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Feasibility of Umbilical Cord Blood
Collection in Neonates at Risk of Brain
Damage—A Step Toward Autologous
Cell Therapy for a High-risk Population

Angela Segler1 , Thorsten Braun1,2, Hendrik Stefan Fischer3,
Ricarda Dukatz1, Claire-Rachel Weiss1, Alexander Schwickert1,
Carsten Jäger4, Christoph Bührer3, and Wolfgang Henrich1

Abstract
Evidence for umbilical cord blood (UCB) cell therapies as a potential intervention for neurological diseases is emerging.
To date, most existing trials worked with allogenic cells, as the collection of autologous UCB from high-risk patients is
challenging. In obstetric emergencies the collection cannot be planned. In preterm infants, late cord clamping and anatomic
conditions may reduce the availability. The aim of the present study was to assess the feasibility of UCB collection in neonates
at increased risk of brain damage. Infants from four high-risk groups were included: newborns with perinatal hypoxemia,
gestational age (GA) �30 þ 0 weeks and/or birthweight <1,500 g, intrauterine growth restriction (IUGR), or monochorionic
twins with twin-to-twin transfusion syndrome (TTTS). Feasibility of collection, quantity and quality of obtained UCB [total
nucleated cell count (TNC), volume, sterility, and cell viability], and neonatal outcome were assessed. UCB collection was
successful in 141 of 177 enrolled patients (hypoxemia n ¼ 10; GA �30 þ 0 weeks n ¼ 54; IUGR n ¼ 71; TTTS n ¼ 6).
Twenty-six cases were missed. The amount of missed cases per month declined over the time. Volume of collected UCB
ranged widely (median: 24.5 ml, range: 5.0–102 ml) and contained a median of 0.77� 108 TNC (range: 0.01–13.0� 108). TNC
and UCB volume correlated significantly with GA. A total of 10.7% (19/177) of included neonates developed brain lesions.
To conclude, collection of UCB in neonates at high risk of brain damage is feasible with a multidisciplinary approach and
intensive training. High prevalence of brain damage makes UCB collection worthwhile. Collected autologous UCB from
mature neonates harbors a sufficient cell count for potential therapy. However, quality and quantity of obtained UCB are
critical for potential therapy in preterm infants. Therefore, for extremely preterm infants alternative cell sources such as UCB
tissue should be investigated for autologous treatment options because of the low yield of UCB.
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Introduction

Impressive advances in perinatal and neonatal care have led

to substantial improvements in survival rates for preterm

infants and neonates with severe complications. However,

survival comes at a cost. Neonates with brain damage often

suffer from long-term neurological motor and cognitive def-

icits resulting in enormous physical, psychological, and

economic costs1–4. Cerebral palsy (CP) is one of the most

costly neurologic disabilities due to its frequency (2/1,000

births) and persistence over life5. Currently available

treatments for patients with CP are supportive, but not

curative. Apart from term infants with perinatal hypoxe-

mia, preterm infants, monochorionic twins with twin-to-

twin transfusion syndrome (TTTS), and infants with

intrauterine growth restriction (IUGR) are also frequently

affected by cerebral damage. Up to 10% of very low

birthweight infants (<1,500 g) suffer from CP and 16%
of very preterm infants (22 to 28 weeks) are complicated

with severe intraventricular hemorrhage (IVH)1,4. TTTS

is a rare but severe complication that can result in death

of a co-twin and leaves up to 30% of survivors with an

abnormal neurodevelopment6.

A new approach for neonates with brain damage is the

treatment with umbilical cord blood (UCB) derived cells.

UCB contains a large amount of highly proliferative

progenitor cells and stem cells7,8. Bystander effects have

been postulated to be the main mechanisms for functional

recovery after cord blood transplantation9. Transplanted

UCB cells may migrate to the affected area and deliver

trophic factors that provide anti-inflammatory and antiapop-

totic effects and increase the plasticity of the injured brain by

enhancing neovascularization, myelination, and endogenous

neurogenesis10–15. In several animal models, neurological

and survival benefits have been demonstrated for the appli-

cation of UCB cells in the setting of stroke, ischemia, intra-

cranial hemorrhage, and spinal cord injury14–23. Current

pilot studies suggested benefits of autologous cell treatments

in term infants with hypoxic-ischemic (HIE) and CP24,25.

Autologous approaches harbor a minimal risk of immuno-

genic reaction and infections compared to allogenic

approaches.

Nevertheless, current clinical trials mostly work with

allogenic UCB cells. This is mostly due to the logistic advan-

tage of allogenic approaches. Allogenic cell products can be

manufactured and be used “off the shelf” in the clinical

setting26. The collection of autologous cells is more compli-

cated and the quality of the resulting cell products is directly

depending on the quality of the individual collection sample

making it difficult to compare. In order to design valuable

clinical trials, the preparation of cells from individual cell

sources has to become standardized. Trials directly compar-

ing autologous and allogenic treatment options in neonates

are lacking. Those working with autologous UCB cells

mostly involve mature neonates or preterm infants with a

minimum of 28 þ 1 to 37 þ 0 weeks of gestation24,25,27,28.

It is unclear whether autologous UCB collection is feasi-

ble for the aforementioned high-risk populations. In very

preterm infants (<30 þ 0 weeks of gestations), late cord

clamping and anatomic conditions limit the available

amount of UCB. In emergency situations or unexpected

deliveries, the collection cannot be planned. Thus, collection

of UCB requires a good collaboration especially in large

perinatal centers with constantly changing teams of clini-

cians and midwifes. The aim of the present study is to inves-

tigate the feasibility of autologous UCB collection in

high-risk neonatological populations and to assess the quan-

tity and quality of the samples collected. The successful

collection of UCB in challenging anatomical conditions and

emergency situations is essential prerequisite to allow for

autologous treatment options.

Methods

Study Design

We initiated this pilot study in December 2017. This study

was approved by the Institutional Ethics Committee of the

Charité – Universitätsmedizin Berlin (Berlin, Germany)

(EA2/206/17). The use of human UCB and all procedures

in this study were conducted in accordance with the Institu-

tional Ethics Committee of the Charité – Universitätsmedi-

zin Berlin (Berlin, Germany) (EA2/206/17) approved

protocols. Written informed consent was obtained from the

patients for their anonymized information to be published in

this article. The project was designed in collaboration with

Vita 34 AG (Leipzig, Germany), a European cord blood

bank, in order to use the established infrastructure and guar-

antee high standards for the banking of the acquired cord

blood. To enhance dedication and compliance with the proj-

ect, team briefings for all obstetricians, midwifes, and

anesthetists were held discussing the current state of litera-

ture on UCB therapy in neonates and the aim of the study.

All midwifes and obstetricians were trained for collection of

UCB. Candidates for UCB collection were infants from four

high-risk groups: perinatal symptomatic hypoxemia,

extremely preterm infants (gestational age 23 þ 0 to

30 þ 0 weeks and/or estimated birthweight less than

1,500 g), estimated IUGR <3rd percentile for birthweight

independent of gestational age, and monochorionic twins

with TTTS. After emergency C-sections or other obstetrical

emergency situations, UCB was always collected. Neonates

were included in the study, if criteria for any of the four

groups were met or if criteria for therapeutic hypothermia

were met (defined as metabolic or mixed acidosis with an

arterial cord pH �7.0 or a base deficit of >16 or an Apgar

score at 10 min of �5 or need for positive pressure

ventilation for �10 min). If the neonate did not meet the

inclusion criteria, the UCB was discarded. Neonates with

mothers positive for hepatitis B (HBsAg and/or HBeAg) or

C virus (anti-HCV), syphilis, HIV (anti-HIV-1 and -2) cyto-

megalovirus (IgM antibodies), rubella, toxoplasma, or
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herpes simplex virus were excluded as were mothers under

the age of 18. UCB collection was performed aseptically via

in utero or ex utero techniques into cord blood collection

bags (Vita 34 AG) containing 35 ml of citrate phosphate

dextrose anticoagulant. Mothers who were at high risk for

preterm delivery, expecting an IUGR child, or multiples with

TTTS were informed about the study and prior written

informed consent for collection was sought if admitted to

the hospital (see Fig. 1). For deliveries in which prior col-

lection consent had not been obtained, the local Ethics

committee gave permission for obstetric staff to collect UCB

and seek the mothers consent after delivery. If UCB was

successfully collected and the infant met the inclusion cri-

teria, mothers were asked to provide written informed con-

sent for study participation. If she did not consent the blood

was discarded.

Assessment of UCB Quantity and Quality

The obtained UCB was transported at room temperature in a

validated transport box to Vita 34 AG cord blood bank and

processed, cryopreserved, and banked according to the man-

ufacturing authorization for cord blood transplants of Vita

34. The whole blood was cryopreserved in a rate-controlled

freezer with the cryoprotectant dimethylsulfoxide. The UCB

was stored in the vapor phase above liquid nitrogen at tem-

perature between �150�C and �185�C. The UCB was

banked at Vita 34 for the affected families free of charge

in order to be available for future therapeutic options. Total

nucleated cell count (TNC) pre- and post-processing, steri-

lity, and viability were assessed by microscopic counting, by

anaerobic and aerobic BACTEC blood culture system

(Becton Dickinson, Franklin Lakes, NJ, USA) and by acri-

dine orange staining, respectively. In cases of missed UCB

collection circumstances leading to failure were assessed.

Missed cases were discussed on daily ward rounds.

Assessment of Neonatal Outcome

Neonatological outcome was assessed through medical

charts and radiology reports. All neonates received treatment

and diagnostic tests according to standard operating proce-

dures of the hospital, including cranial ultrasound, magnetic

resonance imaging, and amplitude-integrated electroence-

phalograms, as applicable. HIE was defined as perinatal

asphyxia accompanied by pathological amplitude-

integrated electroencephalogram, seizures, or other neurolo-

gical symptoms and signs. CP was diagnosed based on

Figure 1. Distribution of cases. The flow chart is describing the process of case inclusion and assessment of feasibility and UCB quality/
quantity. UCB: umbilical cord blood.
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clinical assessment and radiological findings29. For the

assessment of IVH, cranial ultrasound scans were graded

according to the Papile scoring system30. Periventricular

leukomalacia (PVL) was defined as cystic PVL and diag-

nosed by neuroimaging using cranial ultrasound31.

Statistical Analyses

We used descriptive statistics to characterize subject demo-

graphics and feasibility measures. Continuous variables are

reported as median and range. Categorical variables are sum-

marized as frequency counts and percentages. The correla-

tions between gestational age and the quantity and quality

measures of the UCB specimens were investigated using

Spearman’s rank correlation test, as appropriate. A signifi-

cance level of 0.05 (P value) was determined for all calcula-

tions. All statistical analyses were performed using IBM

SPSS, v22 for Windows (IBM Inc., Armonk, NY, USA).

Results

Distribution of Cases

The distribution of cases is further summarized in Fig. 1.

Between 12/2017 and 12/2018, UCB was collected from two

groups: first, unexpected obstetric emergencies (n ¼ 101)

and second from patients with expected high-risk deliveries

(n ¼ 110), that had given their consent prior to inclusion.

Five patients refused written consent prior to inclusion and

were excluded from the study. In the first group of obstetric

emergencies, UCB collection was attempted in most cases

(75.2%, 76/101). UCB collected from 21 neonates in initially

critical clinical condition (shoulder dystocia n¼ 2, placental

abruption n ¼ 3, uterine rupture n ¼ 2, prolapse of the arm

n ¼ 2, and terminal bradycardia n ¼ 12) and was later dis-

carded for not meeting the inclusion criteria of symptomatic

hypoxemia. Two patients refused written consent after suc-

cessful collection of UCB and the collected UCB was also

discarded. In the second group of expected high-risk deliv-

eries, an even higher percentage of collections was

attempted (89.1%, 98/110).

In 17.5% (37/211) of all cases the collection of UCB

was missed due to organizational difficulties (obstetric

emergencies n ¼ 25, expected high-risk delivery n ¼ 12).

Of those cases 13.5% (5/37) were spontaneous deliveries,

16.2% (6/37) vacuum extractions, 18.9% (7/37) elective

C-sections, and 51.4% (19/37) crash/emergency

C-sections. However, only 14.6% (26/177) of the cases with

fulfilled inclusion criteria were missed, including 7 cases of

perinatal hypoxemia, 10 with a gestational age � 30 þ 0

weeks, and 9 children with IUGR.

In a small number of cases (5.6%, 10/177) the collection

was attempted but failed in a clinical setting of placental

abruptions, uterine ruptures, transplacental deliveries, and

neonates with a gestational age of less than 24 þ 0 weeks.

UCB collection was successful in 79.7% (141/177, hypox-

emia n ¼ 10; gestational age � 30 weeks n ¼ 54; IUGR

n ¼ 71; TTTS n ¼ 6). The median blood loss in cases with

attempted but failed collection of UCB was 1,400 ml (range:

500–1,800 ml). The median blood loss in cases with success-

ful collection of UCB was 500 ml (range: 250–2,500 ml).

Quantity and Quality of Obtained UCB

In 141 cases with successfully collected UCB, 105 units had

sufficient quality and quantity for potential therapy. A total of

36 UCB units lacked sufficient quantity and/or quality for

potential therapy. Eight units of UCB (8/141, 5.7%) were

microbiologically contaminated. In 28 units the cell amount

or quality was insufficient for potential cell therapy due to an

insufficient cell count for at least one dose of the target dose

(1–5� 107 cells/kg) at birthweight and/or cell viability < 75%
(for details, see Fig. 1). Almost all of these cases (82.1%,

23/28) were preterm infants with a gestational age of less than

30 weeks or birthweight of less than 1,500 g. Five cases

(1.8%, 5/28) were neonates with IUGR. Characteristics of

cases with collected UCB are summarized in Table 1.

Quantity and quality of collected UCB cells appeared to

correlate with gestational age: the stored UCB volume and

the nuclear cell count were strongly related to gestational age

(Rs¼ 0.66. P < 0.001 and Rs¼ 0.74, P < 0.001, respectively)

(see Fig. 2). Cell viability was only weakly correlated with

gestational age (Rs ¼ 0.19, P ¼ 0.04).

Training Effect

In the first 3 months (December to February) of the project,

41 cases were enrolled. Thirty-six percent of these cases

were missed (14/41). At this point only obstetricians were

trained to collect the UCB and collection kits were stored in

a collective place. After February 2018, a systematical train-

ing system and logistic changes were implied. Teams of all

disciplines involved (obstetricians, neonatologists, mid-

wifes, anesthetists, and surgical assistants) received trainings

and were informed about the study. Trainings were repeated

monthly. Missed cases and incorrectly collected samples

were discussed by the research staff during daily ward

rounds with midwifes and obstetricians in the delivery suite.

During an established weekly perinatal conference, where

important cases were discussed between obstetricians, mid-

wives, and neonatologists, weekly updates on the progress of

the study were given and outcome of patients with collected

UCB were discussed. Collection kits were now placed in all

delivery areas and operating suites. With these efforts, there

was a learning curve within the team (see Fig. 3) and an

average of only 8.8% of enrolled cases (12/136) were missed

during the rest of the year (March 2018 to December 2018).

The positive impact of daily supervision by the research

personnel for successful UCB collection is illustrated by a

period of 2 weeks in April 2018, where a peak of missed

collections can be observed (three cases) while both doctors

responsible for the study were not on site for a period of

2 weeks simultaneously.
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Outcome of Included Neonates

Six (3.4%) of all included neonates deceased. Four of whom

were extreme preterm infants with a gestational age of less

than 25 weeks and deceased within days after birth, one was

discovered to suffer from a complex congenital heart anom-

aly and one from a congenital cardiomyopathy. As illu-

strated in Table 2, 10.7% (19/177) of all included neonates

developed brain lesions. The most common events were IVH

(9/177, 5%) and HIE (7/177, 4%), followed by PVL (2/177,

1%) and CP (1/177, 0.5%). Within the different groups,

Table 2. Manifestation of Perinatal Brain Damage in 177 Included Neonates of Four High-risk Groups.

All included cases Cases with perinatal brain damage
N N % IVH CP PVLM HIE

Total 177 19 10.7% 9 1 2 7
Perinatal hypoxemia 19 7 36.8% 7
GA � 30 þ 0 weeks 69 8 11.6% 7 1
Multiples with TTTS 5 4 80.0% 2 1 1
IUGR/SGA <3rd P 82 0 0.0%

CP: cerebral palsy; GA: gestational age; HIE: hypoxic ischemic encephalopathy; IUGR: intrauterine growth restriction; IVH: intraventricular hemorrhage;
P: percentile; PVLM: periventricular leukomalacia; TTTS: twin-to-twin transfusion syndrome.

Table 1. Characteristics of Cases with Successfully Collected UCB.

Total GA � 30 þ 0 IUGR <3rdP Perinatal hypoxemia Multiples with TTTS

N 141 54 71 10 6
% 100 83.3 50.4 7.1 4.2
Gestational age (weeks)

Median 32.7 28.0 37.14 39.07 31.29
Range 23.0–41.57 23.0–30.0 28.29–40.86 34.14–41.57 24.57–36.43

Birthweight (g)
Median 1.635 995 2150 2938 1490
Range 477–3,800 477–1,550 1,170–3,270 1,695–3,800 495–2,220

Stored UCB volume (ml)
Median 24.6 12.5 31.2 40.1 22.9
Range 5.0–102 4.2–40.2 5–81 26.2–102 5.5–33.0

Nuclear cell count (108)
Median 0.77 0.23 1.64 3.92 0.35
Range 0.01–13.0 0.02–2.52 0.01–13.6 0.29–10.4 0.01–1.56

Cell viability (%)
Median 84.4 83 87.5 91.7 85.5
Range 45.5–100 55.9–97.1 58.2–98.1 77.7–100 45.4–91.7

GA: gestational age; IUGR: intrauterine growth restriction; TTTS: twin-to-twin transfusion syndrome; UCB: umbilical cord blood.

Figure 2. Volume of collected UCB in correlation to gestational
(Spearman rank order coefficient 0.66, P < 0.001). UCB: umbilical
cord blood.

Figure 3. Total number of missed cases per month during the
recruitment period. A learning curve within the teamcanbeobserved.
Only cases with fulfilled inclusion criteria were taken into account.
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neonates with TTTS had by far the highest prevalence of

perinatal brain damage with 80% (4/5). 36.8% (7/19) of

children with perinatal hypoxemia suffered from HIE and

11.6% (8/69) of neonates born with a gestational age of �30

þ 0 weeks suffered from IVH (n ¼ 7) or PVL (n ¼ 1).

Within the group of neonates with IUGR none (0/82) were

affected by perinatal brain damage.

Discussion

Integration of UCB Collection into Routine Proceedings

The present single-center study assessed the feasibility

of UCB collection in neonates at high risk of perinatal

brain damage. Our data show that the collection of autolo-

gous UCB in neonates at high risk of brain damage is orga-

nizationally possible but challenging. Multidisciplinary

collaboration, daily team briefings, and personal engage-

ment were essential for the success of the study. Figure 3

illustrates the training effect in the study.

In 82.5% of all cases the collection of UCB was attempted

(174/211). In 23 of these cases UCB was collected prophy-

lactically but the inclusion criteria were not met (see Fig. 1)

and the UCB was discarded. One hundred and seventy-seven

cases fulfilled the inclusion criteria. In 80% of these cases

(141/177) the collection was successful. Integrating the col-

lection of UCB into routine proceedings is essential to over-

come organizational difficulties of the collection, especially

in emergency settings. The collection rate in cases with

expected high-risk deliveries was much higher (89.1%, 98/

110) than the rate of attempted collections in obstetric emer-

gencies (75.2%, 76/101). Emergencies such as crash

C-sections and vacuum extractions complicate the collection

of UCB as they challenge the team and may distract from the

collection of UCB. 67.6% (25/37) of all missed cases in this

study were vacuum extractions and emergency C-sections.

In another study of UCB collection for banking, 16.6% of

cases were missed due to dystocial child birth and urgent

C-section32. A possible future approach to overcome orga-

nizational failures may be the system of “all collect.”

To guarantee the collection of UCB in tricky situations, UCB

could just be routinely collected after every delivery just like

arterial blood-gas analyses are routinely performed from

UCB after delivery. Whether an “all collect” system is worth

the effort has to be determined in the future depending on

chances of actual use of autologous UCB units.

Impact of Gestational Age on Quality of UCB Cells

Collection of UCB may not only be challenging for organi-

zational reasons but also for technical reasons: first, a greater

loss of maternal blood seems to complicate the collection of

UCB. In 10 cases of attempted but failed UCB collection

the median maternal blood loss was 1,400 ml (range:

500�1,800 ml). This can be explained through the placenta

being spared during maternal centralization of blood circula-

tion. Situations like placental abruption and uterine rupture

are therefore not only life threatening for the unborn child

and the mother but may also influence the collection of

UCB. Second, the gestational age of the affected child

appears to be a major issue for the quantity and quality of

the collected UCB. Both the stored UCB volume and nuclear

cell count correlated with increasing gestational age. In

42.6% (n ¼ 23/54) of UCB units collected from preterm

neonates with a gestational age of �30 þ 0 weeks, the sam-

ple was insufficient for transplantation either due to a too

low amount of TNC for at least one dose containing the

target cell number at birthweight or viability of less than

75% of cells. Conversely, almost all cases (23/28) with an

insufficient quantity of UCB cells for transplantation were

preterm infants.

To date, several studies have shown that the cord blood

volume and TNC are positively correlated with birthweight,

but none of them have investigated cord blood collection in

extreme preterm infants. Clinical trials involving autologous

UCB cells mostly involve mature neonates or have included

preterm infants with 28 þ 1 to 37 þ 0 weeks of gesta-

tion24,25,27,28,33. Ballen et al. noted that each 500 g increase

in the infants’ weight caused a 6%, 11%, 22%, and 28%
increase in the volume, TNC, colony-forming units, and

CD34þ cell concentration, respectively34. In preterm infants

UCB volume is additionally lost through late cord clamping,

which is a recommended standard operating procedure through

several best practice committees, including the ACOG (Amer-

ican College of Obstetricians and Gynecologists) and the

AWMF (Arbeitsgemeinschaft der Wissenschaftlichen Med-

izinischen Fachgesellschaften)35. Faster cord clamping

results in the maintenance of blood flow and collection of

a greater blood volume36,37.

Alternative Cell Sources for Extreme Preterm Infants

Studies comparing quality and quantity of preterm and term

cord blood cells are lacking. An animal model of Huang

et al. shows that autologous UCB term and UCB preterm

cells are both effective but appear to differ in mechanisms of

neuroprotection38. For clinical translation of cell therapies

apart from effectiveness, dosing is another major issue.

Recent studies have shown that for mature neonates �35

weeks of gestation autologous cord blood units collected

through trained stuff harbor an adequate cell number for

planned cellular therapy24. For preterm infants, on the other

hand, quantity of collected autologous UCB cells is critical

as shown in this study. Therefore, for extremely preterm

infants with a gestational age of �30 weeks or a birthweight

of �1,500 g alternative sources for perinatal cells should be

considered. UCB is a rich source of primitive multipotent

stem/progenitor cells39 including mesenchymal stromal cells

(MSCs). MSCs are a promising cell type with therapeutic

potential for neonatal brain disorders and can be harvested

not only from UCB but also from umbilical cord Wharton’s

jelly or from nonperinatal sources such as bone marrow or

adipose tissue40. Beneficial effects of MSC-based therapies
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have been demonstrated mainly in animal models of bronch-

opulmonary dysplasia but lately also in models of IVH, neo-

natal stroke, and HIE41–50. Current phase 1 clinical trials

have shown human UCB-derived MSCs to be safe in the

treatment of severe IVH in preterm infants and bronchopul-

monary dysplasia51–53. We therefore suggest umbilical cord

Wharton’s jelly as another alternative cell source for preterm

infants with an insufficient quantity of UCB cells.

Role of Autologous UCB Application in Comparison
to Allogenic Application

Until today banking of autologous UCB has been organized

mostly through private cord blood banks. Current data show

that at the time there is only a very low possibility of future

use for banked autologous cord blood units collected in the

absence of a known indication from a healthy infant54,55.

A different approach is targeted collection from high-risk

populations that could benefit from autologous cord blood.

With 10.7% (19/177) a high proportion of the included chil-

dren in this study suffered from perinatal brain damage indi-

cating that targeted collection of UCB in these high-risk

populations may be worthwhile. Because none of the chil-

dren with IUGR suffered from brain lesions, we suggest that

this group may be excluded for a more efficient approach in

the future. Other neonatological populations that may benefit

from autologous cord blood are preterm infants developing

bronchopulmonary dysplasia or neonates undergoing surgi-

cal correction of congenital cardiac defects47,56–59.

Autologous approaches harbor a favorable risk profile as

they minimize the risk of immunogenic reactions and infec-

tions, such as graft versus host disease or even undiagnosed

infectious agents (e.g., prions). The safety of an innovative

treatment is of particular importance in critical patients such

as newborn children. Nevertheless, collection of autologous

cells is more complicated and the preparation and manufac-

turing of cells from individual cell sources has to become

standardized to design valuable clinical trials for autologous

treatment.

Allogenic approaches have a logistic advantage because

cells can be manufactured and be used “off the shelf” in the

clinical setting26. Furthermore, some UCB cells like MSCs

lack MHC II antigens and are therefore immune privileged

even in the allogenic setting60,61.

Reliable studies directly comparing efficiency and safety

of allogenic and autologous treatment options are lacking. In

a small case series with only seven patients with HIE, Bae

et al. reported lower levels of proinflammatory cytokines

and greater improvement in gross motor performance in

intravenous application of allogenic UCB compared with

that of autologous UCB62. To date, no larger study has been

published. Early phase clinical studies suggest that properly

administered autologous UCB is effective in the treatment of

brain damage24,25,63.

Overall, autologous UCB units appear to be comparable

to allogenic UCB units in quantity and quality of cells. While

autologous options appear safer, allogenic options harbor

logistic advantages. It has to be determined whether the

additional expenditure and logistic challenges related to

autologous approaches are reasonable. However, this deci-

sion should not depend on the effort but on efficiency of

treatment.

Limitations of the Study

We classified cases to have an insufficient quality of cells if

the contained number of cells was too low for at least

one treatment with the target dose at birthweight (minimum

1–5 � 107 cells/kg). The target dose was based on the

dose range presently used in allogeneic transplant after mye-

loablative chemotherapy. However, the effective dose in the

autologous setting and for the treatment of brain lesions is

not known and could be lower or higher. If UCB is trans-

planted at a later age, higher doses may be needed to be

beneficial for a higher weight. The optimal dose and optimal

timing for cell transplantation remain to be defined. There-

fore, the clinical translation of the collected data is complex

and the number of cases with sufficient quantity and quality

of cells could vary from our current calculations.

The collected volume of UCB units varied widely. These

differences can be explained through the variety of gesta-

tional ages and birthweights. However, UCB has been col-

lected by different obstetricians and midwives, and the

impact of individual sampling techniques was not moni-

tored. In the future, standardized sets with a specified

vacuum instead of using gravity could be developed and

used to make UCB collection more comparable and possibly

improve generated volumes.

Conclusion

Our data show that the autologous collection of UCB in

neonates at high risk of brain damage is possible through

extensive multidisciplinary collaboration required among

neonatologists, the labor and delivery ward, and the cord

blood bank. In the aforementioned high-risk population, the

prevalence of brain damage is high with 10.7% (19/177) and

may justify the effort made to obtain autologous cells from

UCB or other perinatal sources from these children.

The nuclear cell count and stored UCB volume correlated

strongly with gestational age (P < 0.001), and the targeted

dose was often not reached in very preterm infants.

We therefore suggest that for preterm infants with a gesta-

tional age �30 þ 0 weeks, umbilical cord MSCs should be

investigated as an alternative cell source to UCB.
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