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Abstract: Dental implants are widely used to restore missing teeth because of their stability and
comfort characteristics. Peri-implant infection may lead to implant failure and other profound
consequences. It is believed that peri-implantitis is closely related to the formation of biofilms, which
are difficult to remove once formed. Therefore, endowing titanium implants with anti-adhesion
properties is an effective method to prevent peri-implant infection. Moreover, anti-adhesion strategies
for titanium implant surfaces are critical steps for resisting bacterial adherence. This article reviews
the process of bacterial adhesion, the material properties that may affect the process, and the anti-
adhesion strategies that have been proven effective and promising in practice. This article intends to
be a reference for further improvement of the antibacterial adhesion strategy in clinical application
and for related research on titanium implant surfaces.
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1. Introduction

Dental implants are widely used to restore missing teeth because of their stability
and comfort [1]. Due to its biocompatibility, titanium and its alloys are suitable materials
for dental implant technology. Titanium has been the most extensively used material for
dental implants [2]. However, the incidence rates of subsequent peri-implant mucositis and
peri-implantitis, which may lead to implant failure, top 43% (confidence interval: 32–54%)
and 22% (confidence interval: 14–30%), respectively [3]. Clinically, the infection is often
controlled by mechanical removal, laser treatment, and local or systemic medication [4].
However, marginal bone loss around the implant may occur if the infection is uncontrolled,
and peripheral reflection can be seen on X-rays. Due to infection and bone loss, the
osseointegration of the implant starts to fail, and the implant must be removed as soon as
possible [4].

It is considered that bacterial infection and related immune–inflammatory responses
are the main causes of peri-implant mucositis and peri-implantitis [5,6]. The half desmo-
somes and basement membranes of the implant–epithelial interface are incomplete; the
tissue around implants lacks periodontium at the tooth–bone interface; the surrounding
collagen fibers are placed parallel to the implant; and vessels providing nutrition are
limited [7]. These factors make soft tissue seal poor and prone to infection by bacteria.
Furthermore, the number of Langerhans cells in the mucosa around the implant is lower
than that in normal tissue [8]. Innate immunity is decreased, so the likelihood of infection
increases significantly. In the first two weeks, the wound is directly exposed to the oral
environment, so it has more contact with bacteria [9,10]. It is at elevated risk for early
infection, and this may affect healing. After bacterial entry, the mucosa produces a protec-
tive stress reaction, and various immune-related signaling pathways are activated [11–15].
Macrophages [16], neutrophils [17], B cells, and T cells [18] increase. As a result of inherent

J. Funct. Biomater. 2022, 13, 169. https://doi.org/10.3390/jfb13040169 https://www.mdpi.com/journal/jfb

https://doi.org/10.3390/jfb13040169
https://doi.org/10.3390/jfb13040169
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jfb
https://www.mdpi.com
https://orcid.org/0000-0001-5555-8800
https://orcid.org/0000-0001-5167-031X
https://doi.org/10.3390/jfb13040169
https://www.mdpi.com/journal/jfb
https://www.mdpi.com/article/10.3390/jfb13040169?type=check_update&version=1


J. Funct. Biomater. 2022, 13, 169 2 of 20

immunity and adaptive immunity, bacteria and foreign materials are cleaned up. Local
titanium ions (Ti) [17,19,20], occlusion [21], and systemic factors (such as smoking [22] and
diabetes [23]) all influence this process. It is normal for organisms to be able to regulate
themselves to achieve balance. However, if bacteria are difficult to eradicate or if other
factors trigger inflammation, this will result in peri-implant inflammatory diseases and
tissue destruction [24–26].

Oral microflora can form obstinate biofilms. Biofilms are organized bacterial pop-
ulations surrounded by extracellular macromolecules, adhering to the surface of living
or unliving objects. It is difficult for the immune system or antimicrobial agents to re-
move biofilms completely [27–30]. Routine treatments, such as mechanical treatments,
cannot completely remove biofilms. All these factors mean that, once biofilms mature,
they can remain for a long time. Biofilms are considered to be the initiating factor of peri-
implantitis [31]. Scientists have conducted many studies to determine how to efficiently
remove biofilms [32–34]. Preventing biofilm formation is the most important way to avoid
peri-implantitis and implant failure [35]. In addition to aseptic techniques and prophylac-
tic antibiotics, antibacterial coatings have received considerable attention. Antibacterial
coatings on titanium surfaces can be divided into two types: passive coatings and active
coatings [36]. Passive coatings on titanium (Ti) mainly kill the bacteria on contact, but they
do not kill the plankton or bacteria that dwell in the bone tissue around the Ti implant.
Active coatings mainly involve the release of antibacterial agents to kill the bacteria, but
this may result in the development of bacterial resistance [37–39].

Recently, due to the widespread abuse of antibiotics [40], the frequent emergence
of drug-resistant bacteria [40], the cytotoxicity of bactericidal substances [41], and the
difficulty in re-supplying drugs and in removing carriers after drug release, researchers
have started to investigate antibacterial adhesion. Here, bacterial adhesion refers to the
process of free bacteria adhering to the surface of dental implants and growing. The aim
of this review is to briefly introduce the process of bacterial adhesion in the oral cavity, to
explore how implant surface properties affect this process, and to summarize the current
antibacterial strategies targeting bacterial adhesion.

We searched the PubMed and Web of Science. The keywords and Boolean operators
are (implant AND antibacterial AND adhesion) OR adhesion.

2. The Adhesion Process of Oral Bacteria

Bacteria that initially colonize the surface of teeth or implants during biofilm formation
are called pioneer bacteria. The adhesion process is complex and regulated by multiple
factors. It can generally be simplified into two steps: approach and attachment [42–46]. The
process is shown in Figure 1.

Approach refers to the proximity to a surface. Bacteria can approach surfaces via
passive or active movement. The flow in bulk liquid, Brownian motion, and gravitational
forces generate passive movement [47,48]. The active movement of bacteria involves
swimming toward a surface through their flagella [49–51]. In bulk liquids, bacteria can
move freely due to the bacterial load, but the flow and shear rates significantly affect this
process [52]. In the vicinity of a surface, active movement plays a major role. By physically
and chemically detecting the presence of a surface, bacteria can find the right direction [44].
Chemical detection includes sensing the concentration of hydrogen ions, antibacterial
agents, and some biological signaling molecules [44]. In this way, bacteria can move toward
surfaces with a specific nature. Physical detection includes receiving physical signals with
the fimbriae or flagella and obtaining information through signal transduction [53]. When
flagellar rotation is impeded, bacteria can also perceive a surface [53]. The deformation of
the cell membrane caused by a surface also leads to the transmission of signals [46,54–56].
As a result, bacteria can swim toward the surface.
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Figure 1. The adhesion process of oral bacteria.

Attachment refers to the generation of a permanent type of adhesion. Bacteria attach
to surfaces through three types of interactions [46]: nonspecific physical–chemical interac-
tions, specific interactions, and surface mechano-sensing. They work sequentially in this
process. Nonspecific interactions include a variety of non-covalent interactions, such as van
der Waals interactions, electrostatic interactions, and acid-based hydrophobic interactions.
They are often affected by surface properties and environmental factors [42,44,57,58]. In
the attachment process, two minima exist for the interaction-free energy [48,59]. The first
minimum is at a separation of 10 nm, and the second is at a separation of 1 nm. The
energy barrier is of a few kT. This means that they need other interactions to overcome
this barrier. Specific interactions involve the paired binding of multiple adhesins to re-
ceptors [46]. Saliva coats the implant due to the oral environment. There are proteins
and sugars that provide the sites for specific interactions [60,61]. Some bacteria have a
network of long polysaccharide chains and other biopolymers on their cytoderm called the
polymeric brush layer. As a result, they can produce steric forces, which play an important
role in attachment [42,62]. They have been demonstrated to be more important than van der
Waals and electrostatic forces [62]. Surface mechano-sensing is the process through which
bacteria actively regulate themselves through signal transduction after they meet suitable
surfaces [46]. Bacterial appendages are the main providers. In this process, the flagellum
not only functions as an adhesin but also explores the surface topography and accesses
microenvironments inaccessible to the whole cell in order to increase contact [63–65]. Fim-
briae, curli, and pili also have receptors that bind to specific or wide ranges of nonspecific
substrates involved in surface attachment [49,66,67]. The bacteria reposition their cells and
surface structures to achieve permanent attachment and to produce adhesin molecules.
Nonspecific interactions are reversible processes, while the following specific interactions
and surface mechano-sensing are firmer and irreversible [68,69]. Bacteria activate specific
genes in this irreversible phase to create a protective extracellular matrix in order to resist
immunity, antibiotics, and harsh conditions. This is why subsequent treatment is diffi-
cult [69]. Interestingly, bacteria do not turn on their genes until they are firmly attached to
the surface [70]. This makes antibacterial attachment an opportunity to fight infection.

After colonizing, the pioneer bacteria modify the micro-environment and provide
binding sites. These sites lead to aggregation and co-aggregation. With the production
of extracellular polymeric substances, the biofilm matrix progress builds up, and larger
bacterial aggregates develop. Further remodeling and maturation form a microcolony [71].
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Then, biofilm dispersal can occur, and bacteria return to a planktonic lifestyle [72]. Phenol-
soluble modulins (PSMs) have an important role in this phase [73]. The detaching bacteria
can adhere to other surfaces, spreading infection [74]. Eventually, the infection becomes
chronic and difficult to treat [75].

3. Implant Surface Properties Affecting Bacterial Adhesion

Due to the complexity of bacterial adhesion, the factors influencing it are also diverse:
pH, oxygen, bacterial species, and multiple strains. Here, we focus mainly on the properties
of implant surfaces. Their mechanisms of influence on bacterial adhesion overlap, and they
describe surface properties from different perspectives. They are described below in order
of importance.

3.1. Roughness and Surface Topography

Roughness is one of the main factors affecting the adhesion of pioneer bacteria [76].
It is generally accepted that there is a threshold for the effect of roughness [76–79]. When
the roughness is less than 0.21 µm, it has no significant effect. When the roughness
exceeds 0.21 µm, it plays an important role [80]. The adhesive area increases with the
roughness. Moreover, the furrows on a surface provide a barrier for bacteria to resist
shear forces. Consequently, the amount of adhered bacteria increases, and the biofilm
matures faster [81,82]. Nevertheless, bacterial species and experimental conditions affect
the outcome. Bacteria cannot simply be inhibited from adhering to surfaces, nor is there a
universally optimal roughness to prevent them from adhering to surfaces [83].

Roughness describes the ridges or projections of a material surface, which is usually
defined as the small distance between two peaks or two troughs (wave distance). With the
development of nanotechnology, roughness is no longer relevant to describing nano-scale
surfaces. Based on numerous studies, nano-scale morphology affects regular bacterial
growth, causing bactericidal effects [83,84]. Some natural nanostructures, such as lotus
leaves, have a definite impact on bacteria, as they are superhydrophobic [85] and can resist
bacterial adhesion. Cicada wings exhibit superhydrophobicity, and their nano-pillars can
damage the bacterial cell membrane to kill bacteria [86–89]. Gecko feet obtain wetness
resistance through bristles and have antimicrobial properties to a certain extent [90–93].

3.2. Hydrophilicity

When the hydrophilicity of a material decreases, bacteria can adhere to the surface
through hydrophobic interactions. When it increases, a layer of water film forms on the
surface and reduces the adhesion of the bacteria. Simultaneously, it is more conducive
to the adhesion of osteocytes [76,94,95]. Nonetheless, some surfaces, such as lotus leaves,
have waxy layered micro/nano structures that can trap air and achieve the effect of super-
hydrophobicity, making bacteria adhere loosely [96,97]. After the trapped air dissolves, this
topography promotes the adsorption of nonspecific proteins and enhances the adhesion of
bacteria [98].

3.3. Charge

Most bacteria are negatively charged, so negatively charged materials are less likely
to be adhered to [99]. The structure can also be influenced by surface charges [100]. As a
material becomes more hydrophilic, so does the effect of the charge on the bacteria. Due
to the oral environment, calcium ions may play an important role in promoting bacterial
adhesion. Similarly, negatively charged polymers, such as heparin, can promote biofilm
formation, similar to extracellular DNA secreted by Staphylococcus aureus [101].

Some cationic groups, such as quaternary ammonium and polyethyleneimines, have
antibacterial activity. They can also affect the long-term structure of biofilms [102]. Con-
currently, shear forces in the oral cavity can remove dead bacteria, which is conducive to
maintaining antibacterial properties. However, the presence of salivary films can affect its
properties, and dental materials may also affect the composition and properties of salivary
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films [103–106]. Further investigations of its properties in a real-world oral environment
are necessary.

3.4. Surface Free Energy

A higher surface free energy generally corresponds to more surface-active ions, result-
ing in stronger attraction, so it is generally believed that a lower surface free energy may
reduce bacterial adhesion [58,82]. A lower surface free energy can make biofilms relatively
immature. For some nanostructures, a higher nano-roughness increases the surface energy
and promotes protein and cell adsorption. Meanwhile, a lower nano-roughness can reduce
the anchor points for bacteria, thus reducing adhesion [107]. It is also believed that regular
nanostructures may impact bacterial adhesion more than irregular nanostructures [107].

The above properties are summarized in Table 1. In addition to these factors, other
properties, such as the stiffness of the material, also affect bacterial adhesion [108]; however,
very few studies have been conducted on this mechanism [109].

Table 1. Summary of related factors and their effects.

Factors Methods Favorable Results References

Roughness Increases the adhesive area
Provides a barrier against shear forces Low roughness [80]

Hydrophilicity Forms a hydration layer High hydrophilicity [76,94,95]
Charge Forms electrostatic interactions Negative charge [100]

Surface free energy Provides an attractive force Low surface free energy [58,82]

4. Anti-Adhesion Strategies for Titanium Implants

The process of infection and healing around dental implants is often described as a
“race” between bacteria and cells [110], and anti-adhesion is one of the common strate-
gies used to inhibit bacterial growth. Routine anti-adhesion strategies include the use of
anti-adhesion coatings and anti-adhesion nano-topographies (Figure 2) [111–116]. Anti-
adhesion coatings rely primarily on the nature of their materials to reduce various inter-
actions. The strategy of anti-adhesion nano-topographies is to artificially build a nano-
morphology in order to give surfaces an anti-adhesive quality. Some cases also use other
materials to form coatings. These cases still use the nano-morphology strategy because
the anti-adhesive quality comes from their surface morphology. Researchers use coatings
because their materials are suitable for creating nano-scale morphologies.
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4.1. Anti-Adhesion Coating

Currently, researchers are studying the hydrophilicity of materials [117–119]. A firm
hydration layer can form a physical barrier to prevent bacteria from approaching it. Fur-
thermore, hydrogen bonds and electrostatic interactions exist between material particles
and water molecules. Bacteria must destroy the original connection to replace the water
molecules and form new force interactions (van der Waals and electrostatic forces) with
material surfaces. This process forms a thermodynamic energy barrier. The hydrophilic-
ity is related to the polymer structure, particularly the effect of carbon spacer lengths
(CSLs) [120]. Meanwhile, an in vitro study has shown that this process does not affect
cell adhesion, possibly due to the stronger peptidoglycan in the bacterial cell wall and the
smaller bacterial size [121]. The main goal of studying anti-adhesive coatings is to find
suitable materials with a strong hydration layer [122]. In addition, an antibacterial adhesion
coating can also become multifunctional by adding other components. The following is
introduced depending on whether the function is single or multiple [111–116,123].

4.1.1. Simple Anti-Adhesion Coatings

Polyethylene glycol (PEG) coatings are the most common anti-adhesive coating [111,124,125].
PEG is highly hydrophilic, and its special structure can link water molecules through hydrogen
bonds [126], forming a hydration layer [127]. Combined with the PEG coating, the hydration
layer forms a barrier in space to prevent bacteria from approaching. The mobility and repulsion
of PEG further enhance the barrier [124]. Even though PEG is chemically stable, it is easily
oxidized in most biochemically relevant solutions and does not provide long-term antibacterial
protection after implantation. Moreover, PEG in vivo may cause dysregulation in the immune–
inflammatory reaction, complicating the surrounding tissue immunological environment and
affecting osseointegration [128,129].

A variety of coatings, such as zwitterionic polymer coatings [130], chitosan coat-
ings [131], and hyaluronic acid coatings [132], can also inhibit bacteria adhesion through
their hydration layers. Among these polymers, zwitterionic polymers have recently re-
ceived a great deal of attention. Zwitterionic polymers usually form side chains with posi-
tive/negative ion functional groups on the main chain and can also polymerize molecules
with positive and negative ions in a 1:1 ratio [133–137], and a suitably formulated mixed-
charged zwitterionic copolymer can achieve a better antibiofilm effect than that of some
classical zwitterionic polymers [138]. The solvation of zwitterionic polymers can produce
high solvent water retention, and dipole–electrostatic interactions and the electrostatic
induction of ions can form a firm hydration layer [139]. Moreover, zwitterionic poly-
mers have strong salt affinities, so electrolytes in physiological environments enter their
molecules. As a result, zwitterionic polymers stretch, and ionic solvation occurs, enhancing
hydrogen bonds. This allows them to occupy more solvent water and to improve their
hydrophilicity [140]. Compared with PEG coatings, zwitterionic coatings are more stable
and more firmly hydrated [141–144]. The water molecules around zwitterionic polymer
coatings are arranged in different directions; thus, they have higher degrees of freedom
and an energy barrier. As a result, they have a better antibacterial effect [145]. Additionally,
this promotes template biomineralization and osseointegration [146,147].

Figure 3 shows more information about simple anti-adhesion coatings [129,148–150].
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Figure 3. (A) Snapshot of a hydration water layer and alginate gel near a PEG coating: (a) side view
and (b) top view. The PEG coating is represented by a van der Waals surface for clarity. Ref. [151]
Reprinted with permission from Xiang et al. Copyright© 2016 American Chemical Society. (B) The
resulting blocks contained 0, 20, 40, or 60 mg of PEG per gram of demineralized bone matrix (DBM)
and were called DBMP-GP-0, DBM-GP-1, DBM-GP-2, and DBM-GP-3, respectively. Early-phase tissue
reactions to PEG-cross-linked-gelatin-coated DBM. (a) DBM-GP-0 and DBM-GP-3 were explanted
at days 1 and 3 postsurgery and H&E stained. D, DBM; M, muscle; gel, PEG cross-linked gelatin;
mag, 10× and 40×. (b) Left, a representative image of mast cells (blue arrow) and their activation
(red arrow); right, quantitative number of total and activated mast cells were measured at 1 and
3 days between DBM-GP-0 and DBM-GP-3. (c) IHC staining of CD80+ and CD163+ cells on explants.
Scale bar = 100 µm [129]. Reprinted with permission from Bo et al. Copyright © 2020 American
Chemical Society. (C) (a) Sum frequency generation (SFG) spectra collected from poly-(carboxybetaine
methacrylate) (pCBMA)/water (pH~7) and poly-(sulfobetaine methacrylate) (pSBMA)/water (pH~7)
interfaces. (b) Enlarged SFG spectra collected from pCBMA/water (pH~7) and pSBMA/water (pH~7)
interfaces in the C−H stretching frequency region. (c) Scheme showing water molecules on two
zwitterionic polymer surfaces [152]. Reprinted with permission from Xiaofeng et al. Copyright ©
2019 American Chemical Society. (D) Antibacterial effect of pSBMA- and pCBMA-grafted Ti/TiO2

substrates against E. coli and S. aureus. Uncoated and polydopamine (pDA)-coated substrates were
used as controls. (a,c) Representative fluorescence images and (b,d) quantification of E. coli and
S. aureus cells adhering to surfaces after incubation for 6 h as determined by the SYTO 9/PI stain.
The scale bars represent 200 µm. Each value represents the average and standard deviation of
three different locations on three replicate samples. The fluorescence intensity of each sample was
calculated as the percentage of the uncoated substrate. Statistical analysis was carried out using
GraphPad Prism version 5. Each substrate was compared with the uncoated control using the
unpaired Student’s t test (*** p < 0.0001, ns: not significant (p > 0.05)) [153]. Reprinted with permission
from Yohan et al. Copyright © 2022 American Chemical Society.
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In addition, UV-irradiated titanium dioxide is super-hydrophilic and can achieve
antibacterial effects [154]. Titanium nitride (TiN) can also inhibit bacteria adhesion due
to its high chemical inertness, hardness, low friction coefficient, and corrosion resistance,
significantly reducing the interactions [127,155].

In addition to traditional anti-adhesion coatings, quorum-sensing coatings are also
gradually attracting the attention of scientists. Quorum sensing refers to the phenomenon
in which bacteria release signal molecules, causing them to increase in number, affect the
expression of specific genes and behavioral responses, and regulate their physiological
characteristics [156]. Currently, some substances, such as cinnamaldehyde, can interfere
with quorum sensing and prevent biofilm formation [148]. However, because the specific
process of quorum sensing varies across different bacteria, it is difficult to select a substance
that can interfere with the quorum-sensing process of most bacteria, which brings great
challenges to this pathway [149].

4.1.2. Composite Anti-Adhesion Coatings

The effect of using the above anti-adhesion coatings alone is limited, and achieving the
ideal antibacterial effect is difficult. Anti-adhesion coatings are often used in combination
with systemic antibiotics [150]. To improve their performance, researchers have chosen
to functionalize them further. Some studies have demonstrated that being loaded with
antimicrobial peptides, antibiotics, bactericidal agents, or some metal ions can enhance
their antibacterial properties [119,157,158]. Researchers previously grafted an antimicrobial
peptide, Magainin I (Mag), to a titanium oxide surface [159]. PEG was also used to decrease
adhesion. The adhesion of proteins and bacteria was considerably reduced in this coating.
Due to this special coating, adherent bacteria grew slowly [159].

Osseointegration is another important process to be considered. Because, to some
extent, bacterial adhesion and cell adhesion are similar processes, some anti-adhesion
surfaces may simultaneously damage cell adhesion and affect osseointegration. Therefore,
the coating often immobilizes bioactive growth factors and cell adhesion sequences to pro-
mote osseointegration. Additionally, some researchers have tried to segment antimicrobial
peptides in these coatings, and the results are promising. For example, poly (l-lysine)-
grafted-poly(ethylene glycol) (PLL-g-PEG) can decrease the adhesion of fibroblastic cells,
osteoblastic cells, and bacteria, whereas PLL-g-PEG functionalized with peptides of the
RGD (Arg-Asp-Gly) type can restore the adhesion of fibroblastic and osteoblastic cells [160].
This minimizes the effect of nonspecific protein adsorption on bacterial adhesion. As a
result, RGD enhances osseointegration. Researchers have also tried other methods. The
study conducted by Harris et al. covalently grafted dopamine, followed by carboxymethyl
chitosan (CMCS) or hyaluronic acid-catechol (HAC). Then, vascular endothelial growth
factor (VEGF) was conjugated to the polysaccharide-grafted surface. Its antibacterial prop-
erties and ability to promote bone cell growth were certified [161]. Loading antibacterial
agents on bone induction surfaces is also a hot topic in current research [162].

These two objectives can also be achieved together, and the layer-by-layer (LAL)
method is suitable [163]. More information is shown in Figure 4.

4.2. Anti-Adhesion Nano-Topographies

With the development of nanotechnology, researchers have found many nano-topogr-
aphies with antibacterial and even bactericidal properties, and they have begun to focus on
specific surface topographies. Some natural nano-topographies and their properties are
described in Table 2.
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Figure 4. (A) Preparation and biological function of Ti-HP. (a) Tannic acid (TA) is deposited and
polymerized on a Ti surface under UV irradiation. (b) A hydroxyapatite (HA) layer adheres to the
TA layer and endows coating with osteogenesis ability. (c) The outermost PEG layer clinging to
the superimposed TA layer enables the coating to inhibit bacterial adhesions. (d) The Ti-HP rod
promotes osseointegration in a rat model. (B) Chemical characterization and surface wettability
of coatings. (a) Fluorescence micrographs and (b) the corresponding integrated optical density
(IOD) values of samples before and after being coated by polyethylene glycolated isothiocyanate
(PEG-FITC). (c) The element mappings (Ti, O, C, Ca, and P) and quantified element analysis (O, C,
Ca, and P) of the corresponding areas of Ti, Ti-TA, Ti-HA, and Ti-HP. (d) Attenuated Total Reflection–
Fourier Transform Infrared Spectroscopy (ATR-FTIR) spectra of Ti, Ti-TA, Ti-HA, and Ti-HP. (e) X-ray
photoelectron spectrometer (XPS) survey of the different steps in the preparation process. Dissimilar
letters (x, y, z, and w) indicate values that are significantly different from each other’s group (p < 0.05).
(C) Comparison of anti-adhesion properties among Ti, Ti-TA, Ti-HA, and Ti-HP. The fluorescence
micrograph and the corresponding IOD values of (a) bovine serum albumin (BSA), (b) Escherichia
coli (E. coli), and (c) Staphylococcus aureus (S. aureus) on surfaces after 24 h incubation. (d) Scanning
electron microscopy (SEM) images of bacteria on samples incubated for 24 h. Dissimilar letters
(x, y, z, and w) indicate values that are significantly different from each other’s group (p < 0.05).
(D) Osteogenic differentiation of BMSCs on Ti, Ti-TA, Ti-HA, and Ti-HP. (a,b) Alkaline phosphatase
(ALP) staining and quantitative analysis of bone marrow stromal cells (BMSCs) on samples after a
7-day osteogenic induction. (c) Alizarin Red S staining and (d) quantitative analysis among samples
after a 14-day osteogenic induction. (e) mRNA expression levels of Alp, Ocn, and Runx2 determined
by qRT-PCR. Dissimilar letters (x, y, z, and w) indicate values that are significantly different from
each other’s group (p < 0.05). Ref. [163] Reprinted with permission from Yifang et al. Copyright ©
2022 American Chemical Society.



J. Funct. Biomater. 2022, 13, 169 10 of 20

Table 2. Natural nano-topographies and their properties.

Surfaces Characteristics Nano-Topographies References

Taro leaves Anti-biofouling, hydrophobic,
and self-cleaning

Microscale elliptical bumps (10–30 µm in
diameter) covered by hierarchal, waxy

nano-scale epicuticular crystals
[164,165]

Lotus leaves Anti-biofouling, hydrophobic,
and self-cleaning

Micro-scale elliptical bumps, covered by
nano-scale crystals [85,165]

Shark skin
Self-cleaning, anti-biofouling,
hydrophobic, drag-reducing,

and aerodynamic

Triangular or placoid micro-structured riblets,
some of which have small grooves in the

direction of water scales
[166–168]

Gecko skin Adhesion properties, anti-wetting
properties, and bactericidal ability

A periodic array of hierarchal microscale
keratinous hairs, approximately 30–130 µm in

length, 5 µm in diameter, and split into hundreds
of nano-scale spatula 200–500 nm in diameter

[169]

Cicada wing Hydrophobic and bactericidal ability
Nano-pillar diameter range of 82–148 nm,
44–177 nm pillar spacing, and 159–146 nm

in height
[88,170]

Dragonfly wing Hydrophobic, self-cleaning, and
bactericidal ability

Irregularly shaped nanostructures between
83.3 and 195 nm [171]

Butterfly wing
Anisotropic flow effects, hydrophobic,

low drag, anti-biofouling, and low
bacterial adhesion properties

An array of aligned scales covered by hierarchal
micro-grooves, approximately 1–2 µm

in diameter
[172,173]

The most widely known anti-adhesive nano-topography is lotus leaves. The wax
on lotus leaves has an infiltration angle of up to 161◦ through its chemical properties
and unique layered micro/nano topography [85]. Two-dimensional nanoporous surfaces,
three-dimensional nanotubule-like surfaces [174], and hydrophilic titanium dioxide nan-
otubes [175,176] can inhibit bacterial adhesion by reducing the surface area and trapping
air to form superhydrophobic surfaces, but their antibacterial ability is limited. Some
researchers have obtained a superhydrophobic surface on titanium surfaces by mimicking
lotus leaves using femtosecond laser ablation technology, which has a significant inhibitory
effect on the adhesion of Pseudomonas aeruginosa but an insignificant effect on Staphylo-
coccus aureus. The authors believe that this may be because the spherical Staphylococcus
aureus requires smaller adhesion points [177,178].

Additionally, the trapped air in the nanostructure gradually dissolves over time, lead-
ing to decreased antibacterial properties and even an increased adsorption of nonspecific
proteins [98]. This is an important influencing factor in its antibacterial life. Moreover,
since nanomaterials are still mostly tested in vitro, it is still difficult to determine their
toxicity [179].

Cicada wings and single-wall carbon nanotubes have mechanical sterilization func-
tions. The more complex and sharper the nanostructure, the stronger the bactericidal
effect. In addition to titanium nano-morphologies, polymer, graphene, zeolite, and metal
nanoparticles are gaining increasing attention from researchers. They can be loaded with
antibacterial agents, metal ions, and bioactive factors to improve the antibacterial properties
and enhance osseointegration. By doing so, implants become more stable. One example
is shown in Figure 5 [180]. Another direction is to use nanoparticles as “vaccines”. If
“smart” nanoparticles are designed to mimic bacteria in morphology and function, they
can diagnose and treat peri-implantitis through immune-modulating mechanisms [181].

Wear and corrosion are also important factors in immune–inflammatory responses [182,183].
Frictional stresses may result in the production of pro-inflammatory cytokines, which are associ-
ated with the apoptotic response. Harmful corrosion products can also result in cytotoxicity
and cause damage to tissues and organs. Titanium and its alloys have a lower hardness than
other metals, so their wear hardness is lower [184,185]. Electrochemical corrasion can also
easily occur due to the body fluid environment [186]. There are studies showing that specific
polymer composite coatings and some metal nanomaterials can improve the wear and corrosion
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resistance [187–191]. More relevant studies are still needed, especially for these functional
implant surfaces.
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which are associated with the apoptotic response. Harmful corrosion products can also 

Figure 5. (A) SEM images of samples. SEM images of Ti and Ti−Zr slices were observed after
sand blasting (a,c), where panels (b,d) are larger views of the red areas in panels (a,c). SEM images
of ZnO nanorods on the surfaces of Ti slices (e,f) and Ti−Zr slices (g,h) were studied before and
after ultrasound. SEM images of ZnO nanospheres on the surfaces of Ti slices (i,j) and Ti−Zr slices
(k,l) were studied before and after ultrasound. SEM images of ZnO NRS on the surfaces of Ti slices
(m,n) and Ti−Zr slices (o,p) were observed before and after ultrasound. (B) Transmission electron
microscopy (TEM) and selected area electron diffraction (SAED) diffraction patterns of samples. TEM
and SAED diffraction patterns of two different ZnO samples, (a,c) ZnO nanorods, and (b,d) ZnO
nanospheres. X-ray diffraction (XRD) spectra of the Ti and Ti−Zr substrates coated with three different
ZnO nanostructures (e,f) (N represents ZnO, and • represents Ti). (C) Antibacterial effect of different
ZnO samples against S. aureus and E. coli under different incubation times in vitro. ZnO samples
cocultured with bacteria for 6 h (a,c) and 24 h (b,d). (e) Diagram of SD rats 2 weeks after implant
surgery. Four respective plate colony counting photos are provided to show the amount of bacteria
on the surfaces of implants. (f) Antibacterial capability of the different ZnO coatings on implant
surfaces (Ti or Ti−Zr) against S. aureus 2 weeks after surgery. * p > 0.05, ** 0.01 < p < 0.05, and
*** 0.001 < p < 0.01. (D) Cell viability of the human fibroblasts. The cell viability of the human
fibroblasts in Ti (a–c) and Ti−Zr (d–f) groups after 1, 3, and 7 days of cell culture with leaching
liquor of different samples is shown. *** 0.001 < p < 0.01). Ref. [180] Reprinted with permission from
Xiaheng et al. Copyright © 2020 American Chemical Society.

Although these strategies have been explored for many years, studies in vivo are
few, studies about clinical performance are few, and not one has reached the commercial
stage [192]. Tetsurou et al. focused on the antibacterial effect of silver nanoparticles and
studied them in vivo [193]. The result of the clinical trial proved that they can prevent
biofilm accumulation. However, the mental cytotoxic issue, without an exact solution,
limits the clinical application [194]. The complexities of the coating design, the poor or
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lack of antimicrobial strategies, and the safety issues in human clinical trials are the gap
between laboratorial studies and clinical application [193].

Additionally, there is a lack of unified evaluation criteria for anti-adhesion strategies.
Currently, most research is conducted in vitro. Researchers generally select the main bac-
teria causing peri-implantitis, such as Escherichia coli, Staphylococcus aureus, Streptococcus
mutans, and Porphyromonas gingivalis [180,195,196], or they directly extract bacteria from
saliva to simulate anaerobic and aerobic experiments. To demonstrate the antibacterial
properties, they use the ratio of alive to dead bacteria calculated by immunofluorescence
staining [193,197–199]. A selection of specific bacteria cannot replicate the complex mi-
croecological environment in the oral cavity, and there are no standard patients who can
provide saliva, resulting in poor comparisons between experiments. The comparability
between experiments may be improved if a unified composite strain and concentration
are used based on the composition of human saliva and if the experiments are conducted
under predetermined conditions.

5. Outlook

The current strategies for antibacterial adhesion of dental implants mainly focus on the
hydrophilicity and nano-topography of the implant material to reduce bacterial adhesion
and mitigate the risk of infection before biofilm formation. Although the anti-adhesion
strategy avoids the risks of drug resistance and cytotoxicity, it still has many problems.
As it has no active bactericidal function, once the bacteria are successfully colonized, they
often cause infection [200]. Due to some common mechanisms in the adhesion process
between cells and bacteria, some anti-adhesive coatings can also affect osseointegration and
the healing effect of implantation [113]. In addition to the inability to remove coatings, the
coatings themselves age and are difficult to reload. Even though fungicides and bioactive
factors can improve some problems, peri-implant infection remains a problem.

There is a growing interest in antibacterial surfaces that are “smart” [200,201]. They
remain “biologically inert” without making contact with bacteria to facilitate cell adhesion.
Although they can efficiently kill bacteria and remove the accumulated dead bacteria
after making contact with bacteria or triggering control conditions, they can maintain
antibacterial properties for a long time [202]. Researchers are still far from finding a suitable
antibacterial surface for clinical use. The ideal strategy should have good antibacterial
properties that do not affect cell adhesion in vitro. Then, it should be proven to be secure,
stable, and effective in vivo. The manufacturing method should be widely used so that the
implant can be produced on a large scale. Additionally, the cost needs to be considered.
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streptococci to nanostructured titanium surfaces. Dent. Mater. 2015, 31, 1460–1468. [CrossRef] [PubMed]

176. Choi, W.; Chan, E.P.; Park, J.-H.; Ahn, W.-G.; Jung, H.W.; Hong, S.; Lee, J.S.; Han, J.-Y.; Park, S.; Ko, D.-H.; et al. Nanoscale
Pillar-Enhanced Tribological Surfaces as Antifouling Membranes. ACS Appl. Mater. Interfaces 2016, 8, 31433–31441. [CrossRef]
[PubMed]

177. Fadeeva, E.; Truong, V.K.; Stiesch, M.; Chichkov, B.N.; Crawford, R.J.; Wang, J.; Ivanova, E.P. Bacterial Retention on Superhy-
drophobic Titanium Surfaces Fabricated by Femtosecond Laser Ablation. Langmuir 2011, 27, 3012–3019. [CrossRef]

178. Ostuni, E.; Chapman, R.G.; Liang, M.N.; Meluleni, G.; Pier, G.; Ingber, A.D.E.; Whitesides, G.M. Self-Assembled Monolayers That
Resist the Adsorption of Proteins and the Adhesion of Bacterial and Mammalian Cells. Langmuir 2001, 17, 6336–6343. [CrossRef]

179. Hardes, J.; Streitbürger, A.; Ahrens, H.; Nusselt, T.; Gebert, C.; Winkelmann, W.; Battmann, A.; Gosheger, G. The Influence of
Elementary Silver Versus Titanium on Osteoblasts Behaviour In Vitro Using Human Osteosarcoma Cell Lines. Sarcoma 2007,
2007, 26539. [CrossRef]

180. Wang, X.; Fan, H.; Zhang, F.; Zhao, S.; Liu, Y.; Xu, Y.; Wu, R.; Li, D.; Yang, Y.; Liao, L.; et al. Antibacterial Properties of Bilayer
Biomimetic Nano-ZnO for Dental Implants. ACS Biomater. Sci. Eng. 2020, 6, 1880–1886. [CrossRef]

181. Holay, M.; Guo, Z.; Pihl, J.; Heo, J.; Park, J.H.; Fang, R.H.; Zhang, L. Bacteria-Inspired Nanomedicine. ACS Appl. Bio Mater. 2021,
4, 3830–3848. [CrossRef]

182. An, R.; Dong, Y.; Zhu, J.; Rao, C. Adhesion and friction forces in biofouling attachments to nanotube- and PEG- patterned TiO2
surfaces. Colloids Surf. B Biointerfaces 2017, 159, 108–117. [CrossRef] [PubMed]

183. Alves, V.; Reis, R.; Santos, I.; Souza, D.; Gonçalves, T.D.F.; Pereira-Da-Silva, M.; Rossi, A.; da Silva, L. In situ impedance
spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25 ◦C and 37 ◦C. Corros. Sci.
2009, 51, 2473–2482. [CrossRef]

184. Jäger, M.; Jennissen, H.P.; Dittrich, F.; Fischer, A.; Köhling, H.L. Antimicrobial and Osseointegration Properties of Nanostructured
Titanium Orthopaedic Implants. Materials 2017, 10, 1302. [CrossRef] [PubMed]

185. Salou, L.; Hoornaert, A.; Louarn, G.; Layrolle, P. Chapter 20—Bone Apposition on Nanoporous Titanium Implants. In Handbook of
Nanoceramic and Nanocomposite Coatings and Materials; Makhlouf, A.S.H., Scharnweber, D., Eds.; Butterworth-Heinemann: Oxford,
UK, 2015; pp. 427–444.

186. Hedayati, M.; Salehi, M.; Bagheri, R.; Panjepour, M.; Naeimi, F. Tribological and mechanical properties of amorphous and
semi-crystalline PEEK/SiO2 nanocomposite coatings deposited on the plain carbon steel by electrostatic powder spray technique.
Prog. Org. Coatings 2012, 74, 50–58. [CrossRef]

187. Duan, J.; Wang, J.; Di, Y.; Yang, Y.; Yang, Y. Bio-corrosion behavior, antibacterial property and interaction with osteoblast of laser
in-situ fabricated Ti–Si–Cu coatings on Ti–6Al–4V alloy. Biomed. Mater. 2021, 16, 065001. [CrossRef]

188. Wood, J.; Hayles, A.; Bright, R.; Palms, D.; Vasilev, K.; Hasan, J. Nanomechanical tribological characterisation of nanostructured
titanium alloy surfaces using AFM: A friction vs velocity study. Colloids Surf. B Biointerfaces 2022, 217, 112600. [CrossRef]

189. Qin, W.; Ma, J.; Liang, Q.; Li, J.; Tang, B. Tribological, cytotoxicity and antibacterial properties of graphene oxide/carbon
fibers/polyetheretherketone composite coatings on Ti–6Al–4V alloy as orthopedic/dental implants. J. Mech. Behav. Biomed. Mater.
2021, 122, 104659. [CrossRef]

190. Wang, Z.; Wang, X.; Wang, Y.; Zhu, Y.; Liu, X.; Zhou, Q. NanoZnO-modified titanium implants for enhanced anti-bacterial activity,
osteogenesis and corrosion resistance. J. Nanobiotechnol. 2021, 19, 353. [CrossRef]
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