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Abstract

Hearing-impaired people often struggle to follow the speech stream of an individual talker in noisy 

environments. Recent studies show that the brain tracks attended speech and that the attended 

talker can be decoded from neural data on a single-trial level. This raises the possibility of “neuro-

steered” hearing devices in which the brain-decoded intention of a hearing-impaired listener is 

1BISS: brain-informed speech separation.
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used to enhance the voice of the attended speaker from a speech separation front-end. So far, 

methods that use this paradigm have focused on optimizing the brain decoding and the acoustic 

speech separation independently. In this work, we propose a novel framework called brain-

informed speech separation (BISS)1 in which the information about the attended speech, as 

decoded from the subject’s brain, is directly used to perform speech separation in the front-end. 

We present a deep learning model that uses neural data to extract the clean audio signal that a 

listener is attending to from a multi-talker speech mixture. We show that the framework can be 

applied successfully to the decoded output from either invasive intracranial 

electroencephalography (iEEG) or non-invasive electroencephalography (EEG) recordings from 

hearing-impaired subjects. It also results in improved speech separation, even in scenes with 

background noise. The generalization capability of the system renders it a perfect candidate for 

neuro-steered hearing-assistive devices.
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EEG; Neuro-steered; Cognitive control; Speech separation; Deep learning; Hearing aid

1. Introduction

Listeners suffering from hearing loss have difficulty following individual speakers in the 

presence of ambient and diffuse noise or competing speakers (Conn, 2006; Peelle and 

Wingfield, 2016). This problem, known as the cocktail party problem (Bregman and Pinker, 

1978; Cherry, 1953), is seamlessly solved by normal hearing subjects, but represents a major 

challenge for the hearing impaired (HI). Automatic speaker separation and speech 

enhancement algorithms that can be implemented in hearing aid devices have seen 

tremendous progress in the past decade (Doclo et al., 2015; Gannot et al., 2017). Current 

speech separation solutions implemented in hearing aid devices are based on array signal 

processing and beamforming. However, because the microphones are typically placed on the 

hearing aid itself, the efficacy of the beamforming algorithms is limited by the small number 

of microphones and insufficient distance between them which is restricted by the size of the 

subjects head (Doclo et al., 2008). Distributed microphone arrays can solve this problem 

(Barfuss et al., 2016; Reindl et al., 2014; Schwartz et al., 2017; Zhao et al., 2014) but these 

solutions are not general and can only be implemented in special circumstances (Ceolini et 

al., 2020; Kiselev et al., 2017). Because of these limitations, many speech enhancement 

algorithms for hearing aid applications mainly aim to reduce simple ambient noises and to 

amplify the sound sources located in front of the user. This procedure, however, is 

ineffective in multi-talker acoustic environments where the source of noise is other speakers. 

Listening under such conditions remains the main complaint of hearing aid users.

The recent progress in deep learning (DL) methods has further advanced the state-of-the-art 

in speech enhancement and speaker separation. These methods have proven considerably 

more effective, particularly for single-channel speaker separation (Chen et al., 2017; 

Hershey et al., 2016; Luo and Mesgarani, 2019; Yu et al., 2017). The usability of these 

methods in hearing aid technologies, however, remains challenging for multiple reasons. 

First, the majority of these methods assume a fixed number of speakers in the mixed audio. 
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This inflexibility makes their performance unpredictable in real-world situations where 

speakers continuously appear and disappear from the acoustic scene. Second, speech 

separation still remains an unsolved problem when the number of interfering speakers 

increases and in unseen adverse acoustic environments. In these situations, augmenting the 

acoustic signal with other informative signals, such as video (Ephrat et al., 2018) or target 

speaker utterances (Wang et al., 2018; Xiao et al., 2019) has proven very fruitful. The use 

target speaker utterances is, nevertheless, limited by the necessity of prior knowledge about 

the identity of the speakers in the scene and this restricts its applicability. Third, separating 

all the sound sources in the acoustic scene is unnecessary in typical scenarios where the user 

is only interested in following a target speaker. Separating all speakers can significantly 

increase the computational cost which is particularly problematic in low-resource embedded 

applications. Finally, speech enhancement in hearing aid applications is impossible in multi-

talker acoustic environments without knowing which speaker is the target and which 

speakers are interference. One proposed solution measures the listener’s brainwaves to 

determine which speaker the listener wants to focus on (Clark and Swanepoel, 2014). This 

idea is based on the scientific discovery that the speech of an attended speaker is more 

strongly encoded in the listener’s brain signals compared to background sources. This idea 

has been implemented using neural signals measured with noninvasive 

electroencephalography (EEG) (Horton et al., 2014; Kerlin et al., 2010; Power et al., 2012), 

magnetoencephalography (MEG) (Ding and Simon, 2012), and invasive intracranial EEG 

(iEEG) (Dijkstra et al., 2015; Golumbic et al., 2013; Mesgarani and Chang, 2012). The 

framework that uses neural signals to decode and enhance a target speaker in multi-talker 

speech perception is termed auditory attention decoding (AAD) (Fuglsang et al., 2017; 

O’Sullivan et al., 2017; Wong et al., 2018a). A typical AAD solution measures the similarity 

of the neural signals of a listener with each of the individual sound sources. As a result, 

previous implementations of AAD all started with automatic separation of the sound sources 

as the initial step. The speaker separation for AAD has been implemented with multichannel 

approaches, such as beamforming (Aroudi and Doclo, 2019; Van Eyndhoven et al., 2017), or 

single-channel approaches using neural network models (Han et al., 2019; O’Sullivan et al., 

2017). Subsequently, the separated sound sources were compared with the neural signal to 

determine the target speaker. Performing the speaker separation and source selection steps 

independently, however, is sub-optimal due to the aforementioned limitations of current 

speaker separation algorithms.

Here, we address these issues by proposing a novel approach, brain-informed speech 

separation (BISS), that combines speaker separation and speaker selection steps of AAD. By 

jointly performing speech extraction and neural decoding, the neural signal directly guides a 

robust single channel speech extraction algorithm which is implemented using a neural 

network model. This method alleviates the need for a prior assumption of the number of 

speakers in the mixed audio and reduces the source distortion and computational load by 

extracting the target speaker from the scene. For these reasons, BISS represents a superior 

candidate for the implementation of a closed-loop, real-time, neuro-steered hearing aid (HA) 

which naturally adapts to different auditory scenes and number of competing sources.
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2. Results

A schematic of BISS is depicted in Fig. 1. In this example, a listener hears two talkers and 

focuses on one of them (blue). The AAD system, indicated as the brain decoder, then 

decodes the envelope of the attended speech using brain signals (either EEG or iEEG). This 

decoded envelope (hint) is incorporated into a deep-learning-based speech separation 

algorithm to provide information regarding which of the signals in the acoustic scene has to 

be extracted. Finally, the enhanced speech of the desired speaker is amplified and delivered 

to the user thus closing the loop. The details regarding each step of this loop are given in the 

following paragraphs.

2.1. Brain recordings

2.1.1. EEG—The EEG data used in this work is a subset of the data described in 

(Fuglsang et al., 2020). EEG recordings from 22 normal hearing (NH) and 22 age-matched 

HI subjects were collected (NH: mean age 63.0 ± 7.1; HI: mean age 66.4 ± 7.0) after 

obtaining written consent. HI listeners had sloping high-frequency hearing-loss typical of 

presbycusis (age-related hearing loss). In 48 trials of ≈ 50 sec each, subjects listened to 

stories read by either a single talker (S-T) (16 trials), or multi talkers (M-T) (one male, one 

female, 32 trials). In the M-T trials, the two speech streams were presented at the same 

loudness level to allow unbiased attention decoding. The two competing speech streams 

were spatially separated at ± 90° using non-individualized head-related transfer functions 

(Oreinos and Buchholz, 2013). On each trial, the subjects were cued to attend to either the 

male or female talker and the attended target was randomized across the experiment. After 

each trial, the subjects responded to 4 comprehension questions related to the content of the 

attended speech. Both NH and HI listeners had accurate speech comprehension for both the 

single-talker (NH: 93.3%, HI: 92.3% correct) and two-talker conditions (NH: 91.9%, HI: 

89.8% correct, see (Fuglsang et al., 2020) for details). Despite high accuracy on speech 

comprehension questions, listening difficulty ratings revealed that the HI listeners rated the 

two-talker condition as being significantly more difficult than NH listeners did (Fuglsang et 

al., 2020).

2.1.2. Ieeg—The iEEG data use in this study is the same used in (Han et al., 2019). It has 

been collected from three subjects undergoing clinical treatment for epilepsy at the North 

Shore University Hospital, New York. These subjects were implanted with high-density 

subdural electrode arrays covering their language dominant (left) temporal lobe with 

coverage over the superior temporal gyrus (STG) (Han et al., 2019). Similar to the EEG 

experiments, the subjects participated in two experiments, a S-T experiment and a M-T 

experiment. In both experiments, the subjects listened to stories read by two speakers, one 

male speaker and one female speaker. In the S-T experiment, the subjects listened to each 

speaker separately, and in the M-T experiment, the subjects listened to the two speakers 

talking concurrently with no spatial separation, i.e. the voices were rendered by a single 

loudspeaker placed in front of the subject. During the M-T experiment, each subject was 

presented with 11 minutes and 37 seconds of audio, making the S-T experiment twice as 

long. In the M-T experiment, the audio was separated into 4 blocks. In each block, the 

subject was asked to focus their attention on only one speaker. At the end of each block, the 
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subjects were asked to repeat the last sentence of the attended speaker to ensure that they 

were indeed paying attention to the correct speaker. All the subjects performed the task with 

high accuracy and were able to report the sentence with an average accuracy of 90.5% (S1, 

94%; S2, 87%; and S3, 90%). We used the envelope of the high-gamma power at each site 

as our measure of neural activation.

2.1.3. Auditory attention decoding (AAD)—We reconstructed the speech envelope 

of the attended speaker from the raw data collected by EEG or iEEG. The decoder is a 

spatio-temporal filter that maps the neural recordings to the speech envelope. The mapping 

is learned using regularized linear regression and is based on the stimulus reconstruction 
method previously presented in (Akbari et al., 2019; Mesgarani et al., 2009; O’Sullivan et 

al., 2017; Wong et al., 2018a). For both the EEG and iEEG data, a subject-specific linear 

decoder is trained on S-T data and used to reconstruct speech envelopes on the M-T data. 

This approach was taken to avoid any potential bias introduced by training and testing on the 

M-T data. For the iEEG data, only the outputs of a subset of electrodes were used as input to 

the decoder. The electrode selection was done via a statistical analysis to determine whether 

a specific electrode is significantly more responsive to speech compared to silence.

2.2. Brain informed speech separation

2.2.1. Input and output features—We trained a speaker-independent speech 

separation neural network model using the brain signals of the listener to guide the 

separation. As illustrated in Fig. 1, the two inputs to the speech separation neural network 

are the noisy audio mixture and the hint represented by the attended speech envelope 

decoded from the listener’s neural signals. The audio mixture y(t) consists of the sum of the 

attended speaker sd(t) and all undesired sound sources su(t) such as other speakers and noise, 

such that

y(t) = sd(t) + su(t) (1)

where t represents the time index. The time-frequency representation of this mixture Y(l, f) 
can be obtained by taking the short-time Fourier transform (STFT) of y(t),

Y (l, f) = STFT (y(t)) = Sd(l, f) + Su(l, f) (2)

where l and f are time and frequency bin indices respectively.

The complex mixture spectrogram Y ∈ ℂF × L is compressed by a factor of 0.3 to reduce the 

dynamic range of the spectrogram (Ephrat et al., 2018)

Yc = (Y)0.3 (3)

where Yc ∈ ℂF × L.

The hint input comes from the temporal envelope of the clean speech of the attended 

speaker:
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ℎ(t) = ∣ sd(t) ∣0.3 (4)

where we calculate the absolute value of the waveform, sd(t), and compress it by a factor of 

0.3. During the training of the neural network model, the envelope is calculated from the 

clean audio signal. During testing, the reconstructed envelope of the attended speaker is 

used.

In order to extract the speech of the desired speaker from the mixture, the speech separation 

neural network model is trained to estimate a complex valued mask M ∈ ℂF × L. The 

estimated mask M is applied pointwise to the input STFT Yc

Sd
c = M ⊙ Yc (5)

The resulting estimated spectrogram is decompressed and inverted to the time domain to 

obtain an enhanced version of the desired speech sd.

Sd = (Sd
c)3 (6)

sd = iSTFT (Sd) (7)

We refer the interested reader to Section 4.1.2 for a more detailed description of the model 

implementation.

2.2.2. Model architecture—Given the recent success of fully convolutional networks 

for speaker separation (Luo and Mesgarani, 2019), we propose an architecture that only uses 

2D convolutions in contrast to the long-short term memory (LSTM) network used in (Ephrat 

et al., 2018). This architecture is inspired from (Luo and Mesgarani, 2019) but extended to a 

2D convolution since the processing is performed in the time-frequency domain as shown in 

(Liu and Wang, 2019). The use of convolutional layers allows us to decrease the number of 

parameters in the model and to control the temporal length of the receptive fields.

The general architecture consists of a computational block that fuses the hint (see Section 

4.1.2), with the mixture audio, followed by a stack of convolutional layers (van den Oord et 

al., 2016), each identical in its architecture and number of parameters thereby making the 

architecture modular. A final block applies the estimated complex mask M to the 

compressed input mixture spectrogram Yc and inverts the estimated output spectrogram to 

the time domain. We investigate both the causal and non-causal settings of the model. The 

investigation of the causal setting is crucial if we want to be able to deploy the model to 

operate in real-time in practical applications.

2.2.3. Noise training scheme—The speech separation model is trained using a clean 

speech envelope calculated directly from the audio ground truth. However, the envelope 

estimated from either EEG or iEEG is not a perfect reconstruction of the original envelope. 
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Generally, the decoded envelopes have a Pearson’s correlation r of < 0.3 for EEG data and 

about 0.6 for iEEG data. Because of this, it is important that the speech separation model is 

robust to a noisy hint envelope. We therefore estimate the distribution of the noise in the 

decoding process and extracted the variance of this noise for both EEG and iEEG data (see 

Appendix C). The noise has a Gaussian distribution with μ = 0 and σiEEG = 0.2 for iEEG and 

σEEG = 0.3 for EEG.

After training the speech separation model with clean speech envelopes, we continued the 

training using a curriculum training technique (Braun et al., 2017) in which the amount of 

noise injected into the training data increased continuously for a number of epochs. This 

training schedule has been shown to be optimal for training a model that is robust to a large 

range of input signal-to-noise ratio (SNR)s. We use a schedule where the σ of the added 

noise increases in steps of 0.05 from [0.05, 0.6].

2.3. BISS: Attended speaker separation

2.3.1. Ieeg—We tested the BISS model on the iEEG recordings described in Section 

2.1.2. For each subject, we report the violin plots of scale-invariant signal-to-distortion ratio 

(SI-SDR) (Roux et al., 2019) improvement (signal-to-distortion ratio (SDR) for brevity) 

from the noisy speech mixture obtained from testing the model with 4 s utterances (Fig. 2). 

We tested each subject on a set of 69 non-overlapping mixtures of two speakers and 

computed SDR improvements using the clean reference signal. The results presented in Fig. 

2 show a comparable performance across all subjects. Subject 0 was the best with an SDR 

improvement of 9.5 dB; nevertheless, we did not find any significant difference between the 

scores of the three subjects. Additionally, the performance of causal and non-causal settings 

was similar for all subjects. One possible explanation for the similarity of performance 

across subjects is the noise training procedure in causal and non-causal settings. To test this 

hypothesis, we tested the performances of the causal and non-causal models using the noisy 

envelopes, like those used in training, rather than the neurally decoded envelopes as the hint. 
The test showed a decrease in performances gap between the causal and non-causal settings 

from an initial 1 dB to 0.5 dB. This shows that while there might be a large difference in 

performance between causal and non-causal settings when using clean envelopes, this 

difference decreases when using noisy envelopes. This explains the lack of significance 

between causal and non-causal settings in Fig. 2

Next, we show the effects of the noise curriculum training on the model performance when 

utilizing neural data. Fig. 3 shows the rdiff = rattended – runattended against SDR for the 69 

utterances of Subject 0 attending to the male speaker in the mixture. The top panels show a 

density plot of the utterances together with their median value, while the bottom panels show 

every single utterance plotted separately and a linear fit of these points. The leftmost panels 

show the results for the model without any noise training while the other panels shows the 

effect of increasing the noise during training.

The top panels show that the median value shifts from below 0 dB, which indicates a failed 

separation, to above 9 dB, which indicates a very good separation (see Additional Data for 

audio samples). The bottom panels show that, independent of the noise level used in the 

training, there is a clear correlation between rdiff and the output SDR improvement. This 
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indicates that the quality of the separation is linearly dependent on the quality of the 

envelope reconstruction in terms of Pearson’s r.

Finally, we show the effect of different Pearson’s r values on the estimated mask M. In 

particular, we studied how the masks differ when we compare an utterance with high 

correlation to an utterance with low correlation. An example, depicted in Fig. 4, shows that 

the mask for the failed utterance (left) has less sharp edges around the harmonics of the 

desired speech, while for the successful utterance (right) the mask is sharp around every part 

of the desired speech and especially sharp around the harmonics. This is true even at smaller 

time scales where the sharpness of the mask tightly follows the correlation of the 

reconstructed envelope.

2.3.2. EEG—From the EEG dataset, we focused mainly on the differences between NH 

and HI groups. For each subject, we tested the performance on 128 non-overlapping 

segments of 4 seconds.

As in the iEEG case, we look at the differences in performance for the model under causal 

and non-causal settings. Fig. 5 shows the performance of causal vs non-causal settings for 

the two subjects groups. As expected, the overall performance is lower for EEG than with 

iEEG. As with iEEG, we found no significant difference between the causal and non-causal 

settings (p = 9.3e–01). Moreover, we found no statistical difference between NH and HI for 

the causal (p = 4.508e–01) and non-causal settings (p = 1.865e–01).

We then looked at the overall performance of each subject in terms of rdiff and SDR 

improvement. Fig. 6 shows the median SDR versus the median rdiff for all EEG subjects. 

Similar to iEEG, both groups show a clear and similar correlation between the rdiff and SDR. 

Overall, the EEG results show a positive correlation with a slope of 14.2 which is very close 

to the overall positive correlation of iEEG data which is 14.7.

Finally, we looked at the distribution of performance for each subject individually across the 

128 utterances. We only considered trials in which the decoding of utterances was 

successful, i.e. with rdiff > 0. Fig. 7 shows the distribution and the median SDR performance 

for all individual subjects, ordered by increasing SDR. The difference in performance 

between the best and worst subjects is 4.6 dB, with the best and worst subjects having 

median SDRs of 6.8 dB and 2.2 dB, respectively.

3. Discussion and conclusion

We present a brain-controlled speech separation algorithm that uses the single-trial neural 

responses of a listener attending to a speaker to extract and enhance that speaker from the 

mixed audio. By utilizing the information provided by the envelope reconstruction 

algorithm, our method can extract the attended speaker from a mixture of two speakers as 

well as from speech-shaped background noise in the auditory scene, making it a viable 

solution for neuro-steered hearing aids (HAs).

Auditory attention decoding, which has been used with both EEG (Horton et al., 2014; 

Kerlin et al., 2010; Power et al., 2012) and iEEG (Dijkstra et al., 2015; Golumbic et al., 

Ceolini et al. Page 8

Neuroimage. Author manuscript; available in PMC 2021 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2013; Mesgarani and Chang, 2012), generally assumes that the clean speech of the speakers 

in a mixture is available to be compared to the neural signals to determine the target source. 

This access to clean sources is not realistic in real-world applications. Recent work on AAD 

has tackled the problem of lack of access to clean sources (Han et al., 2019; Van Eyndhoven 

et al., 2017). Our work extends these studies by proposing a novel framework that combines 

the steps of speaker separation and speaker selection by turning speech separation into 

speech extraction. Not only does this framework readily generalize to competing speakers or 

background noise, it also requires significantly less computation (see Appendix A) because 

only the target speaker is extracted.

Moreover, we showed that speech separation quality (SDR) is highly correlated with 

stimulus reconstruction accuracy. This close correlation between these two quantities reveals 

two desired aspects of the proposed framework. First, it confirms our initial hypothesis that 

speech separation quality is higher in a model that takes additional information as input (see 

results in Appendix A), in this case the target speaker envelope reconstructed from the 

neural responses of the listener (Ephrat et al., 2018). Moreover, it offers a more general 

solution with respect to speaker extraction (Wang et al., 2018; Xiao et al., 2019) since the 

information about the target speaker can be obtained directly from the subject’s brain on a 

trial-to-trial basis and does not have to be known a priori. Second, the speech separation 

quality of the model in the proposed framework follows the attention level of the subject 

which directly affects the reconstruction accuracy (rdiff) Mesgarani and Chang (2012), and 

thus reflects the intent of the subject. In closed-loop applications of AAD (Wong et al., 

2018b), the separated target speech is typically added to the original mixed signal in order to 

both amplify the target speaker, but also to maintain the audibility of other sources to enable 

attention switching (usually 6–12 dB). Since BISS framework creates an output SDR which 

is correlated with the attention of the subject (r), this alleviates the need to render the 

mixture speech with a particular SNR since the SNR will naturally reflect the attention of 

the subject. This attention driven target SNR could help with attention switching in closed-

loop applications (Geirnaert et al., 2020; Han et al., 2019).

The results obtained from applying AAD to EEG data are similar to the results obtained with 

iEEG but with smaller Pearson’s r of the reconstructed envelope and lower SDR of separated 

speech. Even though these results are less accurate, they are in accordance with the 

predictions made using iEEG for AAD. In particular, the rdiff and the output SDR are highly 

correlated, confirming again that the model follows the subject’s attention. Moreover, the 

AAD results using EEG show no significant difference in target speech enhancement (SDR) 

between HI and NH subjects. This shows that the proposed BISS can be used by HI subjects, 

which is a crucial aspect for the applicability of the framework to neuro-steered HAs.

Additionally, it is worth noting that the same speech separation model was used to produce 

the results presented from both iEEG and EEG. This shows the versatility of the proposed 

approach. Not only can the framework be applied successfully in the presence of different 

languages (Danish and English in this case) and noise (see Appendix B), but it is also 

unaffected by different methods of reconstruction and different types of brain signals used. 

These findings suggest that the BISS approach is a robust speech separation front-end.
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Moreover, the finding that BISS results in no significant difference between causal and non-

causal speech separation models increases its usability in real-time systems which require 

causal, short-latency implementation ( < 20ms). Finally, we showed how BISS can decouple 

the optimization of front-end (speech separation) and back-end (AAD) systems even when a 

small amount of data is available. This joint optimization can also be done when large 

amounts of data are available.

While our method uses basic neural signal decoding (speech envelope reconstruction), there 

are many other ways this can be improved, for example, by reconstructing the speech 

spectrograms (Akbari et al., 2019). Moreover, the neural decoding can be done either with 

classification (de Cheveigné et al., 2018) or state space models (Miran et al., 2018). These 

methods can be easily integrated into the BISS framework because it takes as the hint any 

signal that is correlated with the attended speech.

By addressing the real-world constraints of AAD and speech separation, BISS represents a 

promising step towards the real world implementation of neuro-steered HAs.

4. Materials and methods

In this section we first describe the details about the EEG and iEEG data that has been used 

for the AAD part of BISS. We then describe the neural network model which represents the 

speech separation front-end. In particular, we describe the network architecture and the 

training scheme which are unique to BISS.

4.1. Processing of brain signals

EEG recordings were performed in an electrically shielded double-walled sound booth at the 

Technical University of Denmark (DTU). EEG was recorded using a BioSemi ActiveTwo 

system with 64 scalp electrodes. The stimuli were presented via ER-3 insert earphones 

(Etymotic Research). Preprocessing of the EEG data included re-referencing to the average 

of two posterior electrodes (TP7, TP8), band-pass filtering between 1 and 9 Hz, down-

sampling to 64 Hz, and removal of eye-blink artefacts. For full details on the data collection 

and preprocessing refer to (Fuglsang et al., 2020).

For iEEG, more information about the data collection process and preprocessing is provided 

in (Han et al., 2019).

4.1.1. Audio signals processing—For the input, we use 4 seconds of audio that is 

transformed to the frequency domain with a STFT using a window size of 512 and a step 

size of 125. The choice of the length in time (4 seconds) is completely arbitrary and, 

differently from (Luo and Mesgarani, 2018b), was not changed during the training process. 

The choice of 125 was made because the audio sampling rate is 8 kHz and we want an 

output rate of 64 Hz that matches the envelope sampling rate. Because of the Hermitian 

property of the Fourier transform on real data, we can keep only the positive frequencies of 

the transformed signal thus obtaining as input a 3D tensor of size 2 × 257 × 257.

Ceolini et al. Page 10

Neuroimage. Author manuscript; available in PMC 2021 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For the output mask we used a complex-valued mask instead of a real-valued magnitude 

mask. Using a real-valued magnitude mask forces the use of the noisy phase when inverting 

the estimated separated spectrogram to the time domain, and it was shown that using the 

compressed complex mask gives better results (Ephrat et al., 2018). Because we use a 

complex STFT with overlapping windows, there exists an ideal complex mask that perfectly 

isolates the desired source (Williamson et al., 2016) from the mixture. Unfortunately, the 

mask values can be arbitrarily high and unbounded, and this poses a problem for the training 

process. For this reason, we use a hyperbolic tangent compression that limits the output 

mask values to the range [−1, 1]. Therefore we can only compute an approximation of the 

ideal mask.

4.1.2. Detailed model architecture—The hint fusion (panel d in Fig. 8) consist of two 

different processing steps that allow us to concatenate the audio waveform of the mixture Yc 

with the desired speech envelope H(l). First, the mixture waveform is transformed in the 

frequency domain by means of the STFT. The real and imaginary parts are then 

concatenated along a new axis effectively producing a 3D tensor of size 2 × F × L. A 1 × 1 

2D convolution with C feature maps is then applied to obtain a 3D tensor of shape C × F × 

L. Similarly, the desired speech envelope is processed with a 1 × 1 1D convolution and 

expanded to become a 3D tensor of shape 1 × F × L. Finally, the two tensors are 

concatenated along the feature map axis to obtain a 3D tensor of shape (C + 1) × F × L

The network has S stacks (panel c in Fig. 8). Each stack, indexed with s, is composed of 

multiple blocks. Each block (panel b in Fig. 8), indexed with i, is a residual block that 

receives two inputs: the skip connection (r) from the input and the output (o) of the previous 

block. As shown in Equations (8) and (9), the skip connection is the sum of the input plus 

the output of each convolutional step, while the output of the block is the output of the 

convolution summed with the residual connection of the current input.

pis = cis + si − 1
s (8)

ois = oi − 1
s + cis (9)

The skip input to the first block in a stack is a matrix of zeros, while the output of the last 

block, and thus of the stack, is the skip path (left part of panel b in Fig. 3).

Each block contains a convolutional step (panel a in Fig. 8) which has the same architecture 

for all blocks but has a different dilation factor defined by the block index i. In particular, the 

dilation factor for block i will be 2i. The convolutional step has three parts, as shown in 

Equations (10) to (12): a 1 × 1 convolution followed by a ReLU non-linearity, a 3 × 3 

convolution with dilation factor i followed by a ReLU non-linearity, and finally another 1 × 

1 convolution:

bi, 1
s = ReLU(convi, 1(oi − 1)) (10)
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bi, 2
s = ReLU(convi, 2(bi, 1

s )) (11)

pi, 3
s = cis = convi, 3(bi, 2

s ) (12)

The final convolutional step is utilized to get back the same input shape which allows the 

residual and skip connections to be added. This step increases the total number of 

parameters in the network without increasing the receptive field. Batch norm is applied at 

the end of the convolutional step. Overall the receptive field (RF) in both frequency and time 

can be calculated as follows: 13

RF (N, S, k) = k + S ∑
i = 0

N
(k − 1)2i

(13)

where k is the kernel size.

We use square kernels so the receptive fields have the same dimension in both the frequency 

and time domain in terms of bins but are different in terms of meaning and measure.

In the last step of the process, as depicted in the mask step (panel e) of Fig. 8, the output of 

the last stack, oN
S  is reshaped by a 1 × 1 convolution from a shape of (C + 1) × F × L to a 

shape of 2 × F × L, where the first dimension represents the concatenation of real and 

imaginary parts.

The mask, M is obtained by first applying an hyperbolic tangent to the output of that 

convolution and then summing real and imaginary parts properly:

M = tanℎ(conv(oN
S )) . (14)

M = M(0, : , : ) + iM(1, : , : ) (15)

where the operation (j, :, : ) represents the tensor slicing that selects only the jth element in 

the first tensor dimension and i represents the imaginary unit. Finally, as shown by Eq. 5, the 

mask will be used to separate the desired speech.

The model is relatively simple and has very few parameters, around half a million for the 

version used to obtain the results presented here.

4.2. Training scheme

The BISS system in this work (Fig. 1) uses the decoded speech envelope from the brain 

decoder as the informed input to the speech separation network. Ideally, one would train the 

neural network with the brain-decoded envelopes. Unfortunately, the EEG and iEEG data 

collected for attention decoding typically amounts to less than one hour of data for each 

subject. This amount of data is not enough to train an accurate speech separation model 
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which has millions of parameters. Such a model would require in the order of tens of hours 

of recorded speech (Hershey et al., 2016; Luo and Mesgarani, 2018, 2019).

To address this problem, we decouple the training of the speech separation model from the 

training of the brain decoder model. The separately trained models are then fused at test 

time. In order to do this, the speech separation model is trained with the ground truth speech 

envelope extracted from the audio using same envelope calculation as the one used for the 

attention decoding model. This guarantees that the attention decoding model will provide an 

envelope which is most correlated with the desired speech to extract.

Most of the EEG data was collected in Denmark using Danish audiobooks while the iEEG 

data was collected in New York using English audiobooks. Since we propose to use a single 

model to extract desired speech from either EEG or iEEG, the training dataset for the speech 

separation model consists of a mixture of English and Danish utterances (i.e. the model is 

not language-specific). The English material used for training are the Wall Street Journal 

(WSJ) utterances in the WSJ-mix2 dataset often used for source separation benchmarks 

(Hershey et al., 2016; Luo and Mesgarani, 2018b). The Danish utterances are taken from 

Danish audiobooks used for the EEG study (Fuglsang et al., 2020). Note that the training 

data is completely separated from the testing data, i.e. the audio tracks used in the attention 

decoding for both EEG and iEEG are not part of the training dataset. The overall training 

dataset comprises 22 hours of data. We create mixed sentences on-the-fly at training time as 

a data augmentation method to effectively increase the amount of data used in training.

When estimating the frequency-domain masks for speech separation, the mean squared error 

(MSE) is generally used as the cost function. However, the estimated masks are usually 

smeared, limiting the separation quality (Wang and Chen, 2018). In this work, we propose to 

use a time-domain optimization method with a frequency domain solution (Ceolini and Liu, 

2019) by embedding both the STFT and iSTFT procedure into the training pipeline. Because 

these operations are differentiable, we can use the normal backpropagation algorithm to train 

the model. The cost function used to optimize the model is SI-SDR. Optimizing the SI-SDR 

has shown very good results in time domain separation (Luo and Mesgarani, 2018, 2019) 

due to the fact that the model directly optimizes the measure which is used to evaluate its 

performance (Roux et al., 2019). The SI-SDR metric (SDR for simplicity) can be calculated 

directly from the time domain signals as follows:

starget = 〈sd, sd〉sd
‖sd‖2 (16)

enoise = sd − starget (17)

SI − SDR = 10 log10
‖starget‖2

‖enoise‖2 (18)
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The neural network model is trained using the Adam optimizer with default settings 

(Kingma and Ba, 2014) and early stopping as a regularizer.

4.3. Statistical analysis

Where relevant, we report the statistical significance based on a two-tailed Mann - Whitney 

U test. Significance is indicated by ns if 5.00e–02 < p ≤ 1.00e+00, * if 1.00e–02 < p ≤ 

5,00e–02, ** if 1.00e–03 < p ≤ 1.00e–02. *** if 1.00e–04 < p ≤ 1.00e–03 and **** if p ≤ 

1,00e–04. All the violin plots and box plots in the results of Section 2 report median, 

interquartile range (IQR) together with minimum and maximum values.
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Appendix

Appendix A. Informed speech separation (ISS)

We compare our informed speech separation (ISS) approach with permutation invariant 

training (PIT) which is the state-of-art method for training deep-learning based speech 

separation models. In this case, the hint input in our model comes from the envelope of the 

ground truth attended speech. The results in Fig. A1 show that ISS gives significantly better 

results (p = 7.8461e–09) than PIT for the causal setting. In contrast, the non-causal setting 

results show no significant difference (p = .1101) between ISS and PIT. The ISS algorithm 

produces significantly better results under non-causal settings (p = 5.0211e–09) over causal 

settings. The causal setting gives an absolute median difference of ≈ 0.9 dB a value that still 

indicates good separation quality for practical applications.

Fig. A1. 
Comparison of ISS and PIT using the desired speech envelope as the hint for ISS. ISS: 

median = 13.0 dB (causal), median = 13.92 dB (non-causal). PIT: median = 12.79 dB 
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(causal), median = 12.98 dB (non-causal). Significance is indicated by ns if 5.00e–02 < p ≤ 

1.00e+00, * if 1.00e–02 < p ≤ 5.00e–02, ** if 1.00e–03 < p ≤ 1.00e–02, *** if 1.00e–04 < p 
≤ 1.00e–03 and **** if p ≤ 1.00e–04 using Mann - Withney U test.

Note that the model trained with PIT has around 1 million parameters and the model size 

scales almost linearly with the number of speakers in the mixture. On the other hand, the ISS 

model has only 0.5 million parameters and this number does not have to scale with the 

number of speakers in the mixture. Similarly, the number of operations to compute one 

spectrogram column mask is around 14 MOps for the PIT model and 7 MOps for the ISS 

model which makes the ISS model cheaper to compute for real-time applications. The 

number of parameters and number of operations are calculated based on the final settings of 

the model chosen for the best trade-off between size and performance (4.1.2). The final 

settings are shown in Table 1 and give rise to a receptive field with a span of 3.9 s in time 

and a span of 7900 Hz in frequency.

Appendix B. Speech in noise with EEG

To show that the BISS framework can successfully be applied across tasks of speaker 

separation and speech enhancement, we also looked at the possibility of reducing noise in 

attended speech using EEG signals. This is an easier task to solve than speaker separation. 

Mainly, this is due to the fact that the noise and speech have different frequency distributions 

and are easier to separate than 2 overlapping speakers. In particular, speech enhancement 

models that use neural networks can easily be trained without the need to use PIT: if one 

assumes one only speaker, there is no confound to resolve on which is the desired signal to 

extract. In this appendix, we show the results for BISS applied to speech enhancement using 

EEG. We used EEG recorded from a NH subject listening to speech in stationary speech-

shaped background noise (data from (Hjortkjær et al., 2020)). The network is the same used 

above but it is trained with more added noise in the input, with respect to the model used for 

speaker separation. The hint to the network is still the envelope reconstructed from the EEG 

of the subject. Fig. B1 show the results for a particular subject and shows that the training 

scheme is effective in increasing the robustness of the network to the non-perfect 

reconstructed envelope. As we can see, compared to iEEG in speaker separation, even a low 

amount of noise helps the network in making use of the hint to separate the desired voice. 

Moreover we can see from the Fig. B2 that the method is successfully applied to all the 

subjects. Differently from the speaker separation task, we can see that for speech 

enhancement, the linear trend between Pearson’s r and output SDR is less evident than the 

one present for speaker separation. This is due to the fact that the task is much easier to 

solve and that even a reconstructed envelope with a low reconstruction quality is informative 

enough for the model to separate the desired speaker.
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Fig. B1. 
Results from Subject 23 in the EEG recordings. The x-axis indicates rspeech, y-axis indicates 

SDR in dB. The panels in the top row show the density distribution of the points using 

kernel density estimate with Gaussian kernels. The panels in the bottom row show each 

utterance separately and a linear fit obtained using linear regression. The shaded area 

represents the 95% confidence interval of the regression. The panels from left to right show 

results from increasing the σ of the noise during training (from σ = 0.0 to σ = 0.6 with steps 

of 0.2).

Fig. B2. 
Performance for all EEG subjects considering only valid trials (rdiff > 0.0) on the speech in 

noise task. Median values for SDR are highlighted above the top panel.
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Appendix C. Noise distribution in AAD

To make the speech separation model more robust to the degraded quality of the envelope 

reconstructed from the brain signals, we employ a training scheme known as curriculum 

learning (Braun et al., 2017). This scheme consist in increasing progressively, over training 

epochs, the difficulty of the task by introducing progressively more noise in the training. In 

order for this scheme to be effective, one needs to ensure that the noise injected during 

training is of the same distribution of the noise that will be present at test time. Here, to 

justify the choice of the training scheme used in Section 4, we show the empirical 

distribution of the noise in the reconstructed envelope, which is represented by the error 

between the original envelope and the envelope reconstructed with AAD. This is exactly the 

noise that the network will be faced with when trained with the clean envelope and tested 

with the (noisy) reconstructed one. Fig. C1 shows the distribution of error for both EEG and 

iEEG. As expected, the distribution of error for the EEG reconstruction has a bigger 

standard deviation with respect to the standard deviation of the iEEG reconstruction error. 

This follows the results showing that the quality of the reconstruction in higher for the iEEG 

data.

Fig. C1. 
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Distribution of errors between the reconstructed attended envelope and the original attended 

envelope for both EEG and iEEG.
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Fig. 1. 
BISS schematic. A subject attends to one (blue) out of two simultaneous talkers. The 

decoding algorithm (the Brain Decoder) estimates the envelope of the attended speech based 

on recorded iEEG or EEG brain signals. The speech separation neural network model 

receives two inputs: (1) the speech mixture and (2) the decoded envelope (hint). These inputs 

are used by the model to separate and enhance the speech of the attended talker. The output 

of the model is (3) the enhanced speech which is fed to the HA of the subject in this closed-

loop setup.
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Fig. 2. 
Results for BISS using envelopes decoded from iEEG data. Violin plots are presented for 

each subject separately and for the different model settings causal and non-causal. 

Significance is indicated by ns if p > 0.05 using Mann - Whitney U test.
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Fig. 3. 
Results from Subject 0 in the iEEG recordings as a function of noise variance during 

curriculum training. The x-axis indicates rdiff = rattended – runattended, and the y-axis indicates 

SDR improvement in dB. The panels in the top row show the density distribution of the 

points using kernel density estimate with Gaussian kernels. The panels in the bottom row 

show each utterance separately and a linear fit obtained using linear regression. The shaded 

area represents the 95% confidence interval of the regression. The panels from left to right 

show results from increasing the σ of the noise during training (from σ = 0.0 to σ = 0.5 with 

steps of 0.1).
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Fig. 4. 
Two examples of estimated masks. a) failed mask with a correlation of −0.13 and an SDR 

improvement of −10.4 dB. b) successful mask with a r of 0.69 and an SDR of 9.2 dB. From 

top to bottom the panels represent: Mixture envelope, mixture spectrogram with desired 

speaker highlighted in blue and masker speaker highlighted in red, original and 

reconstructed desired speech envelopes, mask estimated by the model based on the decoded 

envelope.
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Fig. 5. 
Separation results from the BISS model using envelopes reconstructed from EEG data. 

Highlighted are the performance for each of the two groups, NH (21 subjects) and HI (20 

subjects) for both the causal and non-causal models. Each subject was tested on 128 non-

overlapping utterances of 4 seconds. The y-axis shows the separation quality in terms of 

SDR improvement in dB. Significance is indicated by ns if p > 0.05 using Mann - Whitney 

U test.
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Fig. 6. 
Separation performance using envelopes reconstructed from EEG for each subject. The 

performance of the NH group (21 subjects) and HI group (20 subjects) are shown for the 

model in the causal setting. Each subject was tested on 128 non-overlapping utterances of 4 

seconds. The y-axis shows the separation quality in terms of SDR improvement in dB. 

Significance is indicated by ns if p > 0.05 using Mann - Whitney U test.
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Fig. 7. 
Performance for all EEG subjects considering only correctly decoded trials (rdiff > 0.0). 

Results for the HI and NH groups are shown in blue and red, respectively. Median values for 

SDR are highlighted above the top panel.
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Fig. 8. 
Architecture of the network used for BISS. Panels a) to e) show the details of each sub-

module of the full architecture.
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Table 1

Legend of symbols used in the model architecture.

Symbol Description Value

F Number of frequency bins 257

L Number of STFT time windows 257

T Number of samples in the waveform 32000

C Channels in the stack 32

B Channels in the convolutional step 64

S Number of stacks 2

N Number of blocks 6

i Index of each block (dilation factor) -

s Index of each stack -

k kernel size 3

Neuroimage. Author manuscript; available in PMC 2021 April 20.


	Abstract
	Introduction
	Results
	Brain recordings
	EEG
	Ieeg
	Auditory attention decoding (AAD)

	Brain informed speech separation
	Input and output features
	Model architecture
	Noise training scheme

	BISS: Attended speaker separation
	Ieeg
	EEG


	Discussion and conclusion
	Materials and methods
	Processing of brain signals
	Audio signals processing
	Detailed model architecture

	Training scheme
	Statistical analysis

	Appendix
	Fig. A1.
	Fig. B1.
	Fig. B2.
	Fig. C1.
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Table 1

