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Rationale & Objective: Novel metabolite bio-
markers of kidney failure with replacement therapy
(KFRT) may help identify people at high risk for
adverse kidney outcomes and implicated pathways
may aid in developing targeted therapeutics.

Study Design: Prospective cohort.

Setting & Participants: The cohort included 3,799
Atherosclerosis Risk in Communities study partic-
ipants with serum samples available for measure-
ment at visit 1 (1987-1989).

Exposure: Baseline serum levels of 318
metabolites.

Outcomes: Incident KFRT, kidney failure (KFRT,
estimated glomerular filtration rate <15 mL/min/
1.73 m2, or death from kidney disease).

Analytical Approach: Because metabolites are
often intercorrelated and represent shared path-
ways, we used a high dimension reduction tech-
nique called Netboost to cluster metabolites.
Longitudinal associations between clusters of me-
tabolites and KFRT and kidney failure were esti-
mated using a Cox proportional hazards model.

Results: Mean age of study participants was 53
years, 61% were African American, and 13% had
diabetes. There were 160 KFRT cases and 357
kidney failure cases over a mean of 23 years. The
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314 metabolites were grouped in 43 clusters. Four
clusters were significantly associated with risk of
KFRT and 6 were associated with kidney failure
(including 3 shared clusters). The 3 shared clusters
suggested potential pathways perturbed early in
kidney disease: cluster 5 (15 metabolites involved
in alanine, aspartate, and glutamate metabolism as
well as 5-oxoproline and several gamma-glutamyl
amino acids), cluster 26 (6 metabolites involved
in sugar and inositol phosphate metabolism),
and cluster 34 (21 metabolites involved in
glycerophospholipid metabolism). Several individual
metabolites were also significantly associated with
both KFRT and kidney failure, including glucose
and mannose, which were associated with higher
risk of both outcomes, and 5-oxoproline, gamma-
glutamyl amino acids, linoleoylglycerophosphocholine,
1,5-anhydroglucitol, which were associated with
lower risk of both outcomes.

Limitations: Inability to determine if the metabo-
lites cause or are a consequence of changes in
kidney function.

Conclusions: We identified several clusters of
metabolites reproducibly associated with develop-
ment of KFRT. Future experimental studies are
needed to validate our findings as well as continue
unraveling metabolic pathways involved in kidney
function decline.
Progressive kidney decline can result in kidney failure
with replacement therapy (KFRT) or death from kid-

ney disease. KFRT is associated with many comorbid
conditions that can decrease quality of life, such as anemia,
acidosis, and mineral and bone disorders, and has an
exceedingly high mortality rate.1,2 Further, kidney failure
produces significant financial costs for the healthcare sys-
tem, with annual Medicare spending for patients with
KFRT totaling $35.9 billion in 2017, and the US preva-
lence is expected to increase by 29%-68% through
2030.1,3 In order to better prevent and treat kidney failure,
we need to better understand the biological underpinnings
of kidney disease development and identify early pre-
dictors of kidney outcomes.

Metabolomics has been increasingly used to understand
the underlying biology of kidney disease.4-6 Studies have
identified several individual metabolites related to risk of
incident chronic kidney disease (CKD), such as 5-
oxoproline and 1,5-anhydroglucitrol in the Atheroscle-
rosis Risk in Communities (ARIC) study.4 In populations
with diabetes, a handful of candidate metabolites have also
been used to chart glomerular filtration rate trajectories
and kidney failure risk.7-11 However, because metabolites
are often highly intercorrelated, the standard approach of
screening for associated metabolites using a Bonferroni
correction has been criticized as overly conservative (ie,
resulting in many false negatives).12 Grouping metabolites
into related clusters before investigating their associations
with outcomes may help to limit the number of compar-
isons and illuminate potentially meaningful biological
pathways.

In this study, we used a clustering approach to identify
novel metabolomic biomarkers and pathways of KFRT and
kidney failure in a general population sample. We
employed a dimension reduction technique to create
eigenclusters of correlated metabolites, allowing us to
explore cumulative effects of highly related metabolites
and evaluate for potentially important shared pathways. In
the secondary analysis, we examined individual compo-
nent metabolites from significant eigenclusters to deter-
mine which metabolites were most significantly associated
with the outcomes.
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PLAIN LANGUAGE SUMMARY
Metabolites are small breakdown products of meta-
bolism. Early metabolic markers of kidney damage
could help with patient risk stratification and prognos-
tication. However, metabolites are often interrelated,
and their shared biological pathways are not well un-
derstood. In this study, we used an unsupervised
approach to group metabolites and then related these
groups to the development of kidney failure. We found
several metabolite groups that represent plausible bio-
logical pathways disrupted early in the course of kidney
disease.
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METHODS

Study Population

The ARIC study is a prospective community-based cohort
of 15,792 individuals who were recruited and enrolled
between 1987 and 1989 from 4 US communities (Forsyth
County, North Carolina; Jackson, Mississippi; Minneapolis
suburbs, Minnesota; and Washington County, Maryland).
Details on the ARIC study design and methods were pre-
viously published.13 Participants attended follow-up visits
every 3 years for the first 9 years of the study, followed by
visit 5 between 2011 and 2013, visit 6 between 2016 and
2017, and visit 7 between 2018 and 2019. Institutional
review boards at each field center approved the study, and
written informed consent was obtained from participants
at baseline and follow-up visits. The Johns Hopkins
Bloomberg School of Public Health Institutional Review
Board approved this study (IRB00012998; IRB00009957;
IRB00011012).

Serum samples were collected at visit 1 and stored at -80�C
until metabolomic profiling was performed. For this study,
a random selection of samples from 1,977 Black partici-
pants from the Jackson, Mississippi field center was sent for
profiling by Metabolon, Inc in 2010, followed by a second
random selection of samples from an additional 2,055
participants from all 4 sites profiled by Metabolon in 2014.
Participants were excluded from the current study if they
had prevalent CKD, defined as an estimated glomerular
filtration rate (eGFR) <60 mL/min/1.73 m2 at baseline
(n = 67), prevalent KFRT or kidney failure (n = 3), were
missing covariate measurements (n = 160), or missing
metabolite measures (n = 3). A total of 3,799 participants
were included in this analysis. The collection obtained
exclusively from Jackson, Mississippi constituted our
training dataset. The sample derived from all 4 sites served
as our validation dataset.

Assessment of Metabolites

Baseline fasting serum samples were assayed by Metabolon
using an untargeted, gas chromatography/mass spectrom-
etry and liquid chromatography/mass spectrometry-based
metabolomic protocol.14,15 Metabolomic assessment and
2

data cleaning was previously described.4,16,17 Metabolites
were excluded if more than 80% of samples had missing
values in either our training or validation set, log-scale
variance was < 0.01 or variance was missing, exogenous
metabolites had missing values, and metabolites were not
detected in both sets (Figure S1). A total of 318 metabolites
were included in this analysis. Endogenous metabolites with
missing values were imputed with the lowest value detected
in each set. For quality control, 97 samples were analyzed
with both the training set and validation set, with a median
correlation coefficient of 0.71 across 285 metabolites, as
reported previously.18

Outcomes

Incident KFRT was defined as the initiation of kidney
replacement therapy (either dialysis or transplant), which
was identified through linkage with the US Renal Data
System registry last updated in July 2017.19

We also included a composite kidney failure outcome.
Incident kidney failure was defined by meeting at least 1 of
the following criteria: eGFR <15 mL/min/1.73 m2 at a
study visit, KFRT identified through linkage to US Renal
Data System registry, or use of one of the previously
validated International Classification of Diseases, Ninth/Tenth Revision
(ICD-9/10) codes during a hospitalization or in a death
certificate.20 The main goal of this outcome was to addi-
tionally capture individuals who chose not to initiate
kidney replacement therapy or those who died prior to
inclusion in the US Renal Data System registry.

Assessment of Covariates

Baseline covariate data was collected at visit 1. Participants’
age, sex, race, study center, and smoking status were
collected from interviewer-administered questionnaires.
Age was modeled as a continuous variable. Similar to
previous ARIC analyses, we combined participant’s race
and study center into a “race-center” variable, because of
study centers containing nonuniform racial distributions.21

Smoking status was treated as a categorical variable
with categorization including current, former, and never/
unknown. Two participants had unknown smoking
history.

Clinical covariates included diabetes, history of coro-
nary heart disease, use of hypertension medications, body
mass index, systolic blood pressure, baseline eGFR, and
high-density lipoprotein cholesterol. Diabetes was defined
as nonfasting blood glucose ≥200 mg/dL, fasting blood
glucose ≥126 mg/dL, self-reported history of diabetes
mellitus, diagnosed by a physician, or reported use of
diabetic medications. History of coronary heart disease was
defined as meeting 1 of these criteria: self-reported diag-
nosis of myocardial infarction, prior coronary revasculari-
zation, or silent myocardial infarction on electrocardiogram.
Systolic blood pressure was measured 3 times with a
random zero sphygmomanometer after the participant
rested for 5 minutes. The first measurement was dropped,
and the remaining 2 measurements were averaged.22
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Table 1. Baseline Characteristics of Participants

Characteristics Training Set Validation Set
No. of participants 1,773 2,026
Age (y) 52.8 (5.7) 54.2 (5.7)
Female, n (%) 1,130 (63.7%) 1,140 (56.3%)
Black 1,773 (100%) 559 (27.6%)
Forsyth County, North
Carolina

0 (0%) 577 (28.5%)

Jackson, Mississippi 1,773 (100%) 430 (21.2%)
Minneapolis Suburbs,
Minneapolis

0 (0%) 517 (25.5%)

Washington County,
Maryland

0 (0%) 502 (24.8%)

Antihypertensive
medication use

673 (38.0%) 537 (26.5%)

Diabetes 282 (15.9%) 230 (11.4%)
History of CHD 68 (3.8%) 119 (5.9%)
Current Smoker 503 (28.4%) 555 (27.4%)
Former Smoker 412 (23.2%) 652 (32.2%)
Never/unknown smoker 858 (48.4%) 819 (40.4%)

eGFR (mL/min/1.73 m2) 113 (16.6) 102 (15.1)
SBP (mm Hg) 128 (21.0) 122 (19.7)
Cholesterol (mg/dL) 215 (42.5) 215 (42.5)
HDL-C (mg/dL) 55.3 (15.5) 51.4 (19.3)
BMI (kg/m2) 29.6 (6.1) 28.0 (5.5)
Note: Entries are mean (standard deviation) or n (%).
Abbreviations: BMI, body mass index; CHD, coronary heart disease; eGFR,
estimated glomerular filtration rate; HDL-C, high-density lipoprotein choles-
terol; SBP, systolic blood pressure.

Bernard et al
Creatinine was measured at visit 1 in serum samples using
the modified kinetic Jaffe method. eGFR was calculated
using the creatinine-based 2009 chronic kidney disease
Epidemiology equation.23

Statistical Analysis

We used Cox proportional hazards regression models to
estimate the association between exposure (clusters and
individual metabolites) and kidney outcomes. Time at-risk
began at visit 1 (1987-1989) and concluded at the earliest
occurrence of the respective outcome (KFRT or kidney
failure), death, loss to follow-up, or administrative
censoring. The administrative censoring date for KFRT was
December 31, 2017. For kidney failure, participants were
censored on December 31, 2019.

We performed longitudinal analyses using clusters of
metabolites as the exposure for the primary analysis. To do
this, metabolite residuals were estimated separately in each
set by regressing the log2-transformed metabolite on all
covariates. We selected model covariates based on known
risk factors for adverse kidney outcomes.24 Our model
adjusted for age, sex, race-center, systolic blood pressure,
antihypertensive medication, diabetes, history of coronary
heart disease, smoking status, eGFR, and high-density li-
poprotein cholesterol. Clusters were then formed using
metabolite residuals from the training dataset with the
Netboost dimension reduction technique.25 Netboost
clusters metabolite residuals using a sparse hierarchical
clustering based on Spearman correlations and then ag-
gregates clusters using the first principal component.26

Clustering was performed with a minimum cluster size
of 2, a soft power exponent of 2, and a module dissim-
ilarity threshold of 0.2. The clustering was then applied
to the validation dataset and principal components refit-
ted for each module. Metabolite cluster values were
normalized to their standard deviation in each set. Then,
we assessed associations between metabolite clusters and
KFRT and kidney failure separately within our training
and validation sets and pooled estimates using fixed ef-
fects meta-analysis. For clusters significantly associated
with KFRT or kidney failure, we tested the proportional
hazards’ assumption with direct visualization and time
interaction.

For those clusters with significant associations with
either KFRT or kidney failure in the meta-analysis, we
assessed associations of individual component metabo-
lites with the outcomes. For clusters that were signifi-
cantly associated with both outcomes, we also assessed
the associations between the first principal component
and baseline characteristics using χ2 test and analysis of
variance for categorical and continuous variables,
respectively, to better understand which phenotypes may
be represented by these clusters. Bonferroni correction
was used to adjust the statistical significance level for the
number of exposures tested. Statistical analyses were
conducted using R (http://www.r-project.org) 4.0.5 and
Stata 16.1.
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RESULTS

Study Population Characteristics

Baseline characteristics of the 3,799 participants are shown
in Table 1. The training dataset was 100% African Amer-
ican, whereas the validation dataset was 28% African
American. Participants from the training set were more
often female, had higher baseline eGFR, and reported
greater usage of antihypertensive medications than par-
ticipants in the validation set.

Metabolite Clusters

Clustering using Netboost in the training dataset formed
43 clusters of metabolites, with 4 of the 318 metabolites
not included in a cluster (Table S1). There was a median of
6 metabolites per cluster, with a range of 2 to 33 metab-
olites per cluster (Figure S2).

Associations of Metabolite Clusters with KFRT and

Kidney Failure

A total of 160 participants developed KFRT during a mean
follow-up of 23 years. Four metabolite clusters (clusters
26, 5, 34, and 1) were significantly associated with KFRT
in meta-analysis, adjusting for age, sex, race-center, sys-
tolic blood pressure, antihypertensive medication, dia-
betes, history of coronary heart disease, smoking, eGFR,
and high-density lipoprotein cholesterol (Figure 1).
Cluster 26 had a hazard ratio of 1.31 per standard
3
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Figure 1. Volcano plot of meta-analyzed associations for clusters with kidney failure with replacement therapy. Adjusted for age, sex,
race-center, systolic blood pressure, antihypertensive medication, diabetes, history of coronary heart disease, smoking, estimated
glomerular filtrated rate based on creatinine, and high-density lipoprotein cholesterol. Red horizontal line represents the
Bonferroni-adjusted threshold calculated as 0.05/43 clusters = 0.001.
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deviation (95% confidence interval, 1.15-1.51), whereas
clusters 5, 34, and 1 had hazard ratios ranging from 0.77-
0.78 per standard deviation (Table 2). Cluster 26 included
6 metabolites that were monosaccharides, disaccharides, or
alcohol sugars involved in glycolysis and anaerobic meta-
bolism. These metabolites included dimethylarginine
(symmetric dimethylarginine [SDMA] + asymmetric
dimethylarginine [ADMA]), glucose, and mannose. Cluster
5 was an assortment of 15 modified and traditional amino
acids seen in liver metabolism involving glutathione and
gamma-glutamyl transferase. Cluster 34 included 21 me-
tabolites that were primarily lysolipids from the phos-
phocholine family. Cluster 1 was composed of 4
traditional amino acids and 2 monosaccharides—1,5-
anhydroglucitol (1,5-AG) and fructose—with roles in a
variety of metabolic pathways such as amino acid meta-
bolism, the urea cycle, glycolysis, and gluconeogenesis.

There were 357 kidney failure events over a mean
follow-up of 23 years. The previously identified clusters
26, 5, and 34 were significantly associated with kidney
failure in a directionally consistent pattern to their asso-
ciation with KFRT, whereas cluster 1 just missed the
Bonferroni-adjusted significance level for kidney failure
(P = 0.0015 vs Bonferroni P = 0.0012) (Figure 2). Three
additional clusters were significantly associated with kid-
ney failure (Table 3). Cluster 14 had a hazard ratio of 0.79
per standard deviation (95% confidence interval, 0.72-
0.88). Clusters 25 and 9 were both associated with an
increased risk of kidney failure. Cluster 14 was associated
with kidney failure and consisted of 7 metabolites with
4

inosine, hypoxanthine, and guanosine serving critical
functions for the purine synthesis pathway and the for-
mation of uric acid (Table S2). Cluster 25 represented 5
molecules involved in the urea cycle, such as citrulline and
4-acetamidobutanoate. Cluster 9 included 2 metabolites:
homocitrulline, a derivative of ornithine, and N-acetyl-1-
methylhistidine, an urea cycle byproduct.

Associations of Individual Metabolites in

Implicated Clusters

There were 42 metabolites in the 4 clusters significantly
associated with KFRT. Thirteen of these metabolites had a
statistically significant association with KFRT after Bon-
ferroni adjustment (P = 0.05/42) (Figure 3). These
included: 1,5-AG and fructose (cluster 1); glucose and
mannose (cluster 26); 2 gamma-glutamyl amino acids and
5-oxoproline, a glutamic acid derivative (cluster 5); and 6
phosphocholine lysolipids (cluster 34). In a secondary
analysis of all 318 individual metabolites regardless of
cluster membership, tryptophan and tyrosine were also
significantly associated with KFRT after Bonferroni
adjustment (P = 0.05/318) (Figure S3).

A total of 56 metabolites were included in the 6 clusters
significantly associated with kidney failure. Of these, 22
metabolites had statistically significant associations with
kidney failure after Bonferroni adjustment (P = 0.05/56)
(Figure 4). These included: glucose and mannose (cluster
26); 8 gamma-glutamyl amino acids and 5-oxoproline
(cluster 5); 9 phosphocholine lysolipids (cluster 34);
inosine and hypoxanthine (cluster 14); and homocitrulline
Kidney Med Vol 4 | Iss 9 | September 2022 | 100522



Table 2. Association between Clusters and Kidney Failure with Replacement Therapy

Training Set (N = 1,773;
KFRT = 89)

Validation Set (N = 2,026;
KFRT = 71)

Meta-Analyzed (N = 3,799;
KFRT = 160)

Cluster Component Metabolites HR 95% CI P HR 95% CI P values HR 95% CI P
26 dimethylarginine (SDMA + ADMA), glucose,

trehalose, mannose, mannitol, and myo-inositol
1.35 1.13-1.61 < 0.001 1.27 1.02-1.57 0.03 1.31 1.15-1.51 < 0.001

5 asparagine, glutamine, 5-oxoproline, gamma-
glutamylalanine, gamma-glutamylglutamate, gamma-
glutamylglutamine, gamma-glutamylisoleucine,
gamma-glutamylleucine, gamma-glutamylthreonine,
gamma-glutamylvaline, threonine, glutamate, gamma-
glutamylphenylalanine, gamma-glutamyltyrosine, and
DSGEGDFXAEGGGVR

0.72 0.60-0.86 < 0.001 0.84 0.68-1.04 0.12 0.77 0.67-0.88 < 0.001

34 stearoylcarnitine, 1-docosahexaenoyl-GPC (22:6n3),
2-myristoyl-GPC, 1-pentadecanoyl-GPC (15:0),
1-palmitoyl-GPC (16:0), 2-palmitoyl-GPC, 1-
palmitoleoyl-GPC (16:1), 1-margaroyl-GPC (17:0), 1-
stearoyl-GPC (18:0), 2-stearoyl-GPC, 1-oleoyl-GPC
(18:1), 2-oleoyl-GPC, 1-linoleoyl-GPC (18:2n6), 2-
linoleoyl-GPC, 1-dihomo-linoleoyl-GPC (20:2n6), 1-
eicosatrienoyl-GPC (20:3), 1-arachidonoyl-GPC
(20:4n6), 2-arachidonoyl-GPC, 1-docosapentaenoyl-
GPC (22:5n3), 1-oleoylglycerol (1-monoolein), and 1-
linoleoylglycerol (1-monolinolein)

0.81 0.67-0.98 0.03 0.71 0.57-0.88 0.002 0.77 0.66-0.88 < 0.001

1 glycine, serine, alanine, 1,5-AG, ornithine, and fructose 0.75 0.62-0.90 0.002 0.81 0.66-1.01 0.06 0.78 0.68-0.89 < 0.001
Notes: Only clusters with meta-analyzed P values that reached the Bonferroni-adjusted threshold in the multivariable model are shown. Bonferroni-adjusted threshold calculated as 0.05/43 clusters = 0.001. Model adjusted for
age, sex, race-center, systolic blood pressure, antihypertensive medication, diabetes, history of coronary heart disease, smoking, estimated glomerular filtrated rate based on creatinine, and high-density lipoprotein cholesterol. Bold
indicates metabolite was significantly related to KFRT in secondary analysis. Green color indicates metabolite had a positive meta-analyzed correlation with its respective cluster in unadjusted analysis. Red color indicates a
negative meta-analyzed correlation.
Abbreviations: ADMA, asymmetric dimethylarginine; AG, anhydroglucitol; CI, confidence interval; GPC, glycerophosphocholine; HR, hazard ratio; KFRT, kidney failure with replacement therapy; SDMA, symmetric dimethylarginine.
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Figure 2. Volcano plot of meta-analyzed associations for clusters with kidney failure. Adjusted for age, sex, race-center, systolic
blood pressure, antihypertensive medication, diabetes, history of coronary heart disease, smoking, estimated glomerular filtrated
rate based on creatinine, and high-density lipoprotein cholesterol. Red horizontal line represents the Bonferroni-adjusted threshold
calculated as 0.05/43 clusters = 0.001.
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(cluster 9). No individual metabolites from cluster 25
were statistically significantly associated with kidney fail-
ure. Nine metabolites from clusters 26, 5, and 34 were
significantly associated with both outcomes. In addition,
tryptophan, 1-arachidonoylglycerophosphoinositol, and
1,5-AG were significantly associated with kidney failure in
the analysis of all 318 metabolites (Figure S4).
Associations of Significant Clusters with Baseline

Characteristics

Clusters were consistently associated with specific baseline
characteristics in both the training and validation sets
(Table S3). Participants with higher and lower exposure to
cluster 26 (6 metabolites including glucose and mannose)
were more likely to have diabetes, as were those with in
cluster 5 (15 metabolites including gamma-glutamyl
amino acids and 5-oxoproline). Participants with greater
exposure to cluster 5 metabolites had lower cholesterol
(Table S4). No baseline characteristic was significantly
associated with cluster 34 (Table S5). Race and systolic
blood pressure were significantly related to all clusters in
the validation set only.
DISCUSSION

In this study, we investigated the association between
serum metabolites and KFRT and kidney failure over 3
decades in 3,799 individuals in the general population.
Our cluster analysis identified 3 clusters of metabolites
significantly associated with both KFRT and kidney failure,
6

with the clusters representing biomarkers of diabetes, lipid
metabolism, and glutamic acid pathways. Several metab-
olites within these clusters, including glucose and
mannose, were positively associated with KFRT and kidney
failure, whereas 5-oxoproline, gamma-glutamyl amino
acids, phosphocholine lysolipids, and 1,5-AG were
inversely associated with both outcomes. A metabolome-
wide screen also identified tryptophan as being inversely
associated with KFRT and kidney failure. These findings
contribute valuable insights into early physiological
changes independent of eGFR associated with kidney
outcomes.

Our findings are generally consistent with previous
metabolomic studies of adverse kidney outcomes. Cluster
26, which included glucose and mannose, was signifi-
cantly associated with increased risk for both KFRT and
kidney failure. Hyperglycemia is a known contributor to
diabetic kidney disease progression.27 Glucose itself has
not been comprehensively studied as a prospective
biomarker of KFRT, in part because of its high variability,
although it is a plausible that excess glucose can generate
reactive oxygen species that can lead to nephropathy.28

Likewise, excess mannose can indirectly contribute to
reactive oxygen species generation.27 Interestingly, dime-
thylarginine (SDMA + ADMA) was combined with glyce-
mic markers through unsupervised clustering. A previous
study of Korean adolescents and adults found that ADMA
was associated with obesity and diabetes and that it
decreased after an obesity intervention program.29

Furthermore, it has been suggested that ADMA stimulates
renal fibrosis under high glucose conditions.30 Elevated
Kidney Med Vol 4 | Iss 9 | September 2022 | 100522



Table 3. Association between Clusters and Kidney Failure

Training Set (N = 1,773;
KF = 173)

Validation Set (N = 2,026;
KF = 184)

Meta-Analyzed (N= 3,799;
KF = 357)

Cluster Component Metabolites HR 95% CI P HR 95% CI P HR 95% CI P
26 dimethylarginine (SDMA + ADMA), glucose,

trehalose, mannose, mannitol, and myo-inositol
1.23 1.08-1.41 0.002 1.29 1.11-1.50 < 0.001 1.26 1.14-1.39 < 0.001

5 asparagine, glutamine, 5-oxoproline, gamma-
glutamylalanine, gamma-glutamylglutamate,
gamma-glutamylglutamine, gamma-
glutamylisoleucine, gamma-glutamylleucine,
gamma-glutamylthreonine, gamma-
glutamylvaline, threonine, glutamate, gamma-
glutamylphenylalanine, gamma-glutamyltyrosine,
and DSGEGDFXAEGGGVR

0.72 0.63-0.82 < 0.001 0.87 0.76-1.00 0.04 0.79 0.72-0.87 < 0.001

34 stearoylcarnitine,1-docosahexaenoyl-GPC
(22:6n3), 2-myristoyl-GPC, 1-pentadecanoyl-
GPC (15:0), 1-palmitoyl-GPC (16:0), 2-
palmitoyl-GPC, 1-palmitoleoyl-GPC (16:1),
1-margaroyl-GPC (17:0), 1-stearoyl-GPC
(18:0), 2-stearoyl-GPC, 1-oleoyl-GPC (18:1),
2-oleoyl-GPC, 1-linoleoyl-GPC (18:2n6),
2-linoleoyl-GPC, 1-dihomo-linoleoyl-GPC
(20:2n6), 1-eicosatrienoyl-GPC (20:3),
1-arachidonoyl-GPC (20:4n6), 2-arachidonoyl-
GPC, 1-docosapentaenoyl-GPC (22:5n3),
1-oleoylglycerol (1-monoolein), and
1-linoleoylglycerol (1-monolinolein)

0.83 0.72-0.95 0.009 0.80 0.69-0.91 0.001 0.81 0.73-0.90 < 0.001

14 N-acetylphenylalanine, 3-methoxytyrosine,
serotonin (5HT), ADSGEGDFXAEGGGVR,
inosine, hypoxanthine, and guanosine

0.78 0.68-0.89 < 0.001 0.81 0.71-0.93 0.003 0.79 0.72-0.88 < 0.001

25 citrulline, acisoga, 4-acetamidobutanoate,
N6-carbamoylthreonyladenosine, and N2,
N2-dimethylguanosine

1.15 0.98-1.35 0.09 1.27 1.10-1.45 < 0.001 1.22 1.09-1.35 < 0.001

9 N-acetyl-1-methylhistidine and homocitrulline 1.21 1.03-1.42 0.02 1.23 1.06-1.43 0.006 1.22 1.09-1.36 < 0.001
Notes: Only clusters with meta-analyzed P values that reached the Bonferroni-adjusted threshold in the multivariable model are shown. Bonferroni-adjusted threshold calculated as 0.05/43 clusters = 0.001. Model adjusted for
age, sex, race-center, systolic blood pressure, antihypertensive medication, diabetes, history of coronary heart disease, smoking, estimated glomerular filtrated rate based on creatinine, and high-density lipoprotein cholesterol. Bold
indicates metabolite was significantly related to kidney failure in secondary analysis. Green color indicates metabolite had a positive meta-analyzed correlation with its respective cluster in unadjusted analysis. Red color indicates a
negative meta-analyzed correlation.
Abbreviations: ADMA, asymmetric dimethylarginine; CI, confidence interval; HR, hazard ratio; GPC, glycerophosphocholine; KF, kidney failure; SDMA, symmetric dimethylarginine.
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Figure 3. Volcano plot of associations for metabolites in top clusters with kidney failure with replacement therapy. Red horizontal line
represents the Bonferroni-adjusted threshold calculated as 0.05/42 metabolites = 0.001. Asterisk (*) indicates a tier 2 metabolite.
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serum levels of ADMA and SDMA have been previously
documented in kidney failure patients.31,32

Compared to previous approaches, a potential strength
of clustering is in identifying common metabolic pathways
with disease relevance. Here, we employed an unsuper-
vised correlation network analysis, Netboost, that identifies
data-driven clusters, to allow for the detection of yet
Figure 4. Volcano plot of associations for metabolites in top c
Bonferroni-adjusted threshold calculated as 0.05/56 metabolites =

8

unknown clusters and takes full advantage of the compo-
nents quantified by the measurement platform. We spec-
ulate that one such pathway may be present in cluster 5.
Cluster 5 was significantly related to both outcomes and
contained 5-oxoproline and gamma-glutamyl amino acids.
The 5-oxoproline metabolite has been previously linked to
incident CKD and advanced CKD.4,33 The gamma-glutamyl
lusters with kidney failure. Red horizontal line represents the
0.0009. Asterisk (*) indicates a tier 2 metabolite.
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transferase enzyme that acts on gamma-glutamyl amino
acids has been identified as a risk factor for adverse kidney
outcomes, including kidney failure and mortality.34-36 In
animal studies, 5-oxoproline formation has been used as a
marker of gamma-glutamyl amino acid transport in the
kidneys.37 Patients with genetic defects in the gamma-
glutamyl amino acid cycle have 5-oxoprolinuria.38 Thus,
clustering may be useful for discovering connections be-
tween metabolites whose relatedness has yet to be shown
in translational studies, or conversely, in identifying new
associations that can be further studied in laboratory
research.

Lysolipids from the phosphocholine family represented
in cluster 34 were also significantly related to both out-
comes. Phosphocholine lysolipids are metabolites of
phosphatidylcholines, which are components of the cell
membrane made from choline and produced during kid-
ney ischemia in animal models.39 One particular lyso-
phospholipid, linoleoylglycerophosphocholine, has been
associated with risk of type 2 diabetes and impaired
glucose tolerance in individuals without diabetes.40-42 In
our study, linoleoylglycerophosphocholine was signifi-
cantly associated with both outcomes and had the lowest P
value for kidney failure. Results from the Framingham
Heart Study have previously indicated that changes in
choline metabolism could signal tubulointerstitial
dysfunction associated with risk of incident CKD.43 In
contrast, the 6 significant lysolipids identified in our study
were not significantly related to kidney failure in a Joslin
Kidney study of patients with type 2 diabetes; however,
the latter study was much smaller.9

Our unsupervised clustering approach identified a third
potential metabolic pathway in cluster 1 (6 metabolites
including 1,5-AG and fructose), in addition to the spec-
ulated pathways in cluster 26 (6 metabolites including
dimethylarginine and glucose) and in cluster 5 (15 me-
tabolites including 5-oxoproline and gamma-glutamyl
amino acids). 1,5-AG reabsorption in the renal tubules
occurs through a common anhydroglucitol/fructose/
mannose transport system, which suggests 1,5-AG and
fructose are physiologically related.44 We found that 1,5-
AG was significantly related to both outcomes, and 1,5-
AG had the lowest P value for KFRT of all metabolites
studied. This is consistent with previous ARIC studies in
which 1,5-AG was an early signal of incident CKD and
inversely correlated to glucose.45,46 High levels of glucose
inhibit 1,5-AG’s reabsorption in the renal proximal tubule,
and thus 1,5-AG is thought to be a marker of hypergly-
cemic excursions.4 Fructose’s association with KFRT was
notably in the opposite direction of 1,5-AG. This finding is
consistent with previous experimental results that
demonstrated high levels of fructose accelerate CKD
progression.47

A few individual metabolites are noteworthy. We found
that higher levels of tryptophan were significantly associ-
ated with lower risk of both kidney outcomes. Previous
studies have found similar associations between
Kidney Med Vol 4 | Iss 9 | September 2022 | 100522
tryptophan-derived metabolites and incident CKD,
including the Joslin Kidney study, African American Study
of Kidney Disease and Hypertension, and the Framingham
Heart Study.10,43,48 The German Chronic Kidney Disease
study also found that urine 6-bromotrytophan was
significantly inversely associated with incident kidney
failure.49 We also identified a significant association be-
tween homocitrulline and risk of kidney failure. One Eu-
ropean study has suggested that homocitrulline can serve
as a marker for differentiating chronic kidney failure from
acute kidney failure.50 Citrulline, a structural homolog of
homocitrulline, has been previously associated with inci-
dent CKD in the Framingham Heart Study, but citrulline
was not significantly related to KFRT or kidney failure in
our study.43

Several limitations merit consideration. As with all
observational studies, we cannot infer causality. It is well
known that many metabolites are related to glomerular
filtration rate.6 This study addressed this by using residuals
prior to clustering but determining whether relationships
are causal or consequential requires additional experi-
mental evidence. It is also unknown how metabolites may
vary over time and if time-varying metabolite changes
could modify associations. Metabolite profiling was per-
formed in 2 samples, allowing for the possibility of batch
effects. However, we performed analyses separately and
then meta-analyzed. The fact that clusters were consistent
in direction in both the training and validation sets lends
credence to our results. We used Bonferroni correction to
assess statistical significance of our results. As aforemen-
tioned, this method has been criticized as overly
conservative.12

Despite these limitations, our study had a number of
strengths. We had a large number of events, long follow-
up, and more heterogenous study population relative to
previous studies of kidney outcomes.9-11 We found
consistent associations across 2 large, separate samples
with the same underlying study population. We used a
novel clustering method, providing a unique approach that
may be advantageous to use in future metabolomic studies
to connect metabolites that may share common pathways.

In conclusion, we identified 7 metabolite clusters that
were significantly related to KFRT or kidney failure. These
included 10 metabolites that were significantly related to
KFRT and kidney failure in individual analyses: glucose,
mannose, 1,5-AG, 5-oxoproline, gamma-glutamylthreonine,
gamma-glutamyltyrosine, 1-linoleoylglycerophosphocholine
(18:2n6), 1-eicosatrienoylglycerophosphocholine (20:3),
1-docosapentaenoylglycerophosphocholine (22:5n3), and 1-
docosahexaenoylglycerophosphocholine (22:6n3). We used
a novel clustering technique to begin to unravel how
correlated metabolites contribute to advanced kidney dis-
eases. Other studies can build on this work by continuing to
elucidate common pathways, including the potential path-
ways we have discussed from cluster 1 (6 metabolites
including 1,5-AG and fructose), cluster 26 (6 metabolites
including dimethylarginine and glucose), and cluster 5 (15
9
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metabolites including 5-oxoproline and gamma-glutamyl
amino acids), and to differentiate causal metabolites from
biomarkers of disease.
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CConclusion: Several clusters of metabolites are associated with development of kidney 
failure. Future experimental studies are needed to validate the ϐindings as well as to 
further unravel metabolic pathways involved in kidney function decline. @@CTeodosiuVVisual abstract by Corina Teodosiu, MD

PProspective cohort sstudy
Enrollment: 1987 - 1989 

NN = 3,799 pparticipants in the 
AAtherosclerosis Risk in 
CCommunities (ARIC) study

Mean age 53 years 

61% Black participants

3314 mmetabolites grouped in 
443 cclusters

CCluster 5
Glutathione and γ-glutamyl 

transferase pathways

CCluster 26
Sugar & inositol phosphate 

metabolism

CCluster 34
Glycerophospholipid metabolism

IIncident 
KKFRT

KKidney 
ffailure

AAssociations between metabolite clusters and outcomes
Adjusted* hazard ratio per standard deviation, 95% CI, p < 0.001

CCluster 1
Amino acid metabolism, urea cycle, 

glycolysis and gluconeogenesis

11.31
(1.15, 1.51)

00.77
(0.67, 0.88)

00.77
(0.66, 0.88)

00.78
(0.68, 0.89)

MMean follow--uup 
223 years

00.81
(0.73, 0.90)

11.26
(1.14, 1.39)

00.79
(0.72, 0.87)

No signiϐicant
association

*adjusted for age, sex, race-center, GFR, diabetes, hypertension, HDL-C, SBP, history of coronary 
heart disease, smoking status, KFRT, kidney failure with replacement therapy
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