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Abstract

Risk quantification algorithms in the ICU can provide (1) an early alert to the clinician that a

patient is at extreme risk and (2) help manage limited resources efficiently or remotely. With

electronic health records, large data sets allow the training of predictive models to quantify

patient risk. A gradient boosting classifier was trained to predict high-risk and low-risk

trauma patients, where patients were labeled high-risk if they expired within the next 10

hours or within the last 10% of their ICU stay duration. The MIMIC-III database was filtered

to extract 5,400 trauma patient records (526 non-survivors) each of which contained 5 static

variables (age, gender, etc.) and 28 dynamic variables (e.g., vital signs and metabolic

panel). Training data was also extracted from the dynamic variables using a 3-hour moving

time window whereby each window was treated as a unique patient-time fragment. We

extracted the mean, standard deviation, and skew from each of these 3-hour fragments and

included them as inputs for training. Additionally, a survival metric upon admission was cal-

culated for each patient using a previously developed National Trauma Data Bank (NTDB)-

trained gradient booster model. The final model was able to distinguish between high-risk

and low-risk patients to an AUROC of 92.9%, defined as the area under the receiver opera-

tor characteristic curve. Importantly, the dynamic survival probability plots for patients who

die appear considerably different from those who survive, an example of reducing the high

dimensionality of the patient record to a single trauma trajectory.

1. Introduction

Trauma is the leading cause of death in the United States for people under the age of 46 and

the leading cause of overall expected years of life lost [1]. Since modern intensive care units

(ICU) monitor patients continuously, the data-rich environment can be used to predict mor-

tality, time-dependent risk, and provide opportunities for data science and machine learning

[2,3]. Due to the high patient-to-patient variability, a data-driven approach is a reasonable way

of predicting patient outcomes as patient-scale mechanistic models developed from first prin-

ciples are highly challenging and likely injury-specific [4–6]. Furthermore, time-series
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classification has already been successfully implemented in the field of medical diagnosis sug-

gesting its potential utility in the context of trauma [7]. The Medical Information Mart for

Intensive Care (MIMIC-III) database is one of the first initiatives for not only the frequent col-

lection of clinical patient data, but also the public dissemination of this de-identified data to be

used by researchers around the world. This database is now the gold standard for publicly

available time-stamped patient data, consisting of a very large patient population (> 40,000

patients) and time-stamped records of every clinical event.

To date, there has been considerable work aimed at predicting ICU patient outcomes using

existing databases. Alistair et al. predicted mortality to an area under the receiver operator

characteristic curve (AUROC) of 92.4% using features extracted from the first 24 hour of a

patient’s stay in the ICU [8]. Harutyunyan et al. predicted mortality within 24 hours to an

AUROC of 91.1%, while simultaneously predicting average length of stay, an additional

important variable for quantifying the efficacy of the ICU [9]. In an earlier study, our group

predicted mortality in the National Trauma Data Bank (NTDB) to an AUROC of 91.8%, using

only 8 static data points [age, gender, respiratory rate, heart rate, systolic blood pressure, Glas-

gow coma score, temperature, oxygen saturation] obtained upon admission into the hospital

or ambulance, but not including data collected in the ICU [10]. In addition to mortality analy-

sis, length-of-stay prediction has been the focus of many machine learning groups as well, as it

is a useful measure for managing hospital resources, improving outcomes, and increasing effi-

ciency [11,12]. Liu et al. published a detailed review on machine learning for trauma patients

[13]. There have also been physics-based models constructed to model trauma. Ursino et al.,

developed a system of ordinary differential equations to describe the circulatory system as a

closed loop with feedback, which has been extended to simulate traumatic bleeding [5,14].

While able to simulate blood loss patterns, these types of models are difficult to connect a spe-

cific injury to an outcome [4,15–17]. Hirshberg et al., also developed a model to evaluate the

impact of the transfusion of blood products on dilutional coagulopathy and found that resusci-

tation with more than 5 units of red blood cells would lead to coagulopathy [18].

In this paper, we use the MIMIC-III ICU database to predict risk of death in trauma

patients and whether a patient’s health will begin to rapidly decline (analogously, a rapid rise

in risk). We pose this problem as a time-series classification problem where the input is a

fixed-length window of patient properties (both dynamic and static) with a 1-hour step size.

Each patient 3-hour window is regarded as an individual patient-time fragment that is used

for training or evaluating a model. The goal of this work is to develop a model that can contin-

uously assess and predict patient mortality probability (a metric for quantifying patient risk) as

data becomes available in real time.

2. Methods

2.1 Patient dataset

The MIMIC-III dataset is publicly available and consists of more than 60,000 ICU admissions

in 25.csv files (Fig 1A). The patient dataset contains both static features (age, gender, etc.) and

dynamic features (heart rate, blood pressure, etc.) and is suitable for the study of time-varying

processes in trauma patients. We used an exclusion criterion consistent with the work of Alis-

tair et al., where patients were excluded if they were neonatal or pediatric patients (age < 16),

presented in the ICU for less than 4 hours, or had a do not resuscitate order [8]. We also

excluded patients with more than a single ICU stay per admission and filtered for patients who

had external traumatic injury ICD-9 codes to ensure that we were gathering trauma patients;

filtering criteria are listed in Fig 1B. Following these exclusion and inclusion criteria, the data-

set contained 5400 unique ICU visits (corresponding to 5400 unique patient records). Patient
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data was recorded at 1-hour time points after admission into the ICU. A table of descriptive

statistics describing the patient data included in the analysis is shown in Table 1.

2.2 Missing data

Missing data was handled in one of two ways. Mode imputation was used to impute the miss-

ing values and outlier values for all static variables used in the analysis (e.g., age, height, weight,

BMI). For dynamic variables, we used linear interpolation method to populate the missing val-

ues. The vital signs of an exemplary patient are shown in Fig 2. In some cases, the features var-

ied greatly and displayed large fluctuations over the course of a patient’s stay in the ICU (e.g.,

heart rate, respiratory rate, and systolic, diastolic, and mean blood pressure) and in other cases

a variable remained almost constant (e.g., hematocrit, hemoglobin, and Glasgow Coma Score).

The high-dimensionality and heterogeneity of such data can become challenging even for an

expert to rapidly interpret. Ideally, machine learning models are equipped to accommodate

Fig 1. Process flow diagram of the workflow for building a model to predict physiological decompensation. The

data comes from the MIMIC-III database, an openly available dataset consisting of>40,000 patients,>60,000

intensive care unit admissions, and 25.csv files. We filtered for trauma patients based on ICD-9 codes, and imputed

missing data using mode imputation for static variables and interpolation for dynamic variables. We rearranged the

data and posed it as a classification problem within a moving-window, where we tried to predict high-risk (death

within 10-hours or death within the final 10% of the patient’s total ICU stay duration). We extracted the mean,

standard deviation, and skew for every dynamic variable. We constructed the training and test sets while biasing the

sampling procedure to alleviate the class imbalance problem (the ratio of patients who survived to those who expired

was ~10:1). We then trained the gradient boosting classifier and analyzed whether it can be used to signal extreme risk

of death.

https://doi.org/10.1371/journal.pone.0262523.g001

Table 1. Descriptive statistics of the trauma patients included in this analysis.

Demographic Mean +/- S.D.

Age (years) 56.5 ± 20.1

Male fraction 0.61

Height (cm) 171.7 ± 6.7

Weight (kg) 78.0 ± 17.0

BMI (kg/m2) 26.9 ± 3.6

https://doi.org/10.1371/journal.pone.0262523.t001
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these high-dimensional patterns and use them to predict patient-risk. The rate of missingness

for dynamic variables prior to imputation is shown in Table 2. It is important to note that vital

signs are recorded every hour while many other dynamic properties are recorded on an as-

Fig 2. The vital signs of a single patient’s stay in the ICU.

https://doi.org/10.1371/journal.pone.0262523.g002

Table 2. Rate of missingness for dynamic variables prior to imputation.

Property Percent Missing

Heartrate 6.45

Sysbp 10.96

Diasbp 10.97

Tempc 69.11

spo2 8.840

glucose 78.34

endotrachflag 66.35

aniongap 93.98

albumin 99.20

bicarbonate 93.92

bilirubin 98.96

calcium 97.38

creatinine 93.94

chloride 93.5

hematocrit 92.49

hemoglobin 94.31

lactate 97.53

platelet 94.45

potassium 92.16

Ptt 96.39

Inr 96.52

sodium 93.03

Bun 93.95

wbc 94.61

Note that vital signs are recorded more frequently than most other dynamic properties.

https://doi.org/10.1371/journal.pone.0262523.t002
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needed basis. In many instances, the properties are not truly missing they were simply not

recorded as frequently as the vital signs.

2.3 Data formatting

We posed this problem as a binary-classification problem where the data from the 3-previous

time points (spaced at 1-hour intervals) was used to predict mortality over the following 10

hours (Fig 3). By posing the problem in this manner, the labels we were seeking to predict

were effectively “high-risk” and “low-risk” (Fig 1D). We further hypothesized that the most

recent patient history was more predictive of patient-risk than the long-term patient history.

Since we computed the descriptive statistics of each of the features, this would be akin to com-

puting these statistics with an exponential moving average and a small half-life (thus, increas-

ing the weight of the most recent data points).

2.4 Feature selection

The dataset consisted of both static and dynamic variables. A common approach to the treatment

of dynamic patient data is to extract features based upon the entire duration of a patient’s stay. In

this analysis, we performed a different method where we divide the original patient vital sign evo-

lution into multiple subsequences with a fixed step size and window length. This approach implic-

itly assumes that the short-term patient history is more significant to the outcome of the patient

than the long-term patient history. For each trauma patient, we specified a 3-hour time window

referred to as a patient time fragment. Within each time fragment, we extracted the mean, stan-

dard deviation, and skew for each of the dynamic variables, as shown in Fig 1E.

Importantly, only vital sign and lab measurements from the basic metabolic panel were

used and a complete list of features is shown in Table 3. This is consistent with the work of

Alistair et al. who used similar features in their analysis [8]. In addition to vital sign and lab

measurement data, we also included the survival probability prediction of the model from our

previous publication based only on time-equals-zero admission data [10]. While the model

from our previous publication (PLOS model) had been trained on static data taken primarily

from trauma patients upon admission to the hospital, the inputs to this model (age, gender,

temperature, GCS, SBP, O2SAT, HR, RR) are all present in this MIMIC-III dataset. Therefore,

the survival probability predictions from the PLOS model were calculated and included as a

feature for each patient at every time-point. We also included the static variables shown in the

Fig 3. Construction of the dataset from the raw data. Patient trajectories were divided into 3-hour window

subsequences (Sub seq.) with a 1-hour step size.

https://doi.org/10.1371/journal.pone.0262523.g003
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second column of Table 3, which were held constant across all patient time fragments. This

analysis resulted in 89 features (5 static variables, and 3 features extracted from each of the 28

dynamic variables).

2.5 Class imbalance

Of the 5400 trauma patients in the MIMIC-III database, 526 of them died. While not an enor-

mous class imbalance, the dataset consisted of 158,108 patient windows of which only 5,615

mapped to high-risk patients. If one were to randomly assign patients to either the training set

or the test set without accounting for this imbalance, the model will simply learn to label each

patient as low-risk (the majority class) as this will maximize its accuracy (although it would

not have learned anything meaningful). To alleviate class imbalance, we undersampled from

the population that survived to develop the training set, as described in Fig 1F [19]. Patients

who ultimately died were assigned a higher probability of being placed in the training set than

in the test set. Importantly, patients were marked to be placed in either the training set or the

test set to prevent data leakage.

2.6 Machine learning modeling

A gradient boosting classifier was trained to predict high-risk and low-risk patient windows,

the penultimate step in the process flow diagram and shown in Fig 1G [20]. The algorithm

Table 3. Features extracted from the dataset.

Dynamic Variables Static Variables

Heart Rate Sex

Systolic Blood Pressure

Diastolic Blood Pressure

Mean Blood Pressure

Respiratory Rate

Temperature

Oxygen Saturation

Glucose levels

Glasgow Coma Score

Anion Gap

Albumin levels

Bicarbonate levels

Bilirubin levels

Calcium levels

Creatine levels

Chloride levels

Lactate levels

Platelet levels

Potassium levels

Sodium levels

Prothrombin Time

International Normalized Ratio

Hematocrit

Hemoglobin

Blood Urea Nitrogen

White Blood Cell count

Endotracheal tube requirement flag

PLOS-NTDB Model Prediction (10)

Age

Height

Weight

BMI

Importantly, these extractions occurred over a 3-hour window of time length for each patient. A 1-hour step size was

used to construct each patient fragment. The mean, standard deviation, and skew was included for each of the

dynamic variables.

https://doi.org/10.1371/journal.pone.0262523.t003
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works by training 300 weak learners, typically short decision trees, on the dataset in a stage-

wise manner so that the errors made by the early weak learners are corrected by the latter

ones. Gradient boosting receives high recognition in the literature for its effectiveness in classi-

fication on tabular data [21,22]. Hyperparameter selection was performed via grid search cross

validation, a method by which combinations of hyperparameters are selected for the model

and validated against withheld samples of the training set to approximate how well they will

generalize to the test set. We also trained other common machine learning models to the data-

set (e.g., support vector machine, logistic regression, recurrent neural network, and gaussian

naïve Bayes) but the gradient boosting classifier was found to outperform all other models.

With the model trained, we were left to interpret the results as represented in Fig 1H.

3. Results

The accuracy of the model was expressed in terms of the area under the receiver operator char-

acteristic curve (AUROC), which is the probability of correctly distinguishing between a high-

risk patient time fragment and a low-risk patient time fragment. Using this as the metric for

the model, we achieved an accuracy of 92.9%. We also compared this AUROC with other

machine learning models and found that it outperformed the support vector machine classi-

fier, the logistic regression classifier, and the Gaussian Naïve Bayes classifier (Fig 4). A

Fig 4. The receiver operator characteristic curve for each machine learning model considered in the present study.

The gradient boosting classifier is the most accurate and the one used in the subsequent analysis.

https://doi.org/10.1371/journal.pone.0262523.g004
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recurrent neural network was implemented to explicitly model the long-term relations, but the

RNN overfit the training set (AUROC = 0.79).

Probability of survival plots were computed by applying the model every hour once the

patient had accumulated a minimum of 3-hours in the ICU. We plotted the probability of sur-

vival against the time prior to expiration for patients who died (Fig 5) and prior to discharge

for those who survived (Fig 6). The survival probability plots of patients who died exhibited

either a sudden drop in survival probability in the hours prior to death or had survival proba-

bilities weakly fluctuating at very low survival probability values (e.g., Fig 5E and 5F). In the

patients who survived, we generally observed the opposite behavior. Survival probabilities

would either rise, remain the same, or experience minor drops that were not indicative of

extreme risk of death.

We also plotted the fraction of patients who died as a function of time (Fig 7). We can see

that about 20% of trauma patients who die do so within the first 24 hours of trauma and 50%

within the first 72 hours. This is consistent with the literature, as it well-established that treat-

ing a trauma patient in the early stages of injury is vital to increasing survival probability.

4. Discussion

The gradient boosting classifier was able to accurately predict risk in the trauma patients pres-

ent in the MIMIC-III database with dynamic (vital signs, basic metabolic panel values) and

static (age, gender, etc.) values. This machine learning methodology naturally raises certain

questions as to how the model should be implemented in a clinical setting and interpreted

mechanistically. If an absolute, and arbitrary, threshold is used to indicate extreme risk of

death, it would not be accurate for detecting this extreme risk in severe cases. An outlier detec-

tion method for detecting sudden drops in survival probabilities may be more appropriate, as

it will be able to trigger a response from ICU team. As it stands, the relatively small number of

Fig 5. Survival probability plots for a subset of patients who ultimately expired. Notice that many of these patients

experienced a sudden dip in survival probability prior to death, except for one displayed in panel F, where the

probability of survival of this patient was consistently low (<0.4 for all time points).

https://doi.org/10.1371/journal.pone.0262523.g005
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deceased patients make it difficult to determine the model’s effectiveness, but as more data

becomes available, this should be the focus of future work.

One of the key assumptions of this analysis was that the time prior to death or discharge

from the ICU was specified prior to training, a variable we will refer to as lead-time. We per-

formed a sensitivity analysis on this variable, as it represents a balance between predictive

power (high AUROC) and value in a clinical setting (the greater the lead-time, the more useful

the model is) which is shown in Fig 8. Based on the concavity of plot and apparent inflexion

point around 10-hours, this value seems to be a fair compromise between these two factors.

There are other limitations of the model presented in this work. First, all data used in this

analysis are taken from the same hospital making it unclear if it is predictive of all hospitals. In

theory, a similar approach can be taken if data is unified from participating trauma centers but

to our knowledge this has not yet been carried out. The National Trauma Data Bank (NTDB)

consists of trauma patient data from multiple centers but is mostly restricted to static data

[23]. When the PLOS-NTDB model (trained only with NTDB data) was used as time-depen-

dent sole predictor for model accuracy with the MIMIC-III data set, we achieve an AUROC of

0.70. While this is low, the PLOS-NTDB model was greater than an AUROC of 0.50, indicating

that it was still a useful feature that should be included. Second, our analysis was only per-

formed on trauma patients suggesting that it may not generalize to other disease states. Fur-

thermore, while our data processing methodology in 158,108 unique time points, this only

represented 5,400 trauma patients, a relatively small number. As is usually the case in problems

with limited data available, more data could dramatically improve AUROC and garner more

insights. We hope that this paper, as well as the studies of other groups, can help elucidate the

need for publicly available, de-identified, patient data for future in-depth analyses.

Another limitation of the present model is its interpretability. While gradient boosting clas-

sifiers tend to perform very well on tabular datasets, they often lack the interpretability of sim-

pler models such as the logistic regression classifier. This is a substantial drawback because

Fig 6. Survival probability plots for a subset of patients who survived. Note that probability of survival remains the

same or increases, but rarely displayed a sudden, dramatic drop.

https://doi.org/10.1371/journal.pone.0262523.g006
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clinicians must have an understanding of how a model works in order to trust it. Tools such as

the Local Interpretable Model-Agnostic Explanations method (LIME) or Shapley Additive

Explanations (SHAP) value metrics are used to interpret these models, but their reliability

remains an active area of research [24]. Interpretability is a key component of a machine learn-

ing models in most settings, but especially in healthcare since it may often have the direst con-

sequences. One way to interpret the model is to examine the coefficients of the logistic

regression model in the same way one would in a multivariate linear regression model–the

magnitude of the coefficients is a metric for feature importance. The largest coefficients corre-

spond to the mean vital signs (mean blood pressure, respiratory rate, temperature, oxygen sat-

uration, and gcs), the mean and standard deviations of many of the basic metabolic panel

features (glucose, aniongap, albumin, bilirubin, calcium, creatine, chloride, hematocrit, hemo-

globin, lactate, platelet, and wbc), and the patients’ BMI. Intuitively, this is consistent with

expectation. The mean of the vital signs and the standard deviation (an indicator of the vari-

ability of these variables), should be strong indicators of patient health.

Clearly, publicly available EHR spell out data presents an opportunity for patient outcome

improvements. In this work, we demonstrated the utility of gradient booster classification in

handling static and dynamic data. Additionally, we demonstrated the utility of the patient time

Fig 7. A plot of fraction of patients who died against time. The majority of patients die within the first 72 hours

again showing that the sooner the patient can receive treatment the greater the likelihood of survival.

https://doi.org/10.1371/journal.pone.0262523.g007
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fragment as a useful protocol for extracting information from time series with the goal of train-

ing machine learning algorithms. Importantly, the dynamic survival probability plots for

patients who die appear to be considerably different from those who survive, an example of the

benefit of reducing the high dimensionality of the patient record to a single trauma trajectory.
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