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Abstract: Doxorubicin (DOX) is an effective chemotherapeutic agent that plays an unparalleled
role in cancer treatment. However, its serious dose-dependent cardiotoxicity, which eventually
contributes to irreversible heart failure, has greatly limited the widespread clinical application of
DOX. A previous study has demonstrated that the ribonucleotide reductase M2 subunit (RRM2)
exerts salutary effects on promoting proliferation and inhibiting apoptosis and autophagy. However,
the specific function of RRM2 in DOX-induced cardiotoxicity is yet to be determined. This study
aimed to elucidate the role and potential mechanism of RRM2 on DOX-induced cardiotoxicity by
investigating neonatal primary cardiomyocytes and mice treated with DOX. Subsequently, the results
indicated that RRM2 expression was significantly reduced in mice hearts and primary cardiomyocytes.
Apoptosis and autophagy-related proteins, such as cleaved-Caspase3 (C-Caspase3), LC3B, and
beclin1, were distinctly upregulated. Additionally, RRM2 deficiency led to increased autophagy and
apoptosis in cells. RRM2 overexpression, on the contrary, alleviated DOX-induced cardiotoxicity
in vivo and in vitro. Consistently, DIDOX, an inhibitor of RRM2, attenuated the protective effect of
RRM2. Mechanistically, we found that AKT/mTOR inhibitors could reverse the function of RRM2
overexpression on DOX-induced autophagy and apoptosis, which means that RRM2 could have
regulated DOX-induced cardiotoxicity through the AKT/mTOR signaling pathway. In conclusion,
our experiment established that RRM2 could be a potential treatment in reversing DOX-induced
cardiac dysfunction.

Keywords: RRM2; doxorubicin; AKT/mTOR pathway; cardiotoxicity

1. Introduction

Doxorubicin, a broad-spectrum chemotherapeutic drug, is commonly used in the
clinical treatment of cancer, with a potent curative effect [1]. However, promoting DOX
usage in clinical treatment still faces many obstacles, such as severe cardiotoxicity and heart
failure [2,3]. It is believed that many factors are involved in its cardiotoxicity, such as the
excessive accumulation of reactive oxygen species (ROS), calcium dysregulation, and dis-
turbance of the apoptosis and autophagy pathways [4–8]. Current evidence has shown that
the excessive accumulation of ROS is the culprit of DOX-induced cardiomyopathy, resulting
in irreversible cardiac dysfunction [9]. However, some evidence has demonstrated that
DOX could lead to apoptosis without inducing ROS production and oxidative stress [10].
DOX-induced cardiotoxicity can be alleviated by inhibiting cardiomyocyte apoptosis [11].
Accordingly, targeting the above mechanisms provides an effective therapeutic direction to
alleviate DOX-induced cardiotoxicity.

Ribonucleotide reductase (RR) plays a crucial role in DNA synthesis and can limit
its repair [12]. The ribonucleotide reductase regulatory subunit M2 (RRM2), a part of
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nucleotide reductase, catalyzes the inhibition of ribonucleotides, yielding deoxyribonu-
cleotides [13]. Previous studies have revealed that RRM2 plays a vital role in promoting
cell proliferation, migration, and invasion, while inhibiting cell apoptosis [14]. In addition,
RRM2 could affect cell proliferation—specifically, inhibition of the cell cycle, which is mani-
fested as the apoptosis of human neuroblastoma cells [15]. Moreover, RRM2 expression
can be used as an indicator to predict responses to chemotherapy [16,17]. Another study
showed that by inducing the overexpression of Rrm1/Rrm2 in rats, the content of RNA
enzyme was significantly increased, which improved cardiac function without causing
cardiac remodeling in infarcted rats [18]. However, the roles and mechanisms of RRM2 in
DOX-induced cardiotoxicity are still unclear.

Collectively, our findings indicated that RRM2 could alleviate DOX-induced myocar-
dial damage, possibly by inhibiting excessive cardiomyocyte apoptosis and autophagy. The
results demonstrated that RRM2 could provide a novel therapeutic direction to ameliorate
DOX-induced cardiotoxicity.

2. Materials and Methods
2.1. Animals and Treatment

Male C57/B6 mice were purchased from Jihui Laboratory Animal Breeding Co., Ltd.
(Shanghai, China). All animals were kept in an SPF barrier environment at a constant
temperature of 20◦–25◦ and were provided with sufficient food and water. After dissolving
DOX with saline, the mice were prepared to receive the intraperitoneal injection. The
experimental group was injected with DOX (i.p. 15 mL/kg), while the control group was
injected with the same dose of saline. Five days later, the heart tissue sample was collected
under the premise of using isoflurane anesthesia.

2.2. Cell Studies

Neonatal primary cardiomyocytes from mice were isolated according to previous
studies [19]. The cardiomyocytes were kept in DMEM supplemented with 10% fetal bovine
serum (Sigma, Saint Louis, MO, USA) and 1% penicillin-streptomycin solution (Hyclone,
Logan, UT, USA). The cells were treated with DOX (1 µmol/L) in the medium for 24 h.
In addition, RRM2 inhibitor (MCE, New Jersey, USA) and AKT/mTOR inhibitors (MCE,
New Jersey, USA) were added into the medium, respectively.

According to the product instructions of Zorin, the small interference targeting RRM2
(si-RRM2) was transfected into cardiomyocytes for 12 h using Lipo3000. After that, we
measured RRM2 protein and mRNA levels to detect the silencing efficiency of si-RRM2.

2.3. Recombinant Adenovirus Was Delivered to Mice Ventricular and Primary Cardiomyocytes

The adenovirus with RRM2 overexpression (Ad-RRM2) and control virus (Ad-GFP)
were constructed by Hanbio Biotechnology, China. Mice were anesthetized by isoflurane
followed by continuous inhalation of isoflurane using a mask oxygen inhalation device.
During exposure to the heart at the strongest apical beat, Ad-RRM2 or Ad-GFP (50 µL) was
injected into the 4–5 positions on the left ventricular wall using a disposable sterile syringe.
Four days later, subsequent treatment was carried out.

The primary cardiomyocytes were incubated in a 6-well plate, and the virus was
transfected into cells. Replacing the new medium 12 h after transfection was necessary, and
the subsequent treatment was carried out after 24 h.

2.4. Cell Proliferation Assay

To further verify the cell viability, a cell count kit-8 (CCK-8, Beyotime, Shanghai, China)
was used. Cells were seeded in a 96-well plate at 5 × 103 cells per well with different drugs
for 24 h prior to treatment with DOX. According to the instructions for the CCK-8, 20 µL
was added to cells. Then, the cells were incubated in the incubator for 1 h. Finally, the
absorbance was measured at 450 nm.
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2.5. Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick End Labeling (TUNEL)

To further verify the degree of apoptosis, TUNEL (Beyotime, Shanghai, China) staining
was used. Cells were seeded in a 6-well plate for 48 h with different concentrations of drugs.
According to the instructions for the TUNEL, 100 µL was added to cells. Then, the cells
were incubated in the incubator for 1 h. Subsequently, PBS was used to remove residual
dyes in cells. The ratio of TUNEL-positive cells to the number of nuclei stained by DAPI
represents the degree of apoptosis.

2.6. Histological Analysis and Immunofluorescence Staining

After the experiments, the mice were anesthetized and their heart tissues were taken
out for histological analysis. Immunofluorescence and hematoxylin and eosin (H&E)
staining were performed according to previous studies [20].

2.7. Reverse-Transcription Quantitative PCR (qPCR)

Total RNA was isolated from heart tissue samples and cells using TRIzol (Takara,
Otsu, Japan). cDNA was synthesized using the Prime-ScriptTMRT reagent kit (Takara,
Otsu, Japan). In line with directions, we used SYBR Green (Takara, Otsu, Japan) to perform
qRT-PCR. GAPDH was used as an internal control. The primer sequences performed in
this study for the target genes were as follows:

GAPDH (Mus musculus) F TGCACCACCAACTGCTTAG
GAPDH (Mus musculus) R GGATGCAGGGATGATGTTC
RRM2 (Mus musculus) F ACTGTGACTTTGCCTGCCTGATG
RRM2 (Mus musculus) R TCCGTGAGGAACTCCTGCTCTATC

2.8. Western Blot

Extraction of proteins from primary cardiomyocytes and heart tissues was performed
with RIPA lysis buffer (Beyotime, Shanghai, China) mixed with protease and phosphatase
inhibitors (Beyotime, Shanghai, China). The protein was separated using 7.5–12.5%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to
a polyvinylidene fluoride (PVDF) membrane. TBST was used to prepare 5% nonfat dry
milk for 1 h at room temperature, and then it was incubated overnight with a primary
antibody at 4 ◦C. The antibodies we used were as follows: RRM2 (ABclonal, A5255), Bcl-2
(Proteintech, 12789-1-AP), Phospho-mTOR (CST, 5536T), cleaved-Caspase3 (CST, 9661S),
Beclin 1 (ABclonal, A7353), mTOR (CST, 2983T), AKT (Proteintech, 10176-2-AP), Phospho-
Akt (Abclonal, AP1259), LC3B (Abclonal, A19665), GAPDH (Abcam, ab181602). Finally,
HRP-conjugated secondary antibodies were used at room temperature for 1 h. Signals were
visualized by enhanced chemiluminescence ECL (Thermo Scientific, Boston, MA, USA).

2.9. Data Analysis

All values are expressed as means ± standard deviation (SD) of independent exper-
iments. Differences between groups were analyzed by an unpaired, two-tailed Student
t-test (two groups) or ANOVA (three or more groups) followed by Bonferroni’s correction
if needed. All of the statistical tests were performed with the GraphPad Prism software
version 5.0, and differences with p < 0.05 were considered statistically significant.

3. Results
3.1. RRM2 Expression Is Decreased In Vitro and In Vivo after DOX Treatment

Firstly, the effect of DOX on RRM2 expression was detected by qRT-PCR and Western
blot. After the cells were treated with DOX (1 µmol/L) for 24 h, we found that the expression
of RRM2 mRNA (Figure 1A) and protein levels (Figure 1C,D) were both decreased in
primary cardiomyocytes, compared with the control group. RRM2 expression was also
investigated in mice after intraperitoneal injection of DOX (15 mg/kg) for 5 days. Similarly,
RRM2 mRNA expression (Figure 1B) and protein levels (Figure 1E,F) were markedly



Biomolecules 2022, 12, 299 4 of 15

downregulated compared with the control group. In summary, these results demonstrated
that RRM2 could be implicated in DOX-induced cell damage.
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Figure 1. RRM2 expression was decreased in vitro and in vivo after DOX treatment. (A) Compared
with the CTR group, the mRNA expression of RRM2 in primary cardiomyocytes was decreased after
DOX treatment (n = 6). (B) Compared with the CTR group, the mRNA expression of RRM2 in hearts
was lower after DOX treatment (n = 6). (C,D) RRM2 protein levels in primary cardiomyocytes treated
with DOX (n = 4). (E,F) RRM2 protein levels in hearts 5 days after DOX treatment (n = 4). ** indicates
p < 0.01. *** indicates p < 0.001.

3.2. RRM2 Overexpression Abated DOX-Induced Apoptosis and Autophagy In Vitro

Apoptosis and autophagy are critical to DOX-induced cardiomyopathy [21,22]. To
investigate their role, primary cardiomyocytes were treated with DOX for 24 h, and Western
blot was used to evaluate the impacts of DOX on primary cardiomyocytes. As shown
in Figure 2A–E, DOX treatment prominently increased the protein level of C-Caspase3
and reduced the antiapoptotic protein level of Bcl-2. In addition, autophagy proteins
expressions, such as LC3B and beclin1, were significantly increased. Taken together, the
mechanism of DOX-induced cardiotoxicity could pertain to the disturbance of apoptosis
and autophagy. Subsequently, cardiomyocytes were transfected with overexpressed RRM2
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adenovirus (Ad-RRM2) and ctr GFP virus (Ad-GFP) before DOX treatment to further
explore the function of RRM2. Western blotting showed that RRM2 was successfully
overexpressed after transfection (Figure 2F,G), and its findings confirmed that RRM2
overexpression downregulated the protein levels of C-Caspase3, LC3B, and beclin1—while
Bcl-2 was upregulated, as shown in Figure 2H,I. Collectively, these results provide evidence
that RRM2 overexpression protects against apoptosis and autophagy in cells.
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3.3. Knockdown of RRM2 Facilitates DOX-Induced Injury In Vitro

To investigate whether RRM2 deficiency played a role in DOX-induced cardiotoxicity,
si-RNA targeting RRM2 was transfected into cardiomyocytes, and qRT-PCR and Western
blot were used to detect the efficiency of si-RNA. The qRT-PCR and Western blot results
showed that the mRNA and protein levels of RRM2 were markedly decreased after trans-
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fecting si-RNA (Figure 3A,B). Western blot results also confirmed that RRM2 knockdown
upregulated the expression of pro-apoptotic and autophagy-related proteins, such as C-
Caspase3, LC3B, and beclin1, and downregulated Bcl-2 after DOX treatment (Figure 3D,E).
These findings prove that RRM2 deletion could affect apoptosis and autophagy upon DOX
treatment. Additionally, it has been reported that RRM2 can affect the proliferation of
tumor cells [23]. To detect the effects of RRM2 on cytotoxicity and proliferation, CCK8 was
used to verify the function of RRM2 on H9C2 cells. The cells were randomly divided into
five groups. Before DOX treatment, three groups were added with DIDOX (RRM2 inhibitor,
MCE), si-RNA, Ad-RRM2 for pretreatment, respectively. Our findings demonstrated that
RRM2 overexpression could reduce the adverse effects of DOX on cell proliferation, while
the inhibition of RRM2 enhanced this effect, as shown in Figure 3F. Altogether, these data
demonstrated that RRM2 uniquely affects cell proliferation.

3.4. RRM2 Overexpression Alleviated DOX-Induced Cardiotoxicity In Vivo

Since DOX treatment could downregulate the levels of RRM2, and as apoptosis and
autophagy were aggravated after RRM2 was knocked down, we then verified the effect
of RRM2 overexpression on the hearts of mice. Ad-RRM2 and Ad-GFP were separately
transduced into cardiac tissue by in situ left ventricular injection. Immunofluorescence
confirmed that RRM2 was successfully transferred into hearts (Figure 4A,B). As predicted,
RRM2 overexpression ameliorated DOX-induced cardiomyopathy, indicated by reduced
pro-apoptotic and autophagy-related proteins (Figure 4C,D) and improved myofibrillar
degeneration and disruption (Figure 4E). These findings showed that RRM2 overexpression
mitigated DOX-induced cardiotoxicity in hearts.

3.5. Blocking RRM2 Overexpression Can Reverse Its Protective Effect

To further verify the protective effect of RRM2, we added DIDOX while using adenovi-
ral overexpression of RRM2 to treat cells. The addition of DIDOX (60 µmol/L) during viral
transfection blocked the protective effect of RRM2 overexpression, resulting in the increase
of LC3B, beclin1, and C-Caspase3 and the decrease of Bcl-2, as shown in Figure 5A,B. In ad-
dition, we stained the nucleus with TUNEL (Figure 5C), indicating that the cells had typical
nuclear apoptosis. In addition, the apoptotic index was significantly increased when RRM2
was knocked out by siRNA and decreased when RRM2 was overexpressed by adenovirus.
In summary, our findings showed that RRM2 improved DOX-induced cardiotoxicity.
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Figure 3. RRM2 knockdown facilitated DOX-induced injury in vitro. (A) The mRNA expression of
RRM2 after si-RNA transfection (n = 6). (B,C) The protein expression of RRM2 after si-2 transfection
(n = 4). (D,E) The protein expression of autophagy and apoptosis after si-2 and DOX treatment (n = 4).
(F) Cell viability after Ad-RRM2, si-2, and DIDOX treatment. (n = 5). * indicates p < 0.05. ** indicates
p < 0.01. *** indicates p < 0.001. **** indicates p < 0.0001.

3.6. AKT/mTOR Signaling Is Involved in Regulating RRM2 in Cardiomyocytes

Current studies revealed that the AKT/mTOR pathway is responsible for DOX-
induced cardiomyopathy [24,25]. Consistently, we found that the protein levels of p-AKT
and p-mTOR in vitro of the si-RNA or Ad-RRM2 treated groups were significantly changed
compared with the DOX group, indicating that the AKT/mTOR signaling pathway was in-
volved in the protective effects of RRM2 on cardiomyocytes (Figure 6). Subsequently, AKT
and mTOR inhibitors were used to investigate the role of AKT/mTOR signals in the protec-
tion of RRM2 against DOX-induced cardiotoxicity. After treatment with LY294002, an AKT
inhibitor, the expression levels of beclin1, LC3B, and C-Caspase3 were markedly upregu-
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lated, and Bcl-2 was significantly downregulated in overexpressed RRM2 cardiomyocytes
(Figure 7A,B). The same results were obtained when cells were treated with rapamycin, an
mTOR inhibitor (Figure 7C,D).
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staining in hearts compared with DOX and adenovirus treatments. ** indicates p < 0.01. *** indicates
p < 0.001.
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Figure 7. (A,B) The protein levels of autophagy and apoptosis in primary cardiomyocytes after
LY294002 treatment (n = 4). (C,D) The autophagy and apoptosis-related protein levels in primary
cardiomyocytes after rapamycin treatment (n = 4). * indicates p < 0.05. ** indicates p < 0.01. # indicates
p > 0.05.

These findings demonstrated that blocking the AKT/mTOR signaling pathway abol-
ished the beneficial effect of RRM2, further confirming that RRM2 has a protective effect
against DOX-induced cardiomyopathy through the AKT/mTOR signaling pathway.

4. Discussion

Our study revealed the potential protective function of RRM2 on DOX-induced car-
diomyopathy and investigated the underlying mechanism (Figure 8). Compared with
the control group, RRM2 expression was markedly lower in heart tissues and primary
cardiomyocytes after DOX treatment. We also demonstrated that when RRM2 was overex-
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pressed, it could significantly inhibit excessive apoptosis and autophagy—thereby alleviat-
ing DOX-induced toxicity—and that this protective effect disappeared after adding RRM2
inhibitors. Consistently, RRM2 knockdown aggravated the development of DOX-induced
cardiomyopathy, which could be connected to the disturbance of apoptosis and autophagy.
We also found that the protein levels of p-AKT and p-mTOR decreased markedly after
DOX treatment, while this effect was reversed after RRM2 overexpression, confirming the
AKT/mTOR signaling pathway role in regulating RRM2 in cardiomyocytes. In summary,
we believe that RRM2 could be a promising therapy against DOX-induced cardiomyopathy.
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At present, it is widely believed that the activity of RR, a nucleotide metabolism en-
zyme, is closely related to tumor progression. It has been reported that RR can regulate cell
proliferation, apoptosis, autophagy, and migration [26]. RR consists of two subunits, RRM1
and RRM2 [27]. Current studies have shown that RRM1 and RRM2 have different effects on
tumor progression. For instance, RRM1 knockout could inhibit tumor growth, reduce the
risk of metastasis and increase the sensitivity to chemotherapeutic drugs—indicating that
RRM1 had pro-tumor functions [28,29]. On the other hand, RRM2 overexpression could
significantly enhance the activation potential of multiple oncogenes and increase the risk of
malignant tumors [30]. RRM2 is also upregulated in neuroblastoma tissues and is closely
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related to its clinical stages [15]. Moreover, when the expression of RRM2 is inhibited, it
can significantly inhibit cell proliferation and promote apoptosis [31]. In the cell cycle,
especially in the S/G2 phase, the transcriptional activation of RRM2 greatly stimulates the
activity of RNR to supply the dNTP required for DNA replication [27]. However, there is
no current comprehensive mechanism that elucidates the downstream signaling pathway
of RRM2 in DOX-induced cardiotoxicity. Our data showed that in vitro and in vivo, DOX-
induced cardiotoxicity was significantly reduced when RRM2 was overexpressed, which
indicated that RRM2 exerts a protective effect in heart diseases.

DOX is an effective chemotherapeutic drug that plays a key role in the clinical treat-
ment of tumors [32]. However, DOX can cause severe heart damage to patients and even
heart failure eventually [33]. Although its clinical effects are remarkable, DOX-related
cardiotoxicity is dose-dependent, limiting the promotion of DOX in tumor treatment.
The current literature has indicated that many factors participate in the pathogenesis of
DOX-induced myocardial damage, such as mitochondrial dysfunction, the disturbance
of autophagy, cardiomyocyte apoptosis, and excessive production of ROS [34]. Although
multiple mechanisms participate in the evolution of DOX-induced cardiomyopathy, there is
currently no method of blocking this process. Therefore, it is urgent that treatment options
or potent workarounds are actively explored.

Apoptosis plays a vital role in DOX-induced cardiotoxicity. Existing evidence has
shown that both oxidative stress and inflammatory responses induced by DOX could
eventually lead to cardiomyocyte apoptosis [35]. This study aimed to analyze the unique
function of RRM2 in heart diseases. Previous studies have shown that RR could improve
myocardial contractility, and overexpression of RR could significantly enhance the contrac-
tility of infarcted hearts [18,36]. These results indicate that RR plays an important role in
cardiac function. However, no research on its function in DOX-induced cardiotoxicity has
been conducted before. Our results indicate that RRM2 overexpression could inhibit the
apoptosis of cardiomyocytes and alleviate heart injury, which could provide a therapeutic
option for DOX-induced cardiotoxicity. At present, studies have reported that DOX can
cause excessive autophagy, aggravating cell injury [37]. Therefore, some studies have
emphasized that reversing DOX-induced excessive autophagy could develop a protective
effect [38,39]. In breast cancer cells, RRM2 overexpression could downregulate autophagy
levels, leading to the generation of cell resistance [40]. In the present study, we found that
autophagy increased after DOX treatment, which is consistent with previous studies, and
RRM2 could reverse the disturbance of autophagy by reducing the expression levels of LC3
and beclin1.

The AKT/mTOR signaling pathway plays an important role in cell apoptosis, metabolic
regulation, and proliferation. Existing evidence suggests that the AKT/mTOR pathway
plays an important role in DOX-induced cardiotoxicity. In addition, the Akt/mTOR path-
way was reported to be involved in regulating RRM2 in retroperitoneal liposarcoma [41].
However, the connection between RRM2 and the AKT/mTOR signaling pathway in DOX-
induced cardiomyopathy remains unclear. In our study, DOX treatment did reduce p-AKT
and p-mTOR expressions, and RRM2 overexpression reversed this phenomenon, accom-
panied by decreased apoptosis, and autophagy. To further verify this effect, we added
LY294002 and rapamycin separately and found that inhibiting AKT and mTOR in vivo
increased apoptosis-related and autophagy-related proteins, abolishing the protective effect
of RRM2 overexpression.

In conclusion, our study has found that overexpression of RRM2 could reduce DOX-
induced myocardial damage and dysfunction by activating the AKT/mTOR signaling
pathway, which provides a new option for the clinical treatment of its toxicity-related
side effects.
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