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Erectile dysfunction (ED) is a prevalent condition, especially in men over 40 years old,
characterized by the inability to obtain and/or maintain penile erection sufficient for satisfactory
sexual intercourse. Several psychological and/or organic factors are involved in the
etiopathogenesis of ED. In this context, we gathered evidence of the involvement of Large-
conductance, Ca2+-activated K+ channels (BKCa), Small-conductance, Ca2+-activated K+

channels (SKCa), KCNQ-encoded voltage-dependent K+ channels (KV7), Transient Receptor
Potential channels (TRP), and Calcium-activated Chloride channels (CaCC) dysfunctions on
ED. In addition, the use of modulating agents of these channels are involved in relaxation of
the cavernous smooth muscle cell and, consequent penile erection, suggesting that these
channels are promising therapeutic targets for the treatment of erectile dysfunction.

Keywords: canalopathies, erectile dysfunction, Ca2+-activated K+ channels, KCNQ-encoded voltage-dependent K+

channels, transient receptor potential channels, calcium-activated chloride channels
INTRODUCTION

Erectile dysfunction (ED) is a persistent inability to achieve and/or maintain a penile erection
enough for satisfactory sexual intercourse (McCabe et al., 2016). Predominantly a vascular disorder,
ED affects both physical and psychological health, having a direct impact on men’s life quality and
their sexual partners, mainly due to a reduction in self-esteem and impairment of interpersonal
Abbreviations: ED, Erectile dysfunction; BKCa, Large-conductance, Ca
2+-activated K+ channels; TRP, Transient Receptor

Potential; CaCC, Calcium-activated Chloride channels; KV7, KCNQ-encoded voltage-dependent K+ channels; SKCa
2+, Small-

conductance, Ca2+-activated K+ channels; ROS, Reactive Oxygen Species; eNOS; RhoA, Endothelial nitric oxide synthase;
Small G protein GTP-binder; ROCK, Rho-associated protein kinase; MS, Metabolic Syndrome; NO, Nitric Oxide; CNS,
Central Nervous System; NA, Norepinephrine; NANC, Non-adrenergic, Non-cholinergic; PGI2, Prostacyclin; PGE1/2,
Prostaglandins E type 1 and 2; CaM, Calmodulin; CaV, Voltage-dependent Ca

2+ channels; AC, Adenylyl cyclase; PKA,
cAMP dependent protein kinase; PKG, cGMP-dependent protein kinase; ATP, Adenosine triphosphate; GTP, Guanosine
triphosphate; cAMP, Cyclic adenosine monophosphate; cGMP, Cyclic guanosine monophosphate; IP3, Inositol 1,4,5-
triphosphate; SR, Sarcoplasmic reticulum; SERCA, Sarco/endoplasmic reticulum Ca2+ ATPase; MLCK, Myosin light chain
kinase; NCX, Na+/Ca2+ exchanger; PMCA, Plasma membrane Ca2+-ATPase; SHIM, Male Sexual Health Inventory; IIFE,
International Index of Erectile Function; PKC, Protein kinase C; RCK1/2, Regulator of potassium conductance; TRPA,
Transient Receptor Potential Ankyrin; TRPC, Transient Receptor Potential Canonical; TRPM, Transient Receptor Potential
Melastatin; TRPML, Transient Receptor Potential Mucolipine; TRPP, Transient Receptor Potential Polycystin; TRPV,
Transient Receptor Potential Vanilloid; AA, Arachidonic acid; TMEM16, Transmembrane protein with unknown function
16A; DNDS, 4,4-dithitrostylbene-2,2-disulfonic acid; NFA, Niflumic acid; A9C, Anthracene-9-carboxylic acid.
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relationships (Boddi et al., 2015; Nguyen et al., 2017; Burnett
et al., 2018). It mainly affects men after 40 years of age and it has
estimated that over 150 million worldwide have some degree of
this dysfunction (Ayta et al., 1999; Grover et al., 2006; Riedner
et al., 2011; Tabosa et al., 2017). However, even if the increasing
in cases with aging is evident, ED is not an inevitable
consequence of aging, which makes it possible to increase the
estimate of the average world prevalence (Seftel, 2011; Shamloul
and Ghanem, 2013; Yafi et al., 2016; Gabrielson et al., 2019).

Psychological and organic factors such as anxiety, stress,
depression, or vascular and hormonal dysfunctions may cause
imbalance of the contractile and relaxing mechanisms of the
cavernous smooth muscle culminating in the development of ED
(Andersson, 2001; Fumaz et al., 2017; Mitidieri et al., 2020).

In recent years, researching involving the flaccidity and penile
erection has focused mainly on molecular mechanisms. In this
sense, several neurotransmitters, second messengers, reactive
oxygen species (ROS), growth factors, hormones, and ion
channels have been characterized as important components of
the complex erection process, leading to the discovery of new
therapeutic targets for the treatment of ED. The search for new
therapeutic alternatives for erectile dysfunction is associated with
refractoriness to conventional treatments observed in part of the
male population. Given this, this review will focus on providing
an update on the importance of some ion channels involved in
the regulation of intracellular signaling and tone of cavernous
smooth muscle and their potential as therapeutic targets to the
development of new drugs to treatment of erectile dysfunction.
ETIOLOGICAL FACTORS OF ERECTILE
DYSFUNCTION

Multifactorial nature of ED is evident and, population studies
have shown that several conditions involving vascular
abnormalities such as hypertension, aging, physical inactivity,
dyslipidemia, diabetes, insulin resistance, and obesity are among
the major risk factors that favor the development of ED in man
and animal models (Musicki et al., 2010; Kaya et al., 2015;
Maseroli et al., 2015). In addition, studies have shown that ED
is a predictive factor for the development of cardiovascular
disease and may be a potent marker for screening for silent
coronary disease (Phe and Roupret, 2012; Gandaglia et al., 2016;
Capogrosso et al., 2019; Orimoloye et al., 2019).

The causes of ED are directly related to biopsychosocial
processes that involve psychological, endocrine, vascular, and
neurological coordination (Prieto, 2008), and can be classified
etiologically as psychological, organic or mixed, where there is a
combination of both factors (Ayta et al., 1999; Riedner et al.,
2011; Yafi et al., 2016).

The most common psychogenic factors include performance
anxiety, psychiatric disorders such as anxiety, stress and depression,
and relationship conflicts that culminate in reduced sexual libido or
fear of failure during intercourse. Organic factors include
neurological, endocrine and vascular causes (Fauci et al., 2012;
Swerdloff andWang, 2012; Mccabe and Althof, 2014). Neurological
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or neurogenic ED have been represented, mainly, by signaling
deficiency through penile innervations (Brackett et al., 2010).
Neurological causes have been responsible for approximately 10
to 19% of ED cases and are among those causes, such as Parkinson’s
disease, dementia, demyelinating disease and spinal cord injury at
levels affecting erection and/or ejaculation (Keller et al., 2012;
Ludwig and Phillips, 2014; Antuña et al., 2015). Reduced
testosterone levels, hormone responsible for increasing endothelial
nitric oxide synthase (eNOS) expression, and reduced protein
expression of Small G protein GTP-binding/Rho-associated
protein kinase (RhoA/ROCK) pathway characterize endocrine ED
(Lugg et al., 1996; Mills et al., 2001; Hu et al., 2009; Sopko et al.,
2014). In addition, the main endocrine causes are diabetes mellitus,
metabolic syndrome (MS) and changes in sex hormones
(Özdemirci et al., 2001; Swerdloff and Wang, 2012; Ludwig and
Phillips, 2014; Papagiannopoulos et al., 2015). Arterial traumatic
disease, atherosclerosis and systemic arterial hypertension represent
the main causes of vascular etiology (Perticone et al., 2005; Fauci
et al., 2012), and are directly related to endothelial dysfunction,
which may result from imbalance of NO, increased sympathetic
activity and structural changes that reduce the relaxing capacity of
the corpus cavernosum of the penis (Corona et al., 2006; Jackson,
2007; Swerdloff and Wang, 2012).

Moreover, aging is the major risk factor for ED and both the
prevalence and severity of the disease increase with aging, so it is
usually caused by the presence of neural and endothelial
dysfunction (El-Sacca, 2007; Lewis et al., 2012).
PHYSIOLOGICAL MECHANISMS OF
FLACCIDITY AND PENILE ERECTION

Penis is the male genital and copulatory organ responsible for the
elimination of urine and sexual intercourse (Sachs and Meisel,
1988; Katz, 2002). It can be divided into three parts: base, body
and glans. Penis base is formed by three cylindrical structures
corresponding to two corpus cavernosum and a corpus
spongiosum (Eardley et al., 2013).

Corpus cavernosum comprise two parallel smooth muscle
cylindrical structures surrounded by a compact fibrous tissue
structure, known as the albuginia tunic, which gives the penis
rigidity, strength and flexibility (Awad et al., 2011; Doyle, 2011;
Avery and Scheinfeld, 2015).

Smooth muscle of the corpus cavernosum is important for
erection and maintenance of penile flaccidity. Most of the time,
smooth muscle cells remain in their contracted state, which
limits the filling of vessels that nourish the corpus cavernosum
with blood and, consequently, favor the maintenance offlaccidity
(Thomas and Bohnen, 2005; Andersson, 2011). On the other
hand, due to neurovascular modulation mediated by
psychological and hormonal factors, cavernous smooth muscle
cells, in a coordinated manner, may be in their relaxed state, from
a complex interaction between the central nervous system (CNS)
and local stimuli. As a result, the filling of the corpus cavernosum
with increasing intracavernous pressure promote penile erection.
Thus, muscle cells of the corpus cavernosum operate together in
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synchronicity, as they not only contract spontaneously in a
coordinated manner, but also relax synchronously (Brownstein
et al., 2017).

Penile flaccidity process primarily have been stimulated by the
sympathetic nervous system, where the release of norepinephrine
(NA) by adrenergic neurons stimulates its a1 and a2 receptors in
the smooth muscle of the penile vessels and corpus cavernosum,
inducing its contraction and reduction of the blood flow (Goldstein,
2000; Gur et al., 2012; Traish et al., 2015).

Relaxation of the corpus cavernosum causes penile erection in
response to cholinergic neurotransmission, with nitric oxide (NO)
being the most important neurotransmitter. In addition, non-
adrenergic non-cholinergic neurotransmission (NANC)
transmitters are also found adrenergic nerves (Andersson, 2011;
Hannigan, 2016). Further, other mediators are also responsible for
modulating cavernous smooth muscle relaxation, such as
prostacyclin (PGI2) and type 1 and 2 prostaglandins (PGE1 and
PGE2). These prostanoids act on the Gs protein-coupled IP, EP2 and
EP4 receptors, culminating in activation of cGMP and cAMP-
dependent protein kinases (PKG and PKA, respectively) which,
when activated, phosphorylate various targets such as potassium
channels, activating them, and voltage-dependent calcium channels,
inhibiting them (Figure 1) (Porst, 1996; Angulo et al., 2002;
Andersson, 2011).
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DIAGNOSIS OF ERECTILE DYSFUNCTION

Diagnosis of ED is complex because it results from personal,
interpersonal and social implications related to disease, involving
the identification of the main signs and symptoms presented by
the patient and determination of the stage of disease and use of
medicines, with the aim of identifying its primary etiology,
reduce associated risk factors, and prevent the harmful effects
of diseases correlated with dysfunction (Corona et al., 2006;
Glina et al., 2014).

Given this limitation, questionnaires that help determine the
real development and severity of ED were standardized and
validated. Among them, the most commonly used in clinical
practice are the Male Sexual Health Inventory (SHIM), which
presents five specific questions about ED and the International
Index of Erectile Function (IIFE), which has 15 questions related
to all phases of male sexual response (Rosen et al., 2002; Ghanem
et al., 2012; Rosen and Spiegelman, 2014).

In addition to a complete survey of the patient’s sexual,
surgical, psychosocial history, and medication use, the
diagnosis of ED requires adequate physical examination, as
well as an assessment of blood pressure and weight, given the
association of the disease with hypertension and obesity.
Another crucial point for the diagnosis of this dysfunction is
FIGURE 1 | Physiological mechanism of relaxation in the cavernous smooth muscle. CaM, calmodulin; nNOS, neuronal nitric oxide synthase; NO, nitric oxide; CaV,
voltage-dependent Ca2 + channels; PGI2, prostacyclin; PGE1/2, prostaglandin E type 1 and 2; AC, adenylyl cyclase; ATP, adenosine triphosphate; cAMP, cyclic
adenosine monophosphate; PKA, cAMP dependent protein kinase; sGC, soluble guanylyl cyclase; GTP, guanosine triphosphate; cGMP, cyclic guanosine
monophosphate; PKG, cGMP-dependent protein kinase; GMP, guanosine monophosphate; IP3:R Inositol 1,4,5-triphosphate receptor; SR, sarcoplasmic reticulum;
SERCA, Sarco/endoplasmic reticulum Ca2+ ATPase; MLCK, myosin light chain kinase; NCX, Na+/Ca2+ exchanger; PMCA, Plasma membrane Ca2+-ATPase.
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the evaluation and determination of testosterone levels, since low
concentrations of this hormone have been related and
contributed to the development of ED (Cordero et al., 2010;
El Taieb et al., 2019; Irwin, 2019).

Local penile evaluation is another important alternative
because it provides information on the presence of penile
deformities, elasticity, urethral meatus, testicular consistency,
and fibrosis plaques, which are related to penile erection
impairment (Shamloul and Ghanem, 2013). Based on the
aforementioned assessments, it is possible to differentiate the
etiology of disease from psychogenic or organic, and more
precisely the target the treatment of ED.
TREATMENT OF ERECTILE
DYSFUNCTION

Treatment of ED is performed according to the clinical evaluation of
the patient, and it can be divided into non-pharmacological and
pharmacological. The non-pharmacological therapy is based on
lifestyle modifications, including control of glycemic levels and lipid
profile (cholesterol and triglycerides), reduction in addition to
stopping smoking and alcohol use, as well as the practice of
physical activity (Kupelian et al., 2007; Maiorino et al., 2015).
There are currently surgical interventions, devices penile devices,
and psychotherapy, used as alternatives for non-pharmacological
treatment. In addition, there is hormone replacement and the use of
drugs that constitute the pharmacological treatment of this disease
(Eardley et al., 2010; Hatzimouratidis et al., 2010).

Oral therapy is the first line treatment for erectile dysfunction
and involves the use of PDE5 inhibitors such as sildenafil, which is
the prototype of the group, tadalafil, vardenafil and iodenafil.
Mechanistically, these drugs facilitate erection by inhibiting the
enzyme PDE5, which is responsible for cGMP degradation in
smooth cavernous muscle. This inhibition results in prolonged
cGMP activity, which decreases cytosolic calcium concentrations,
maintaining corpus cavernosum relaxation and, thus, promotes
penile erection with a success rate of over 65% (Konstantinos and
Petros, 2009; Andersson, 2011; Selph and Carson, 2011). However,
previous sexual stimulation is essential to increase intracellular NO
levels and, consequently, to cGMP generation (Yafi et al., 2016).

Side effects related to PDE5 inhibitor therapy include, mainly,
headache, nasal congestion, facial flushing and dyspepsia. The
onset of action of the drug is around 30–60 min, lasting
approximately 4–8 h. The main contraindications are nitrate-
containing compounds, cardiovascular events, non-arteritic
ischemic optic neuropathy and a-blockers (Brant et al., 2007;
Zelefsky et al., 2014).

Currently, intracavernous and intraurethral therapies include,
mainly alprostadil, with a high therapeutic success rate (90%)
(Hatzimouratidis and Hatzichristou, 2005; Perimenis et al., 2006),
representing the second line of treatment for ED. Its advantages are
the rapid onset time, around 10 min, and the quality of penile
erections, even in the absence of sexual stimulation (Shamloul and
Ghanem, 2013). Additionally, alprostadil is synthetic prostaglandin
E1, which by binding to EP2/4 receptors activates the adenylyl cyclase
Frontiers in Pharmacology | www.frontiersin.org 4
(AC) signaling pathway, culminating in the increase of cAMP
cytoplasmic concentration, which ultimately results in the corpus
cavernosum relaxation and, consequently, the penile erection. It has
used in intracavernous injection therapy and as a suppository for
intrauretal use (Moreland et al., 2003).

Despite the great therapeutic success of the drugs, around 30%–
40% of men with ED do not respond to this first line of treatment.
Additionally, the use of injectable medications brings priapism as
the main risk, which consists of a painful and prolonged penile
erection (greater than two hours), regardless of sexual desire and
resulting from insufficient penile blood drainage. In this context,
refractoriness to conventional treatments contributes to the search
for new therapeutic alternatives for ED (Alves et al., 2012; Codevilla
et al., 2013; Munk et al., 2019).
ION CHANNELS AND ERECTILE
DYSFUNCTION

Large-Conductance, Ca2+-Activated K+

Channels (BKCa)
The BKCa channels are highly conductive (150–250 pS) channels,
selective for K+ (Wu, 2003) with ubiquitous expression on the
plasma membranes of all eukaryotic cells. They are activated in a
negative feedback mechanism to control plasmatic membrane
excitability in response to membrane voltage and increased
cytoplasmic Ca2+ concentration. Its dysfunction is implicated
in several diseases, including erectile dysfunction (Kshatri et al.,
2017; Gururaja Rao et al., 2019).

These channels are constituted by a tetramer of a subunits,
encoded by the Slo gene, which form the channel pore, and
auxiliary subunits b1–b4 and g1–g4 that modulate the
physiological activity of these channels (Figure 2A) (Contreras
et al., 2013; Kshatri et al., 2017). The association with the b1
subunit, for example, decreases voltage dependence and
increases apparent sensitivity to Ca2+ (McManus et al., 1995;
Wallner et al., 1995; Lorca et al., 2014a; Lorca et al., 2014b;
Balderas et al., 2015).

The a subunits are formed by seven transmembrane segments
(S0 – S6) with N-terminal domain located in the extracellular
region and C-terminal domain, which has the Ca2+ sensor
domain, located intracellularly. Voltage sensor comprises
segments S0 to S4 and the pore-forming domain includes
segments S5 and S6 (Figure 2B) (Schubert and Nelso, 2001).

Modulation of BKCa channels involves several mechanisms.
Phosphorylation of channel-forming protein by PKA or PKG
may activate or inhibit them, depending on type of smooth
muscle evaluated. In pulmonary artery smooth muscle, protein
kinase C (PKC) inhibits BKCa channels, causing pulmonary
vasoconstriction (Barman et al., 2004; Werner et al., 2005).

Additionally, Kun and colleagues (Kun et al., 2009) observed
that NS11021 (1-(3,5-bis-trifluoromethyl-phenyl)-3-[4-bromo-2-
(1h-tetrazol-5-yl)-phenyl]-thiourea), a BKCa opener, increases the
currents sensitive to the selective BKCa channel blocker, iberiotoxin
(IbTX) in rat isolated corpus cavernosum smooth muscle cells, and
reduced [Ca2+]i, and tension in penile arteries, leading to relaxation
July 2020 | Volume 11 | Article 1120
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of the intracavernous arteries, being potential targets for the
treatment of ED (Kun et al., 2009). The results obtained by Sung
and colleagues showed that another activator of these channels,
LDD175, improved erectile function in a diabetic rat model.
Furthermore, they showed that LDD175 treatment combined
with sildenafil had an additive effect on improving the erectile
function of diabetic rats (Nilius and Owsianik, 2011; Sung et al.,
2017). These findings suggest that BKCa channels are possible
targets for the treatment of ED.

Small-Conductance, Ca2+-Activated K+

Channels (SKCa)
SK are small condutance (10-20 pS) (Kushwah et al., 2018), voltage-
independent and cytosolic Ca2+ sensivite channels (Cui et al., 2014).
The pore of these channels is selective to K+ and formed to four
subunits (Figure 3A) each with six transmembrane a helice
domains (S1-S6) and intracellular N- and C-terminus. A loop
between the S5 and S6 segments forms the K+ selectivity filter
(Faber, 2009; Nam et al., 2017) (Figure 3B).
Frontiers in Pharmacology | www.frontiersin.org 5
Constitutively linked to the channel, in Calmodulin Binding
Domain (CaMBD), the calmodulin protein (CaM) mediates the
gating of the pore of SK channel (Zhang et al., 2012) after
its interaction with Ca2+ ions. The rise of cytosolic concentration
of Ca2+ to about 300–500 nM induces conformation
rearrangements in calmodulin and canal subunits, following K+

efflux and membrane hyperpolarization (Keen et al., 1999).
These channels are highly conserved in mammals (Adelman

et al., 2012), having identified three clones denominated as SK1
(KCa2.1), SK2 (KCa2.2), and SK3 (KCa2.3) encoded by the genes
KCNN1, KCNN2, and KCNN3, respectively (Kouba et al., 2020).

SK channels are distributed in various tissues. In particular, a
significant abundance of the SK3 channel had been detected in
human corpus cavernosum, after analysis of mRNA distribution
by PCR-RT. In addition, high SK3-type immunoreactivity have
been observed in cavernous and vascular smooth muscle, and in
human vascular endothelium (Chen et al., 2004). Comerma-
Steffensen and colleagues (2017) observed that SK3 channels
were, among the subtypes of SK channels, the most expressed in
A B

FIGURE 3 | Structure of SK channels. (A) Four subunits form the channel pore permeable to K+ ion. (B) Each channel subunit is formed for six transmembrane
segments (S1–S6). In C-terminus, is this located the Calmodulin Binding Domain (CaMBD).
A B

FIGURE 2 | Structure of BKCa channels. (A) BKCa channels are formed by three protein subunits (a, b, and g). The a subunit forms the channel pore, permeable to
K+; (B) Seven transmembrane segments form the a subunit. In C-terminal domain, two Ca2+-sensitive sites are found, known as regulator of potassium
conductance (RCK) 1 and RCK2. Adapted from (Schubert and Nelso, 2001).
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the corpus cavernosum of mice (Comerma-Steffensen S.
et al., 2017).

The expression of these channels in vascular endothelial cells is
involved in NO production. Sheng and Braun (Sheng and Braun,
2007) observed that blocking SK channels by apamine, inhibited
NO synthesis in human umbilical vein endothelial cells (HUVERs)
(Sheng and Braun, 2007). As reviewed by Félétou (Félétou, 2009),
events such as the activation of G protein-coupled receptors or shear
stress in endothelial cells, induce an increase in the cytosolic
concentration of Ca2+, activating SKCa following hyperpolarization
of the endothelial cells. As a result, the additional influx of Ca2+,
favored by increasing electrochemical driving force, and the
consequent activation of NO synthase, induces the release of NO
by endothelial cells and relaxation of the vascular smooth muscle
cells (Félétou, 2009).

In diabetic Sprague-Dawley rats, Zhu and colleagues (Zhu et al.,
2010) observed reduction in the frequency of penile erections, after
administration of apomorphine, and mRNA and SK3 protein levels
reduction in the cavernous tissue of these animals, compared to
group of non-diabetic rats (Zhu et al., 2010).

The use of a non-selective activator of KCa2 and KCa3.1 channels
(NS309), induced relaxation of the corpus cavernosum of mice in
concentration dependent manner. It has also been observed, in
transgenic animals with overexpression of SK3 channels, a
significant reduction in blood mean pressure, when compared to
downregulation and wild SK3 animals. In addition, stimulation of
the cavernous nerve improved the erectile function of animals with
SK3 overexpression, while this effect was reduced in SK3
downregulation animals (Comerma-Steffensen S. et al., 2017).
Furthermore, the relaxation of strips of the corpus cavernosum of
mice, induced by NS309, was significantly reduced by the removal
of endothelial cells, the use of NO synthase blockers and the use of
apamine, which reflects the influence of these channels on
endothelial and erectile functions (Comerma-Steffensen S. G.
et al., 2017).

Thus, evidence of the participation of SK channels in penile
erection, suggests that the use of activators of these channels may
be of therapeutic interest for the treatment of ED.
Frontiers in Pharmacology | www.frontiersin.org 6
KCNQ-Encoded Voltage-Dependent K+

Channels (KV7)
The voltage-dependent potassium channels encoded by KCNQ
(Kv7) include a family of five members (Kv7.1 to 7.5 or KCNQ1-
5) form subunits of the low-threshold voltage-gated K+ channel
originally termed the ‘M-channel’, being formed by six
transmembrane domains, a single P loop found between S5
and S6, which forms the pore selectivity filter, a fourth
positively charged transmembrane domain (S4) that acts as a
voltage sensor and a long carboxy terminal tail intracellular
(Jentsch, 2000; Brown et al., 2009; Jepps et al., 2013; Lee et al.,
2018) (Figure 4).

These channels are predominantly expressed in the heart,
central nervous system, auditory system and smooth muscle of
the vessels, functioning as essential regulators of membrane
excitability, playing important physiological roles such as
potassium homeostasis, cardiac action potential and neuronal
excitability, as well as dysfunctions of the Kv7 channels are
associated with human diseases, including cardiac arrhythmias,
epilepsy, deafness, hypertension, and erectile dysfunction
(Robbins, 2001; Abbott, 2014; Haick and Byron, 2016).

Additionally, it has been reported the importance of Kv7
channels in the regulation of vascular and non-vascular smooth
muscle tone, and that the KCNQ genes (Kv7.1, 7.4 and 7.5) are
the most expressed subtypes in these muscles, opening a new
field of possibilities for pharmacological targeting for the various
pathophysiological disorders of the underlying vascular smooth
muscle (Greenwood and Ohya, 2009; Soldovieri et al., 2011; Stott
et al., 2014).

The pharmacological modulation of these channels in the
vessels is responsible for profound changes in the smooth muscle
membrane potential and, consequently, in the vasoconstrictor or
vasodilator responses of the vascular tone (Jepps et al., 2013). In
addition, Kv7 are also functional endpoints of Gs-linked receptor
agonists (Chadha et al., 2012; Khanamiri et al., 2013; Chadha
et al., 2014; Stott et al., 2015).

Several studies have been shown that non-selective blocking
of Kv7.1-7.5 channels by linopirdine and XE991, promote
A B

FIGURE 4 | Structure of KV7 channels. (A) Four subunits form the channel pore permeable to K+ ion. (B) Each channel subunit is formed for six transmembrane
segments (S1–S6).
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membrane depolarization and concomitant vasoconstriction,
leading to an increase in calcium influx through voltage-gated
calcium channels (CaV) and consequently inhibit vascular
relaxing responses in humans and rodents (Yeung et al., 2007;
Yeung et al., 2008; Mackie et al., 2008; Zhong et al., 2010; Jepps
et al., 2011; Stott et al., 2015; Lee et al., 2020), which may produce
spontaneous contractions in some vessels (Yeung et al., 2007;
Mackie et al., 2008; Lee et al., 2020). It has been shown in penile
physiology that blocking these channels also impairs arterial
relaxation produced by the atrial natriuretic peptide and sodium
nitroprusside (SNP), decreasing the cellular concentration of
cGMP, essential for the penile erection process (Stott et al., 2015;
Jepps et al., 2016).

However, Kv7 activators (retigabine, ML213 and S-1),
hyperpolarize the membrane potential and cause relaxation of
pre-contracted vessels, decreasing the Ca2+ influx by CaV,
resulting in the relaxation of human and rodent arteries
(Yeung et al., 2007; Yeung et al., 2008; Mackie et al., 2008;
Joshi et al., 2009; Zhong et al., 2010; Chadha et al., 2012). In
addition, genes for KCNQ3-5 had been detected in penile
arteries, veins and corpus cavernosum, while KCNQ1 was
found only in the corpus cavernosum of rats. The activators
Kv7.2-7.5, ML213, and BMS204352, relaxed pre-contracted
penile arteries and corpus cavernosum, regardless of nitric
oxide synthase or hyperpolarization derived from the
endothelium. In contrast, the relaxation promoted by sildenafil
and sodium nitroprusside had been reduced by blocking these
channels with linopirdine in the penile arteries and the corpus
cavernosum (JEPPS et al., 2016).

Therefore, suggesting that Kv7 channels play an important
functional role in all smooth muscle systems, specifically in
erectile function, confirming the potential of these channels as
new therapeutic targets for erectile dysfunction.

Transient Receptor Potential
Channels (TRP)
TRP channels are a superfamily of ion channels, mostly non-
selective for mono and divalent cations, expressed in almost all
cell types, in both excitable and non-excitable tissues and
participating in various physiological functions such as
nociception and muscle contraction (Smani et al., 2015;
Moran, 2018).

In mammals, the TRP superfamily is divided into six
subfamilies based on their homology sequences and named
according to first described member of each subfamily: ankyrin
(TRPA), canonical (TRPC), melastatin (TRPM), mucolipine
(TRPML), polycystin (TRPP), and vanilloid (TRPV) (Caterina,
2014; Samanta et al., 2018).

Structurally, TRP channels may be homo or heterotetramers,
with each channel-forming subunit composed by six
transmembrane segments (S1–S6), with the channel pore
located between segments S5 and S6 and amino and
carboxiterminal domains located intracellularly (Figure 5)
(Smani et al., 2015; Reggio et al., 2018; Blair et al., 2019).

Activity of these channels can be regulated by a wide variety
of stimuli including temperature changes, mechanical forces,
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lipid mediators such as arachidonic acid (AA) and its metabolites
(Del Rocıó Cantero et al., 2015) and action of protein kinases
such as PKA (Jung et al., 2010).

Recently, studies using negative domain gene transfer to TRP
channels have helped to understand the involvement between
ED and dysfunctions in TRP channels. TRPC6DN gene transfer
reduced cytoplasmic Ca2+ concentration in human cavernous
smooth muscle and restored erectile function in diabetic rats
(Sung et al., 2014). Sung and colleagues (Falzone et al., 2018)
showed increased expression of TRPC4 in smooth corpus
cavernosum muscle cells of diabetic rats and demonstrated that
after TRPC4DN gene transfer, erectile function of diabetic
animals was restored (Falzone et al., 2018).

Taken together, these results indicate the possible
involvement of TRP channels in pathophysiology of ED,
making them potential targets for the development of drugs to
treat this pathological condition.

Ca2+-Activated Cl- Channels (CaCC)
CaCC channels belong to a family of transmembrane proteins
known as TMEM16 (transmembrane protein with unknown
function 16A) (Falzone et al., 2018) (Figure 6). Activation of
these channels requires an increase in cytoplasmic calcium
concentration in the range of 100 nM to 1–2 mM, which may
be due to inflow or release from intracellular stocks, allowing Cl-

to flow through the plasma membrane (Hartzell et al., 2005;
Whorton, 2014; Kamaleddin, 2018).

In smooth muscle, the activation of these channels and
consequent chloride efflux induce cell membrane depolarization
and voltage-dependent calcium channel activation, resulting in
additional Ca2+ influx and muscle contraction, having, in
particular, an important physiological role in contraction of
smooth muscles of the corpus cavernosum, a necessary action for
penile flaccidity. Thus, inactivation of these channels by
pharmacological agents is a therapeutic alternative for the
FIGURE 5 | Structure of TRPC channels. AnkR, ankyrin repeats (number
differs by subfamily members); TRP box; CIRB, calmodulin- and inositol
triphosphate receptor (InsP3R)-binding site; PDZ, amino acid motif binding
PDZ domains. Based on (Cao et al., 2018).
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treatment of ED (Chu and Adaikan, 2008; Linton et al., 2012;
Whorton, 2014).

The evidence of Ca2+ activated chloride currents in human
and rat cavernous smooth muscle cells was demonstrated by
Karkanis and colleagues (Karkanis et al., 2003). In this study, the
use of 4,4-dithitrostylbene-2,2-disulfonic acid (DNDS) and 4-
acetamido-4-isothiocyanostylbene-2,2-disulfonic acid, CaCC
blockers, transiently increased intracavernous pressure and
prolonged time of erection after cavernous nerve stimulation
(Karkanis et al., 2003).
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CaCC is associated with the maintenance of basal tone and
spontaneous contractions of the corpus cavernosum. The use of
two potential erectogenic agents, niflumic acid (NFA) and
anthracene-9-carboxylic acid (A9C), CaCC channel blockers,
significantly reversed intrinsic contractile activity of the
rabbit’s corpus cavernosum, as well as the tone of this tissue,
after contraction with phenylephrine, histamine or endothelin-1,
in a concentration-dependent manner (Linton et al., 2012).

In addition, when using isolated corpus cavernosum from
diabetic rabbits, Chu and Adaikan (Leblanc et al., 2015) showed
that NFA and A9C were able to increase the nitrergic relaxation
of corpus cavernosum smooth muscle of diseased animals,
suggesting that inhibition of CaCC may be a viable alternative
to diabetes-related erectile dysfunction (Leblanc et al., 2015).

In recent study, by Hannigan and colleagues (Hannigan et al.,
2017), the use of two new blockers (T16Ainh-A01 and CaCCinh-
A01) was effective in inhibiting CaCC channels, reducing the
phenylephrine-induced tone, reinforcing their important role in
favor of maintaining penile flaccidity (Hannigan et al., 2017).
FUTURE PERSPECTIVES

Despite recent advances and researching toward new therapeutic
strategies for the treatment of erectile dysfunction, much remains
has to be done to clarify the promising role of ion channels in
controlling and determining male erectile function, as well as
their participation in various other targets of the central and
FIGURE 6 | Six transmembrane domains form the Calcium-activated
Chloride channels (CaCC)s. Glutamate residues (yellow beads) are potential
Ca2+ binding sites. Adapted from (Picollo et al., 2015).
FIGURE 7 | Use of BKCa, SK3, and KV7 channels activators and/or transient receptor potential (TRP) and Calcium-activated Chloride channels (CaCC) blockers,
induce reduction of cytoplasmic concentration of Ca2+, [Ca2+]c, culminating in relaxation of the cavernous smooth muscle cell and penile erection.
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peripheral pathways involved in the regulation of cavernous
smooth muscle tone. In this context, searching for new
therapeutic targets that favor the penile erection process and
the control of other aspects related to sexual function, the use of
BKCa, SK3, and Kv7 channels activators and/or TRPs and CaCC
channels inhibitors represent important targets in the
development of of possible pro-erectile agents leading to a
decrease in cytosolic calcium concentration and consequently
relaxation of the cavernous muscle cells, restoring erectile
function and favoring penile erection (Figure 7). In addition, it
is essential that the projections of these new therapeutic agents
aim to reduce the side effects promoted by phosphodiesterase
inhibitors, which is the most commonly, used first-line therapy
for the treatment of ED. However, it is important to recognize
that molecular and clinical understanding of sexual function, as
well as patient and partner involvement, are critical to the
implementation of successful therapy.

Based on the information presented, the modulation of ion
channels seems to be a promising alternative for the treatment of
Frontiers in Pharmacology | www.frontiersin.org 9
erectile dysfunction. Despite this, it is necessary to emphasize the
importance of investigating possible adverse effects that can
happen after the modulation of ion channels. In this context,
possible cardiovascular changes such as cardiac arrhythmias,
hypotension or hypertension must have be ruled out to ensure
the safe use of these possible new targets.
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et al. (2017). Association between Erectile Dysfunction and Quality of Life in
Patients with Coronary Artery Disease. Int. J. Cardiovasc. Sci. 30, 219–226. doi:
10.5935/2359-4802.20170042

Thomas, S., and Bohnen, A. M. (2005). Incidence rates of erectile dysfunction in
the Dutch general populatioEffects of definition, clinical relevance and
duration of follow-up in the Krimpen Study. Int. J. Impotence Res. 17, 58.
doi: 10.1038/sj.ijir.3901264

Traish, A. M., Haider, A., Doros, G., and Saad, F. (2015). Long-term testosterone
therapy in hypogonadal men ameliorates elements of the metabolic syndrome:
An observational, long-term registry study. Int. J. Clin. Pract. 68, 314–329. doi:
10.1111/ijcp.12319

Wallner, M., Meera, P., Ottolia, M., Kaczorowski, G. J., Latorre, R., Garcia, M. L.,
et al. (1995). Characterization of and modulation by a beta-subunit of a human
maxi KCa channel cloned from myometrium. Recept. Channels 3, 385–399.
Tanaka, 1997.

Werner, M. E., Zvara, P., Meredith, A. L., Aldrich, R. W., and Nelson, M. T. (2005).
Erectile dysfunction in mice lacking the large-conductance calcium-activated
potassium (BK) channel. J. Physiol. 567, 545–556. doi: 10.1113/
jphysiol.2005.093823

Whorton, M. (2014). Biologia estrutural: proteı ́nas ativadas por cálcio
visualizadas. Nature 516 (7530), 176. doi: 10.1038/nature13944

Wu, S. (2003). Large-conductance Ca2+-activated K+ channels: physiological role
and pharmacology. Curr. Med. Chem. 10 (8), 649–661. doi: 10.2174/
0929867033457863

Yafi, F. A., Jenkins, L., Albersen, M., Corona, G., Isidori, A. M., Goldfarb, S., et al.
(2016). Erectile dysfunction. Nat. Rev. Dis. Primers 2, 1–47. doi: 10.1038/
nrdp.2016.3
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