSNP or be visually evident upon reinspection of archived 

ENCODE traces, we observed a false-positive rate of 11.3% using strict thresholds (Ks>1,000) for 

predicting variants and 69.6% for lax thresholds (Ks>10). Conversely, false-negative rates ranged 

from 10.8% to 90.8%, with those at stricter cut-offs occurring at lower coverage (< 10 aligned 

reads). These results suggest that >90% of genetic variants are discoverable using multiplexed 

sequencing provided sufficient coverage at the polymorphic base.

Introduction

Genome-wide association (GWA), candidate gene, and linkage studies have identified 

thousands of moderately sized genomic regions that are associated with human disease but 

where comprehensive resequencing is needed to identify the genetic variant causing the 

association. In particular, GWA studies have identified hundreds of disease-associated 

haplotypes, typically spanning 5 to 100kb1–3. A logical next step is to identify and 

resequence all genetic variants within the associated haplotype in order to identify the 
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functional variants among the many non-functional evolutionarily linked neighboring 

polymorphisms. Next-generation DNA sequencing technologies are in principle well-suited 

to this task due to their capabilities for high-throughput low-cost sequencing. While these 

technologies offer massive sequencing capacity, it is still difficult, time-consuming, and/or 

expensive to resequence large numbers of samples across moderately sized genomic regions 

(5kb-1Mb).

Simultaneous resequencing of large numbers of individuals for a targeted region is possible 

by bar-coding or indexing the reads from each individual with a short identifying 

oligonucleotide4–7. While indexing has the obvious benefit of multiplexing samples within 

a run, DNA indexing offers two key additional advantages: direct measure of base-by-base 

error rate and reduction of array-to-array or day-to-day variability. Previous pioneering 

efforts to develop DNA indexing have shown considerable promise, however adoption is 

still in its infancy and considerable challenges remain, including the development of 

practical and cost-effective approaches for short-read platforms. Beyond these experimental 

challenges, there exist few analytical frameworks that are characterized for discovering and 

genotyping genetic variants across a targeted interval using multiplexed short-read sequence 

data from multiple individuals.

In this manuscript we report an experimental and analytical approach for simultaneous 

sequencing of multiple individuals using DNA indexes on the Illumina Genome Analyzer 

(GA). We use a degenerate six-base index to evaluate optimal index size and we assess 

performance of the method by resequencing HapMap individuals across ENCODE regions 

that have previously been capillary sequenced. We develop a Bayesian analytical framework 

that leverages the inherent ability of indexing to measure error and to reflect variability in 

sequencing coverage.

Results

Experimental Design

Our experimental protocol for indexing is summarized in figure 1 and further detailed in the 

supplementary methods. We amplified multiple 5kb regions (supplementary table 1 and 2) 

by long-range PCR, for 46 individuals genotyped by the ENCODE projects1,8. Amplicons 

were equimolar pooled for each individual, digested, blunt end-repaired, flanked by an 

adenosine overhang, and ligated to one of the 46 indexed adapters (supplementary table 3 

and 4). Following ligation, samples from all individuals were pooled into a single sample 

(referred to as an indexed library), purified, enriched by PCR, and sequenced on the Illumina 

GA on a single lane of an 8 lane flow-cell. We prepared two libraries, Library A, consisting 

of 10 5kb amplicons covering 50 kb, and Library B, consisting of 14 5kb amplicons 

covering 70kb (supplementary table 2). Library A contains both regions that were previously 

capillary sequenced and regions that were not sequenced within the ENCODE project, 

whereas Library B contains only regions previously sequenced within the ENCODE project.
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Index Design

We used a six-base design, which allows us to control, tolerate, and measure error during 

base-calling of the index. The six-base index provides substantial degeneracy: only 46 of the 

4096 possible nucleotide combinations were utilized (see supplementary table 4 for 

indexes). Moreover, indexes were chosen so that 1, and in some cases 2, sequencing errors 

could be tolerated without an index being incorrectly identified as being a different valid 

index. While not implemented in this study, utilizing each of the four nucleotides within an 

index may provide for higher accuracy base-calling since each base would have to be 

correctly called at least once within a sequenced read.

Using this design strategy, 48 of the 4096 possible 6-mers were synthesized and used as 

indexes for multiplexed sequencing. Perfect alignment of any index should occur at ~0.1% 

by chance. The 6th base of the index was an obligate thymidine necessary for ligation of the 

adenosine overhang. The first and fifth bases were identical to detect biases during 

normalization and calculation of the deconvolution matrix. In practice, we used 46 of the 48 

indexes to allow for plate layouts that included positive and negative controls.

Index Performance

Typically, 3–10 million short-read (32 or 42 base) sequences were generated for each lane of 

an 8-lane flow cell, though early sequencing runs exhibited greater variability in the number 

of sequenced reads. After filtering using Illumina analysis pipeline defaults, approximately 

45–50% of the reads remained. We observed a large spread in the number of counts per 

index (figure 2). Although a systematic reason for the initial spread in index performance 

was not identified, weaknesses in index design were obvious in some cases. For example, 

‘AAAAAT’ which was frequently read as ‘AAAAAAT’, perhaps due to an oligonucleotide 

synthesis bias. A few indexes that were not well represented were complementary to other 

sections of the adapter sequence, possibly hindering adapter formation. Resequencing the 

same library gave nearly the identical distribution of reads regardless of run performance, 

indicating that the distribution is likely not due to a post-PCR enrichment step. Furthermore, 

recreating libraries and sequencing different individuals in additional sequencing runs did 

not substantially alter performance for indexes that were substantially under-represented or 

over-represented. Of the 46 initial indexes, 19 indexes varied by less than a factor of 5 

between the most and least common index and 13 indexes varying by less than a factor of 2. 

While some of the initial index variability was consistent between sequencing runs, 

retrospective analysis of gel images suggests that a portion of the index variance may be due 

to subtle differences in DNAse digestion of pooled amplicons, whereby the number of 

available ligation targets is higher for samples that are digested with higher efficiency. In 

runs subsequent to these initial libraries (data not shown), we observed that using gel-images 

of the PCR-enriched products or qPCR, to quantify the ligated adapter prior to pooling, 

reduced index variability such that the best covered index was observed 5-fold more 

frequently than the least covered index. By comparison the same ratio was 11-fold without 

quantification of the ligated primers prior to pooling. While future studies may improve 

index variability still further, it may be effectively managed without substantially affecting 

workflow, by requiring higher average coverage within a study, by sequencing on two lanes 

with different indexes, or by sequestering samples with deficient coverage for later runs.
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Index-level coverage

As shown for a subset of library A, coverage across individual 5kb amplicons was even and 

generally free of large gaps (figure 3). We did observe base-to-base variability in the 

coverage, as expected from alignment of short reads. Both between amplicons and within an 

amplicon, some deviation from the expected Poisson distribution was observed. Clearly 

amplicon-to-amplicon variability contributes to some extent to the departure from the 

expected Poisson distribution. For a given index, we observed approximately a 1.5 to 2.0 

fold difference between the amplicons with the most and fewest number of reads. Inspecting 

gel images for selected amplicons confirmed that these observed differences within regions 

were largely due to uneven pooling of amplicons. The observed amplicon-to-amplicon 

variability is likely to be due to the fact that we utilized median concentrations across the 

plate when pooling amplicons for an individual, rather than individually pipetting each 

amplicon based on its specific concentration.

Comparing a given amplicon across indexes (i.e. across individuals), there is clearly some 

base-level correlation in coverage based on the positions of spikes and valleys within the 

coverage plots (figure 3). Within a single amplicon there was also departure from a Poisson 

distribution, evident from the fact that the same bases had little or no coverage across 

individuals. Indeed, there is consistency between individuals with regard to bases that are 

under or over-represented. The rank correlation coefficient between indexes at a given base 

averaged 0.408, suggesting that local sequence (or base order) accounts for slightly less than 

half of the base-to-base variability in coverage.

Error reduction/Alignment strategy

Depending on alignment rules, aligning a short read to a reference sequence reduces the 

sequencing error rate at the cost of limiting discovery. We aligned 35-base pair sequences, 

allowing for only a single error. We are thus essentially limited to identifying single base 

substitutions in an aligned read, while limiting error to 1/35 or 2.8% as explained below. We 

further required that two stretches of 11 or more consecutive bases match the reference 

sequence or that the read have at least one stretch of 15 consecutive matches to the reference 

sequence. In both cases, our aligner required that the final 2 bases match the reference 

sequence to insure we did not over-align an error at the final base. The rules for alignment 

were largely chosen to control error, and would falsely align a randomly generated sequence 

in less than 0.1% of alignments in a 100kb region. Given our tolerance for 1 error in 

alignment, we expect a maximum per-base error rate of 2-3% (1 error in 35bases ≈ 2.8%).

Alignment of short-reads has advantages. For example, one would expect that we would 

have greater difficulty detecting closely neighboring single nucleotide polymorphisms 

(SNPs) since we mostly limit our aligner to 1 non-consecutive mismatch. However, the 

short-reads stochastically overlap and these various types of neighboring genetic variants are 

observed by alignment of multiple sequences not spanning both variants.

Polymorphism discovery

Polymorphism discovery is a primary goal for resequencing an association interval for a 

GWA study, particularly under the common variant hypothesis. Indeed, in some cases one 
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may only wish to know which bases are polymorphic for custom-genotyping on a separate 

platform.

We first provide an intuitive explanation of our analysis approach for polymorphism 

discovery, noting that detailed equations are provided in the methods. We utilized a Bayes 

factors to compare the probability that the distribution of mismatched bases arises from 

sequencing error to the probability that the distribution of mismatches arises from diploid 

polymorphism. For example, if 20% of reads for a given base were non-concordant with the 

reference sequence across all individuals, and the non-concordant bases were due to the 

presence of a SNP, one would expect each individual to be homozygous (0% or 100% 

concordance with reference) or heterozygous (concordance split 50/50). On the other hand, 

if the 20% non-concordant bases were due to sequencing error, then the number of non-

concordant bases for each individual would follow a binomial distribution around 20% (e.g. 

person 1~20.5%, person 2~19.3%, person 3~20.7%, etc). As described below, the error 

estimates required to calculate the probability of a genetic variant being a true variant are 

readily obtainable when individuals are indexed and multiplex-sequenced. Further, indexed 

and multiplexed sequencing removes run-to-run biases which would confound these 

estimates if all aspects of experimental design were not properly randomized. Bayes factors 

are particularly effective for the uneven coverage inherent to short read sequencing, and 

provide a mechanism to control false positives in light of more or less evidence.

Sequenced regions were analyzed base-by-base for all individuals by calculating a 

polymorphism discovery Bayes factor (defined as Ks in equation 2). An example plot of Ks 

across each base (of 50kb) is shown in figure 4 for Library A; a similar analysis was 

conducted for Library B (supplemental figure 1).

We next evaluated false-positive and false negative rates to assess our experimental and 

analytical framework for variant discovery (table 1 for Library B and figure 5 for both 

Library A and B). False positives are particularly difficult to quantify since not all 

polymorphic sites are known, even in previously resequenced regions. In our analysis, to be 

defined as a false positive, a variant must not exactly match the location of variants within 

dbSNP, and must not have trace sequencing data indicating a previously missed variant. In 

some cases trace sequence data was not available or unreliable. Consequently, the false 

positive rate is expected to be an upper estimate since the exact position must be validated as 

polymorphic by an existing database. False negative rates were determined by calculating if 

a base known to be polymorphic in our library of HapMap individuals reached previously 

specified Ks thresholds. This calculation of false-negative rates does have some bias, since it 

does not take into account coverage of the polymorphic base. Figure 5 plots the dependence 

of Ks on coverage.

As expected, setting a higher threshold for Ks gives fewer false positives. In table 1 for 

Library A, as Ks increases from 10 to 1,000 the false positive rate decreases from 69.6% to 

11.3%. Likewise, with fixed coverage we observe the false negative rate increasing from 

10.8% to 90.8% as Ks increases from 10 to 1,000. A more detailed discussion of false-

negative and false-positive rates is provided in the supplementary methods. Referring to 

figure 5, all the false negatives occur when the cumulative coverage of individuals with the 
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rarer variant is less than 10 reads. Further highlighting the dependence of false-negatives on 

coverage, all polymorphisms that were covered by 20+ reads (summed across individuals 

known to differ from the reference) have a Ks >1,000. Overall, we observed that 90% of 

variants were detectable, though designing for >20 reads will be essential for controlling 

false negatives.

Through the course of analyzing bases with a Ks > 100 for false positives, using NCBI 

archived ENCODE traces, new SNPs were discovered that were evident in visual 

reinspection of capillary traces, but that had not been annotated in dbSNP (figure 4f–h). 

These examples demonstrate that index-based resequencing can identify novel variants even 

in heavily sequenced and heavily annotated regions. Within Library B, it is intriguing to 

note that two variants with a Ks>100 were not SNPs but actually insertions (rs11279266 is a 

1bp insertion and rs10555419 is a 6bp insertion). Thus it is possible to identify genetic 

variants explicitly not allowed within the alignment scheme.

Genotyping individuals at known polymorphisms

Since false negatives are clearly tied to coverage, we explored the influence of coverage 

further by analyzing the above regions in an individual-by-individual analysis. Derived in 

Equation 3 within the methods, Ki is an analogous Bayes-factor for an individual having the 

rarer allele at a known polymorphic base. Conceptually, it can be thought of as a specific 

individual’s contribution to Ks. Shown in high granularity (figure 5c), we calculate the 

percentage of variants correctly identified in an individual given a certain number of reads. 

For example, when the coverage for a base was ~20 reads (averaging from 16 to 24), we 

detected >80–90% of the bases at Ki>10, with a false-positive rate of 1.6%. In comparison to 

polymorphism discovery, the low false-positive rates of genotyping at a known polymorphic 

base are due to the fact that we are no longer assessing thousands of bases for a rare event, 

but rather assessing a few dozen individuals for a more frequent event.

Discussion

Our experience suggests that achieving adequate coverage is one of the most important 

factors in the design of a multiplexed targeted resequencing experiment. Depending on 

assumptions made within the experiment, the desired coverage (and as a consequence, the 

cost) can vary substantially. Key considerations include whether the objective is (1) 

discovering genetic variants for genotyping by a separate method such as custom SNP 

genotyping, (2) conducting polymorphism discovery and variant calling within one 

sequencing experiment, and/or (3) exhaustively resequencing for all common and rare 

variants.

Exhaustive polymorphism discovery is the next major phase for GWA studies. Shown in 

Figure 4, indexing of short-reads is surprisingly robust at polymorphism identification. For 

example, even when a highly restrictive error alignment scheme was used, we were able to 

identify a novel coding SNP three bases from an annotated SNP. Additionally, it is 

encouraging to see the discovery of insertions using an alignment scheme only allowing 

substitutions. Finally, it is a highly encouraging that an automated analysis strategy for 
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short-read data can uncover novel variants, even in regions that were previously sequenced 

for variant discovery using these HapMap individuals.

Based on the false-positive and false-negative rates, a critical factor will be how to balance 

coverage and cost. In table 1, utilizing a threshold of Ks > 1,000, we observe a low false-

positive rate (11.3%) and a high false-negative rate (90.8%). Since we required that the 

exact base must be polymorphic in an existing database, the actual false-positive rate may be 

lower. As evident in figure 5, false negatives are due to the additional coverage (>10 reads) 

is required for overcoming higher Ks thresholds. Considering the substantial base-to-base 

variability in figure 3, one would not simply want to design for an average coverage of 10 

reads. Rather, by designing for ~50 reads or more, one may minimize both the false negative 

and false-positive rates, given coverage variability of short-read sequencing.

While whole-genome sequencing may be the primary motivator for improvements in 

sequencing technology, it is clear that next-generation technologies are immediately useful 

for focused hypothesis-driven sequencing of linkage peaks, groupings of candidate genes, or 

sequencing the entire known coding sequence of the human genome. In this report, we 

developed per-individual indexing of pooled PCR amplicons to carry out targeted 

sequencing. However, it is straightforward to envision using other sample preparation 

methods, such as genome partitioning 9–12. One could replace the pooled amplicons from 

our experimental outline (figure 1) with total genomic DNA and complete the partitioning 

by a hybridization approach after pooling ligated amplicons. Indeed, variation discovery 

through the resequencing of all candidate regions implicated in a disease across dozens, and 

possibly hundreds, of individuals could be significantly accelerated by merging multiplex 

capture, indexing, and next-generation sequencing approaches into a single protocol.

Methods

Amplification and pre-ligation sample preparation

Two primary amplicon libraries (Library A and B, specific targeted regions listed in 

supplementary table 2) were constructed from individually amplified 5kb regions using 

long-range PCR. Regions composing a library were chosen from the ENCODE project and 

selected to provide a sampling of different genomic region types. Only a portion of the 

overall ENCODE regions have been previously sequenced as part of the SNP discovery 

portion of the ENCODE project. Library A was a composite of previously sequenced 

regions and regions not sequenced in ENCODE. Library B was entirely composed of 

regions that were previously sequenced. Flanking primers for each amplicon (supplementary 

table 5) were manually selected. While we did not screen for the existence of known 

polymorphisms within the primer sequences, such effort would be advisable in future 

efforts. A detailed description of region amplification, amplicon pooling, fragmentation, 

preparation of 48 adapters, end-repair, ligation, PCR enrichment, cluster generation and 

sequencing on the Illumina Genome Analyzer are provided in the supplementary methods.
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Analysis – Base calling and alignment

Illumina GA images were analyzed using a modified Illumina GA (0.2.2.6) processing 

pipeline. Descriptions of the modifications and all scripts are available at 

bioinformatics.tgen.org. A default matrix deconvolution file was used for base-calling by 

‘Bustard’ based on a control phi-X library provided by Illumina. Following base-calling a 

script was used to access all sequences, regardless of quality score. We deviated from the 

default cut-offs provided by Illumina’s ‘GERALD’ process since it was found that sequence 

quality was better controlled by matching to an index (46/4096 or 0.1% by chance) or 

matching with 1 or fewer errors to the reference sequence. Bases were aligned by 

progressively truncating the sequence at the 5’ end until a unique alignment was obtained 

with a probability of stochastic alignment of less than 1%. This approach is distinct from 

recently described short-read alignment schemes13, but clearly has some of the same 

features.

Aligned sequences were summarized into a binomial of counts agreeing (ai) or disagreeing 

(bi) with the reference sequence for the ith individual of n total individuals for each base (s). 

The error rate (θs) is the percentage of reads disagreeing with the reference sequence across 

all samples. Model 1 (M1) assumes that the error rate for an individual equals the error rate 

for all individuals, or θi = θs. Therefore we can estimate θs as:

Equation 1

Model 2 (M2) assumes that for some individual i we have θi ≠ θs. To calculate this 

likelihood we use a hyperprior offset (σs) for three possible genotypes. The hyperprior can 

be thought of as conditioning on the zygosity of the individual and thus reflecting the 

uncertainty of the genotype of the individual at a given base. In this analysis we focus on the 

detection of biallelic SNPs but triallelic or other types of SNPs could be considered under 

more complex models. The Bayes factor for a base position is:

Equation 

2

In equation 2, Ks is the Bayes factors across all individuals and is calculated for each SNP. 

The value for Ks is effectively identifying polymorphisms at a base, and determination of the 

individuals that show the rare variant is accomplished by Ki:

Equation 3
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The analysis for rare variants in the above equation uses the prior probability of p(σs) 

derived from the distribution across all individuals and all bases initially assuming all other 

individuals are homozygous for the reference allele, which is a reasonable assumption given 

that novel variants are assumed to be rare. By successive iterations, p(σs) is then recalculated 

by calling variants AA, AB, and BB under a given threshold (e.g. Ki={3,10,100}), and 

recalculating p(σs) based on these variant calls. Plots of Bayes factors vs. error rates are 

provided in supplementary figure 2 to show distribution of Bayes factors and their 

correlation with error rate.

If a SNP is known it is also reasonable to use other prior information at a base, such as allele 

frequency in the population. However, prior information on the location and allele frequency 

of known SNPs was not used in this study in order to better evaluate the effectiveness of the 

underlying framework.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic describing the preparation of indexed libraries. The red box indicates the 

indexing step, where for each person a unique indexed adapter was ligated to the fragmented 

genomic DNA.
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Figure 2. Comparison of index performance
Index variability in initial sequencing runs (Library A) used for evaluating index 

performance are shown (top graph). Percentages of reads aligning to the reference sequence 

are listed by index, without introduction of normalization methods. A total of 30 indexes 

were present in >0.05% of all aligned reads. Highlighted in the blue box are 19 indexes with 

less than 5 fold difference in index frequencies, used in subsequence studies. Indexes 

matching with 0 errors are in blue bars and indexes with 1 error are in magenta bars. The 

bottom graph shows the location of errors by base, for each index.
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Figure 3. Relationship between mean and local coverage
Example coverage of 4 individuals sequenced within a single line of an 8-lane flow-cell for 

10 pooled amplicons as part of Library A. Amplicons are shown consecutively for each 

individual by the alternating shaded background. Index sequence and mean coverage for that 

individual are shown above each graph. The maximum and minimum coverage is shown for 

each amplicon in the top of the graph. Overlaying pie charts show the observed distribution 

of bases across all amplicons and the expected distribution determined from a Poisson 

distribution of the mean coverage, binned by 0 reads, 1–4 reads, 5–9 reads, 10–19 reads, and 

>20 reads.
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Figure 4. Discovery of variant bases by simultaneous analysis of all individuals
(a.) The Bayes-factor for polymorphism discovery(Ks) is plotted for each of the10 

sequenced 5kb amplicons from Library A. Exact positions matching known polymorphisms 

are colored as red spheres and the dbSNP identifier is provided for the most significant 

SNPs. Black bars at top indicate locations of documented SNPs. A magnified view of 

amplicon 1 (b.) and amplicon 6 (c.) is provided to compare variants predicted by indexed-

multiplexed sequencing to previous deep capillary sequencing results for the same 

individuals as part of the ENCODE project. (d–e.) Examples of false-positives arising from 
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sequence homology to elsewhere in the genome. (f–i.) Examples of sequence traces 

validating the discovery of novel SNPs not previously annotated in ENCODE capillary 

sequencing traces. Similar analysis was conducted on Library B (shown in the 

supplementary figure 1).
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Figure 5. Relationship between base-level coverage and Bayes-factor for polymorphism 
discovery and variant genotyping
(a.) The y-axis is Log(Ks) and the x-axis is the total coverage across only those individuals 

with a non-reference genotype at a known polymorphism (AB or BB). (b.) Same, zoomed to 

lower Ks and lower coverage. (c.) The percent of the time the correct genotype was 

determined is plotted versus the coverage of the variant within the individual. Plots contain 

cumulative statistics using variant discovery and genotyping within both Library A and B.
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Table 1

Evaluation of false positive and false negative rates for polymorphism discovery at various Ks and Ki 

thresholds, irrespective of coverage. Rates are calculated using Library B since all regions had been previously 

resequenced within the ENCODE project. (Upper) Predicted polymorphic bases at a given threshold for Ks 

were evaluated by comparison to known polymorphisms within dbSNP and to ENCODE capillary sequencing 

traces (see main text for details). False negatives rates reflect that greater base coverage is required to exceed 

larger Ks thresholds and that many polymorphisms become insufficiently covered for polymorphism discovery 

at these levels (see figure 5 for relation between coverage and Ks). (Lower) Evaluation of variant genotype 

calling at different thresholds for Ki.

Polymorphism discovery by Ks threshold

Threshold (Ks) Polymorphisms predicted True positives Validated by 
dbSNP or NCBI Trace 

Archive

False positives Not 
identified in dbSNP or 

NCBI trace archive

False negatives 
Irrespective of coverage

3 932 112 88.0% 9.2%

10 352 107 69.6% 10.8%

100 131 99 24.4% 32.3%

1000 106 94 11.3% 90.8%

Individual variant calling/genotyping (AA, AB, BB) by Ki threshold

Threshold (KI) Genotyped correctly Genotyped incorrectly

3 3,376 115

10 3,144 58

100 2,677 8

1000 2,397 7
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