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It is now apparent that platelet function is more diverse than originally thought, shifting

the view of platelets from blood cells involved in hemostasis and wound healing to

major contributors to numerous regulatory processes across different tissues. Given

their intriguing ability to store, produce and release distinct subsets of bioactive

molecules, including intercellular signaling molecules and neurotransmitters, platelets

may play an important role in orchestrating healthy brain function. Conversely, a

number of neurodegenerative conditions have recently been associated with platelet

dysfunction, further highlighting the tissue-independent role of these cells. In this review

we summarize the requirements for platelet-neural cell communication with a focus on

neurodegenerative diseases, and discuss the therapeutic potential of healthy platelets

and the proteins which they release to counteract these conditions.
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INTRODUCTION

Platelets are small anucleate blood cells that have been gaining recognition as important mediators
of several regulatory processes. Emerging research has identified novel functions that reach
well beyond the traditional role of platelets in hemostasis and wound closure, revealing them
to be crucial players during immune responses and tissue remodeling processes. We have
recently summarized the evidence highlighting the capacity of platelets to contribute to brain
homeostasis under physiological circumstances (1). Whereas, their versatile functions make
platelets important regulators of cellular processes under normal conditions, platelet dysfunction
is linked to a number of pathologies, including neurodegeneration. In the following review
we briefly discuss the prerequisites of intercellular communication between platelets and cells
from the central nervous system and summarize the research that demonstrates the involvement
of impaired platelet function in several neurodegenerative conditions, including Alzheimer’s
disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD), amyotrophic lateral sclerosis
(ALS), multiple sclerosis (MS), and prion diseases (Figure 1). Finally, we highlight the emerging
role of platelet preparations in the development of therapeutic interventions for the treatment
of neuropathologies.

PLATELETS—THE DIVERSE PROPERTIES OF A SMALL BLOOD
CELL

Until recently, platelets were primarily known for initiating coagulation following tissue injury
and endothelial disruption. Although the platelet count in healthy humans ranges from 150,000
to 400,000 platelets per microliter of blood (2), only a small fraction of these (about 10,000
platelets per microliter) are necessary to act during hemostasis (3), supporting reports that platelets
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also exert other functions. Platelets are produced in the bone
marrow by megakaryocytes which equip them with cytoplasm,
including messenger ribonucleic acid (mRNA), mitochondria
and secretory vesicles such as lysosomes, dense granules and
α-granules, before they are released into the blood. Mouse and
human platelets are functionally similar (4) and have short
lifespans of 4–5 days and 8–12 days, respectively (5). However,
a recent study found that platelets can return to the circulation
following activation by thrombotic and immunological stimuli,
suggesting that their lifespan could be longer than traditionally
thought and that their elimination is not a direct consequence
of the activation process (6). Platelet activation is required to
fulfill particular functions; however, the outcome is specific to
the trigger which initiates the activation. The most common
platelet responses to activating stimuli include changes in
shape, the upregulation of cell surface molecules, protein
synthesis from mRNA, endo- and exocytosis, and the release
of molecules from granule contents. In particular, the context-
dependent secretion from α-granules, which provide a storage
compartment for abundant bioactive molecules including
growth and coagulation factors, chemokines, immune molecules
and adhesion molecules, is highly regulated. Consequently, the
stimulation of platelet preparations with three common agonists,
adenosine diphosphate, collagen and thrombin receptor-
activating peptide, results in distinct protein secretion profiles
(7). In another study, it was shown that subpopulations of
α-granules exist, in which proteins are stored in distinct clusters
such as pro- or anti-angiogenic protein clusters (8). The selective
release of these granule subtypes was triggered by the stimulation
of different receptors with specific agonists, indicating that
α-granule cargo is secreted in a context-dependent manner to
either inhibit or promote angiogenesis as required (8). The finely
tuned mechanisms whereby bioactive molecules are released
from platelets represent a crucial asset in orchestrating regulatory
processes across different tissues. However, disturbances in the
regulation of platelet responses or hyperactivation of platelets
have implications in numerous diseases, including during
neurodegenerative conditions, as described in more detail below.

PLATELETS ARE EXPERTS IN CELL-CELL
COMMUNICATION

Platelets can communicate with other cell types in multiple
ways, with their flexibility and mechanistic diversity suggesting
that they likely act as inter-tissue messengers, including between
blood and brain cells. Although the secretion of bioactive
molecules from α- and dense granules represents a likely route of
intercellular communication, additional mechanisms via which
platelets may support crosstalk between the brain and the

Abbreviations: A2AR, adenosine A receptor; AD, Alzheimer’s disease; ALS,
amyotrophic lateral sclerosis; APP, amyloid precursor protein; EAE, experimental
autoimmune encephalomyelitis; GABA, γ-aminobutyric acid; HD, Huntington’s
disease; mHtt, mutant huntingtin protein; MAO, monoamine oxidase; MPTP,
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MS, multiple sclerosis; PD,
Parkinson’s disease; PrP, prion protein; TDP-43, TAR DNA-binding protein
of 43kDa.

systemic environment are possible. Platelets release extracellular
vesicles containing active cytoplasm components such as
exosomes and microparticles (9). Both represent common ways
of intercellular communication between organs and tissues in
health and disease. Platelet exosomes and microparticles can also
contain microRNAs, which when dysregulated are involved in
various neurodegenerative disorders, including AD, PD,MS, HD,
and ALS (10). Moreover, platelet-released particles, as well as
platelets themselves which measure∼0.5µm in diameter in mice
(5) and from 1 to 5µm in humans (11), are small enough to
travel deep within the microcapillaries that span the brain. Thus,
platelets and their released factors could interact with specific
receptors in the cerebral vasculature to exert local, receptor-
mediated effects. In conditions where the vascular integrity is
altered or disturbed direct interactions with neural cells are
possible. Platelet activity has been observed within the brain
parenchyma following lesion (12) and stroke (13), as well as
in the brain of experimental autoimmune encephalomyelitis
(EAE)-induced mice (14). Furthermore, a direct interaction
between platelets and neuronal cells has been reported, as they
can bind central nervous system-specific glycolipid structures
that are present in the lipid rafts of neuronal processes (15).
This interaction was recently shown to stimulate the growth of
new dendritic spines (16). The proposed mechanisms via which
platelets communicate with neural cells have been discussed in
more detail elsewhere (1); however, these mechanisms could
also influence neural cell properties under neurodegenerative
conditions. Moreover, as reviewed below, platelets exhibit
neuron-like properties that further facilitate crosstalk between
these cells and the central nervous system.

THE NEURON-LIKE PROPERTIES OF
PLATELETS—BRIDGING THE GAP
BETWEEN THE SYSTEMIC ENVIRONMENT
AND BRAIN PATHOLOGIES?

Despite their distinct location and function, platelets and neural
cells are remarkably similar, suggesting a potential path of
cross-communication between the systemic environment and
the brain. In particular the intercellular storage compartments
in neurons, which contain neuropeptides, neurohormones and
neurotransmitters, are comparable to platelet granules, including
the use of similar vesicle trafficking mechanisms. Platelet dense
granules resemble the small dense-core synaptic vesicles of
neurons in terms of their serotonin and adenosine triphosphate
contents, among other features, whereas the large dense-core
vesicles of neurons are comparable to platelet α-granules. Both
storage compartments carry a large variety of bioactive peptides,
and stimulus-specific secretion processes are observed in both
neurons (17) and platelets (8). This indicates that the strict
regulation of selective exocytosis is a conserved mechanism in
both cell types (18). Platelet and neuronal exocytosis are both
triggered by an increase in the internal calcium concentration
(19), leading to the rapid activation of the secretory machinery.
Moreover, the mechanism whereby the internal vesicles fuse with
the plasma membrane is highly conserved, occurring via specific
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FIGURE 1 | Platelet dysfunction is associated with several neurodegenerative disorders. Platelets are complex cells that exert numerous regulatory functions under

physiological conditions, ranging from their traditional roles in hemostasis and wound healing to fundamental contributions to immune and tissue remodeling

processes and brain homeostasis (left side). Platelet dysfunction, including mitochondrial abnormalities, is a common observation during neurodegeneration. The right

side of this figure summarizes additional platelet-related impairments that link these cells to several neurodegenerative conditions. mHtt, mutant huntingtin protein;

TDP-43, TAR DNA-binding protein of 43 kDa.

docking molecules such as SNAREs, VAMPs and syntaxins (19).
Other review papers have discussed the molecular similarities
between platelets and neuronal cells in more detail (18–20), and
have proposed that platelets could even be considered “neuronal
cells” themselves, with the interaction between platelets and
T cells representing a novel “neuroimmunological” synapse in
the periphery (20). Likewise, platelets could act as messengers,
transferring signals between the peripheral environment and
brain cells. We have shown that platelet-rich plasma has direct
stimulating effects on a pure population of flow cytometry-
isolated hippocampal dentate gyrus-derived neural precursor
cells in vitro, and that mice which have been depleted of platelets
fail to show the expected exercise-induced increase in neural
precursor cell proliferation in vivo (21). This work suggests
that platelet-neural stem cell communication is an important
regulatory mechanism in these brain cells, although the precise
molecular mechanisms underlying this communication are
still unclear.

Platelets carry several neurotransmitters that are essential for
the intercellular communication between brain cells, including
γ-aminobutyric acid (GABA), glutamate, serotonin, epinephrine,
dopamine, and histamine. This suggests that platelets can send
and receive signals to and from the nervous system and may act
as an important relay between the brain and peripheral organs.

The monoamine neurotransmitter serotonin is stored in dense
granules, and peripheral serotonin release-associated regulatory
functions of platelets have been described (6, 22). Although the
peripheral and central nervous system serotonergic systems are
thought to be separated, platelets release serotonin in response to
brain-specific glycolipid structures, which are integrated into the
lipid rafts of neurons and astrocytes (15). Such interactions could
occur in conditions in which cerebral microvessels become leaky,
including during neurodegenerative diseases (23), suggesting
that platelets could act as communicators between blood and
brain. This hypothesis becomes more cogent when considering
the two major neurotransmitters GABA and glutamate, both
of which are taken up by platelets (24). Glutamate is the
most abundant excitatory neurotransmitter in the brain, and
substrate-induced glutamate uptake has been demonstrated in
human platelets, likely via specific glutamate receptors (25),
similar to what is observed in neuronal cells (26). Platelets
express various glutamate receptor subtypes and exhibit high
affinity glutamate uptake activity, a process which is impaired
in disorders such as PD (27), AD (28) and ALS (29). GABA, an
inhibitory neurotransmitter, is crucial for healthy brain function,
with perturbances in GABA receptor signaling being associated
with neurodegenerative conditions [reviewed in Kim et al. (30)].
Platelets carry considerable amounts of GABA, although the
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concentration is 30% lower than that found in neurons (31).
In both neurons and platelets GABA is metabolized by GABA
transaminase (31). Moreover, similar to neurons, platelets appear
to take up GABA in a substrate-induced manner, with an in
vitro study reporting that the GABA concentration in platelets is
negligible when the peripheral benzodiazepine receptor blocker
PK11195 is present in the cell culture medium (31).

Given these similar mechanisms of neurotransmitter
uptake and metabolism, platelets have been suggested as a
model system of glutamate and GABA transport in patients
suffering from neurodegenerative conditions (25, 31). A more
recent review article has extended these concepts to other
conserved mechanisms between platelets and neurons that
are associated with neurodegenerative diseases, with platelet
dysfunction mirroring the abnormalities observed in neurons
(32). However, to date it is unclear whether platelet dysfunction
occurs first or whether functional impairments in platelets
arise as a consequence of other defects that occur during
neurodegenerative processes.

PLATELETS IN NEURODEGENERATIVE
CONDITIONS

It is becoming clear that neurodegenerative diseases do not
solely involve cells and tissue of the central nervous system,
but rather that systemic influences also play a fundamental
role in the development and exacerbation of brain pathologies.
As discussed above, platelets are of particular interest as
important mediators of this two-way relationship. Several
review papers have concluded that these blood cells can serve
as potent systemic biomarkers of neurodegenerative diseases,
mirroring the pathological phenotypes of neural cells (32–34).
In this section we describe the studies that link platelets to
neurodegenerative conditions, with a particular focus on platelet
dysfunction in these disorders (summarized in Table 1).

Alzheimer’s Disease
AD is a slowly developing progressive form of dementia that
is accompanied by unpredictable behavior, lack of enthusiasm
and memory loss. The neuropathological hallmarks of AD
include neuronal and synaptic loss, neuroinflammation, the
formation of intracellular neurofibrillary tangles and the
deposition of amyloid-ß in brain tissue and cerebral vessels.
Increasing evidence has linked platelet dysfunction to this
disease, in particular in the context of amyloid-ß secretion
from platelets.

Although neural cells, including astrocytes and neurons,
produce and secrete amyloid-ß (81), the peptide can also be
released by activated platelets (82). Platelets have been suggested
to be the primary source of amyloid-ß peptide in the blood
(83). The cells produce this peptide through the cleavage of
its precursor protein, amyloid precursor protein (APP), which
is abundantly present in platelets and is secreted following
platelet activation, similar to its metabolite amyloid-ß (82, 84,
85). Both APP and amyloid-ß peptide are associated with
platelet functions. Whereas, APP is involved in the regulation

of thrombosis and coagulation (46–48), amyloid-ß peptide has
the ability to promote platelet activation (41, 49–51), adhesion
(43, 48, 50), aggregation (47, 48) and to induce reactive oxygen
species generation (45, 51).

Rather than alterations in platelet count or size, changes
in platelet activation appear to play a prominent role in
AD, with increases in activation detected in the blood of
AD patients, likely as a result of increased lipid peroxidation
(35). Similarly, platelets have been shown to be hyperactive
in aged APP23 transgenic mice, a model of AD (38). A
subsequent study confirmed abnormalities in platelet function
in a more complex mouse model of AD, 3xTg-AD mice, with
increased platelet adhesion to components of the subendothelial
matrix and accelerated thrombus formation, although the
platelet count remained unchanged (39). In patients with mild
cognitive impairment and AD, the activity of ß-secretase,
one of the major enzymes required for the cleavage of APP,
is significantly increased in the membranes of platelets (36,
37), suggesting further platelet-related systemic changes during
the disease.

A recent parabiosis study, in which the blood circulation of
APPswe/PS1dE9 transgenic AD model mice was connected with
that of their wildtype counterparts demonstrated that human
amyloid-ß originating from the transgenic mice accumulated
in the brains of their healthy littermates, forming amyloid-
ß plaques and amyloid angiopathy following 12 months of
parabiosis (86). Moreover, the parabiotic wildtype mice exhibited
impaired long-term potentiation in the hippocampal cornu
ammonis 1 area, suggesting a reduction in synaptic plasticity,
which is thought to underlie deficits in learning and memory
(86). Although this study did not investigate the origin of the
blood-derived amyloid-ß, the authors suggested platelets as a
likely source.

Prior to amyloid-ß plaque formation, platelet inclusions in
cerebral blood vessels are among the first symptoms to appear
in the brains of APP_SweDI AD model mice (40). Another
study demonstrated that platelets enhance the formation of
amyloid-ß aggregates in the brain vasculature and that amyloid-
ß itself can activate platelets (41). In the same study, the plaque
burden of cerebral vessels in APP23 mice was significantly
reduced following a 3-month treatment with clopidogrel, a
known inhibitor of platelet activation (41). Interestingly, a trend
toward reduced plaque formation was also observed within the
hippocampus, a brain region which is crucial for learning and
memory and is profoundly affected by AD (41). More recent
work has shown that platelets isolated from APP_SweDI mice
promote vessel damage and neuroinflammation in the healthy
mouse brain, leading to amyloid-ß-like immunoreactivity at
the damaged vessel sites (42). Together these data suggest that
hyperactive AD platelets release and interact with amyloid-ß
specifically at sites of vessel damage, thereby accelerating the
progression of the disease (38, 39, 41, 42). This is in line with work
suggesting that AD may, at least in part, be a slowly developing
thrombohemorrhagic disorder (87, 88), highlighting the need to
expand research beyond the brain and consider treatment of the
systemic environment in AD patients. In this regard, platelets
represent a potential target, with a reduction in platelet count
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TABLE 1 | Platelet abnormalities linked to neurodegenerative conditions.

Condition Implication of platelets Species/model Reference

Alzheimer’s disease Increased platelet activation Human (35)

Increased platelet β-secretase activity Human (36, 37)

Platelet hyperactivity APP23 mice (38)

Increased adhesion to subendothelial matrix

components

3xTg-AD mice (39)

Platelet inclusions in cerebral blood vessels APP_SweDI mice (40)

Platelets enhance formation of amyloid-β aggregates in

cerebral vessels

APP23 mice (41)

Platelets promote neuroinflammation and vessel damage APP_SweDI mice (42)

APP and amyloid-β influence platelet function Human/APP-KO, C57BL/6

and APP23 mice

(41, 43–51)

Huntington’s disease Increased platelet mHtt protein levels Human (52)

Increased platelet aspartate and glycine levels Human (53, 54)

Platelets promote blood brain barrier permeability Human (52)

Impaired platelet adenosine A receptor signaling Human (55, 56)

Impaired platelet nitric oxide metabolism Human (57)

Elevated platelet mitochondrial monoamine oxidase

activity

Human (58, 59)

Parkinson’s disease Increased mean platelet volume Human (60)

Decreased platelet glutamate uptake Human (27)

Reduction in vesicular monoamine transporter 2 mRNA Human (61)

Platelet mitochondrial dysfunction Human/

Cybrid model

(62–66)

Amyotrophic lateral sclerosis Increased platelet TDP-43 levels Human (67)

Reduced complex IV activity in platelet mitochondria Human (68)

Altered platelet mitochondrial membrane potential Human (69)

Altered platelet mitochondrial morphology Human (70)

Altered platelet activation and morphology Human (70)

Enlarged mitochondria, degenerating mitochondrial

vacuoles and neurofilament aggregations

Cybrid model (71–73)

Decreased platelet serotonin levels Human (74)

Multiple sclerosis Increased platelet activation Human (75)

Platelets drive neuroinflammation in the spinal cord EAE mice (76, 77)

Platelet-neuron associations are associated with

neuroinflammation in the hippocampus

EAE mice (14)

Altered serotonin release from dense granules Human/EAE mice (78)

Prion diseases Platelets carry infectious prions Deer (79)

Platelets are capable of transmitting disease phenotypes Deer and sheep (79, 80)

AD, Alzheimer’s disease; APP, amyloid precursor protein; EAE, experimental autoimmune encephalomyelitis, mHtt, mutant huntingtin protein; TDP-43, TAR DNA-binding protein of

43 kDa.

being suggested as a means to counteract the overproduction of
amyloid-β (87).

An interesting alternative theory is that amyloid-ß release
represents a defense mechanism against septic agents (89, 90).
Recent research indicates that amyloid-ß may be a normal
component of the innate immune system, protecting individuals
against microbial and viral infection (91–94). Given the emerging
evidence that platelets act as fundamental immune cells,
including in the brain [summarized in Leiter and Walker (1)],
they could accumulate at damaged cerebral vessel sites and
release amyloid-ß as a defense peptide. This is in line with a
study which suggests that the release of amyloid-ß from platelets

is triggered by pre-existing tissue damage and inflammation
and represents a natural protective mechanism against infection
during thrombosis (92). However, the platelet hyperactivity that
is associated with ADmay lead to the overproduction of amyloid-
ß, thereby exacerbating inflammation and eventually promoting
the development of plaque formation.

Although the studies described above focused on amyloid-
ß, this peptide does not represent the only known link
between platelets and AD, with other investigators examining
the involvement of neurofibrillary tangles and impaired
neurotransmitter homeostasis. These studies have been reviewed
elsewhere (95).
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Huntington’s Disease
HD is a hereditary autosomal dominant neurodegenerative
disorder caused by a CAG repeat expansion in exon 1 of
the huntingtin gene, resulting in the production of a mutant
huntingtin protein (mHtt). This protein accumulates in neurons,
thereby leading to their eventual death and a progressive loss of
motor and cognitive functions. Extensive research has shown that
a number of cell subpopulations in the blood are altered in HD
patients, with platelets having the highest levels of mHtt (52).

The platelets of HD patients exhibit a number of
abnormalities, including aberrant amplification of adenosine
A receptor (A2AR) signaling (55, 56). Given that the A2AR
is expressed in GABA/enkephalin spiny neurons, it has been
proposed that it may play a role in HD pathogenesis. Other
studies have also reported a correlation between the density
of A2AR in platelets and the rate of disease, age at onset and
CAG repeat expansion (55, 96). However, whether or not A2AR
activity provides a useful biomarker remains to be determined.

Dysfunction of the nitric oxide /nitric oxide synthase pathway
and monoamine oxidase (MAO) have also been suggested to be
critical contributors to HD pathology. Nitric oxide metabolism
has been found to be dysregulated in platelets during the late
stages of HD progression (57), and MAO activity has been
associated with neuronal damage in a number of degenerative
conditions. MAO is a mitochondrial enzyme that catalyzes the
oxidative deamination of monoamines such as dopamine. MAO
exists in the MAO-A and MAO-B isoforms. Whereas, some cell
types express both isoforms, only MAO-B is found in platelets.
Significantly elevated platelet MAO activity has been observed
in HD patients during disease progression (58, 59), with the
levels negatively correlating with the clinical response to drug
treatment (97).

A proposed model of HD pathogenesis is the “excitatory
hypothesis,” based on the observation that excitatory amino acids
and N-methyl-D-aspartate receptor agonists, including aspartate
and glutamate, recapitulate the striatal neuron degeneration
observed in HD (98). Although early studies found no differences
in glutamate and aspartate activity between normal and HD
platelets (99, 100), later studies have reported significantly
increased aspartate and glycine in HD platelets (53, 54).

Mitochondrial dysfunction has also been implicated in the
pathogenesis of HD. A significant decrease in mitochondrial
complex I activity per platelet was observed when patients
were grouped according to disease severity; however, when
normalized to mitochondrial DNA content, no differences were
detected (101). In contrast, an earlier study found no difference
in platelet mitochondrial complex activity in HD patients (102).
Given the relatively small group sizes, further data are required to
determine whether mitochondrial function in platelets provides
a useful biomarker of HD. However, increased mitochondrial-
dependent apoptosis has also been reported in HD
cybrids (103).

Platelets are also important in maintaining normal vascular
integrity (104). Recently, an initial study investigating the
potential impact of mHtt on platelet function showed that
platelets can promote blood brain barrier permeability in
HD, pointing toward their potential contribution to disease
pathogenesis (52).

Parkinson’s Disease
PD is a degenerative disorder caused by the loss of dopaminergic
neurons in the substantia nigra, thereby resulting in an
impairment in motor and cognitive functions. Although the
cause of sporadic PD, the most common form of the disease, is
unknown, one major causal factor is mitochondrial dysfunction.
This was first suggested by the finding that 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that selectively
kills dopaminergic neurons, acts by inhibiting complex I of
the electron transport chain (105). A plethora of studies
have reported reduced complex I activity in the platelets
of patients with PD (62–64), although it should be noted
that other studies did not find such alterations (65, 66).
Supporting the former observation, a PD cybrid model in
which mitochondrial DNA from PD platelets was expressed
in rho 0 human teratocarcinoma cells showed a reduction in
complex I activity (106, 107). In addition, 1-methyl-4-phenyl-
pyridinium ion MPP(+), the metabolite of MPTP, was shown
to induce adenosine triphosphate depletion in platelets and
attenuate platelet aggregation and activity, providing a potential
mechanism underlying the anti-aggregation effect observed in
PD patients (108).

Several studies have suggested that MAO also plays
an important role in MPTP toxicity and the etiology of
PD. Increased MAO-B activity has been observed in PD
patients (109–111), potentially due to a G/A single nucleotide
polymorphism in intron 13 which results in a splicing enhancer
that stimulates intron 13 removal efficiency (110). However, the
data concerning platelet MAO-B activity in PD patients are not
consistent, with other studies reporting that platelet MAO-B
activity is unchanged in PD patients (112, 113).

A number of other alterations in the platelets of PD patients
have also been suggested as potentially useful biomarkers. These
include a reduction in vesicular monoamine transporter 2 mRNA
(61), an increase in mean platelet volume (60), and decreased
glutamate uptake (27).

Amyotrophic Lateral Sclerosis
ALS is a fatal neurodegenerative disorder that is characterized
by progressive and selective loss of motor neurons in the
brain and spinal cord. Patients suffer from progressive muscle
weakness and paralysis of their voluntary muscles, ultimately
leading to respiratory failure and death. There is accumulating
evidence that in addition to affecting motor neurons, ALS also
affects platelets.

Almost all ALS cases (∼97%) are characterized by pathology
due to the TAR DNA-binding protein of 43 kDa (TDP-43) (114,
115). In diseased neurons, TDP-43 is relocated from its normal
nuclear location to the cytoplasm, where it is phosphorylated
and ubiquitinated, subsequently aggregating to form insoluble
intracellular inclusions (115). A recent study found that the
TDP-43 levels in platelets from patients with sporadic ALS are
significantly higher than those of non-ALS age-matched controls
(67). Interestingly, the TDP-43 levels in platelets tended to
increase with disease progression, although a larger cohort of
patients is required to confirm this observation (67).

Mitochondrial abnormalities, particularly impairments
of complex IV (cytochrome c-oxidase) activity, have been

Frontiers in Immunology | www.frontiersin.org 6 May 2020 | Volume 11 | Article 747

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Leiter and Walker Platelets in Neurodegenerative Conditions

implicated in ALS, although the exact role of mitochondrial
dysfunction remains unclear. In addition to mitochondrial
dysfunction in motor neurons of ALS patients, mitochondrial
changes have also been reported in muscle, liver and blood
cells, suggesting systemic involvement (116–118). Complex
IV activity was found to be decreased in platelets from ALS
patients in a small case-control study (68). Interestingly, the
cellular mitochondrial content increased, indicating a potential
compensatory mechanism (68). Further supporting the notion
of mitochondrial dysfunction, a change in the mitochondrial
membrane potential has been reported in platelets from
ALS patients (69), as well as changes in the ultrastructure
and morphology of platelets and their mitochondria (70).
This is in line with an earlier study which observed platelet
activation and morphological changes in ALS platelets (119).
ALS cybrids (platelets fused to the rho neuronal cell lineage)
also show similar cytoskeletal deformities to those found in ALS
patients and transgenic superoxide dismutase 1 mice, including
enlarged mitochondria, degenerating mitochondrial vacuoles
and neurofilament aggregations (71–73). Despite these links
between platelet mitochondrial dysfunction and ALS, larger
cohort studies are required to conclusively determine whether
mitochondrial function can be used as a biomarker for ALS.

Thrombospondin is a glycoprotein that is released from
platelet α-granules following thrombin-induced platelet
activation. Changes in blood thrombospondin levels have been
detected in a number of pathological conditions, including a
marked increase in thrombospondin deposition in the muscles
of ALS patients (120, 121). The neurotransmitter serotonin
is also decreased in the brain and spinal cord of ALS patients
(122, 123). Platelets are a major source of serotonin and platelet
serotonin levels have been shown to be significantly lower in
ALS patients and to positively correlate with patient survival
(74). However, the cause of this decrease in serotonin remains
elusive. Glutamate excitotoxicity has also been implicated in the
pathogenesis of the disease. Platelets contain a glutamate uptake
system and express components of the glutamate-glutamine
cycle, including the excitatory amino acid transporter 2 and
glutamine synthetase. Increased glutamine synthetase, but
normal excitatory amino acid transporter 2 expression, has been
reported in the platelets of ALS patients (124). However, given
that this finding is in contrast to an earlier study which reported
a reduction in glutamate uptake in ALS patients (29), these data
need to be confirmed.

Multiple Sclerosis
MS is an inflammatory disease, where the immune system attacks
the myelin sheaths that cover nerve axons in the spinal cord
and brain. The resulting nerve damage leads to communication
deficits between the brain and other tissues, and depending on
the affected nerves provokes a range of symptoms, including
impairments in vision, deficits in motor control of the arms and
legs and neuropsychological symptoms such as depression and
memory loss. To date, there is no known cure for MS, as the
underlying cause is still unknown.

A few studies targeting platelets and their involvement in MS
and its mouse model, EAE, have shown that these conditions are

associated with abnormalities in platelet function. One of these
investigations found increased platelet activation in the blood
of clinically stable relapsing-remitting MS patients who had not
yet received treatment (116). This was evidenced by significantly
larger numbers of CD62P-positive platelets and CD41-positive
platelet microparticles (75). Subsequent evidence in EAE mice
revealed that platelets exacerbate the development of the disease
via the recruitment of leukocytes to the neural tissue (76). A
more recent study cemented the involvement of platelets in EAE,
demonstrating that platelets not only aggravate (76) but also drive
neuroinflammation in the spinal cord (77). Possible mechanisms
via which platelets could exacerbate the pathophysiology of
MS are discussed in a review by Wachowicz et al. with one
interesting concept being an impaired antioxidant mechanism in
combination with inflammation-induced platelet activation as an
additional source of reactive oxygen species to further accelerate
tissue damage (125). Moreover, the secretion of serotonin from
dense granules has been shown to modulate immune cell
responses in a stage-depended manner. During the early stages of
EAE and MS, high levels of platelet-released serotonin stimulate
the proliferation and differentiation of pathogenic T cell subsets,
thereby promoting proinflammatory responses (78). During later
phases of the disease, however, platelets exhibit reduced serotonin
levels and appear to suppress T cell activation and central nervous
system inflammation (78).

Recent work investigating the brains of EAE-induced mice
demonstrated that platelets were also present in the parenchyma
of the hippocampus, including in the fimbria and in close
proximity to neuronal cell bodies in the dentate gyrus and CA1
region (14). This phenotype was associated with the formation of
a neuroinflammatory environment, supposedly due to platelet-
neuron associations (14). However, this occurred in the absence
of inflammatory cell infiltration, further highlighting the role
of platelets in the initiation of EAE (14). In the same study,
the pro-inflammatory environment in the hippocampus of EAE-
induced mice, as well as their increased anxiety-like behavior,
were improved following platelet depletion with polyclonal anti-
platelet glycoprotein Ib α chain antibodies, suggesting that
platelets could serve as a potential target for the amelioration of
the symptoms of MS (14).

Prion Diseases
Prion proteins (PrPs) comprise a class of amyloid-forming
proteins, with some isoforms being associated with a group
of fatal neurodegenerative diseases termed transmissible
spongiform encephalopathies. Once diagnosed, these conditions
progress rapidly and are characterized by the chronic
deterioration of physical and mental abilities, including
profound memory impairments. The scrapie isoform of PrP is
an abnormal, misfolded, protease-resistant isoform (126, 127)
which is believed to be responsible for transmissible spongiform
encephalopathies. Although considered transmissible, the paths
through which prion diseases spread are unknown, with the
transfusion of blood from infected donors presenting a concern.

Cellular PrP (PrPc) is carried by blood cells, including
platelets, in which PrPc is present on the membranes of α-
granules (128, 129). Following activation, PrPc can be released
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from activated platelets, mainly in the form of microparticles
and exosomes (128). The function of PrPc under these
circumstances is unknown, although it has been reported that
the protein is unlikely to play a role in the aggregation
or adhesive actions of activated platelets (128). The release
of microparticles and exosomes represents a major route
of intercellular communication, including crosstalk between
platelets and neural cells (1). This suggests that in the course
of transmissible spongiform encephalopathies, the less soluble
scrapie prion isoform could be carried and released from
activated platelets thereby contributing to the infection of
the brain and the transmission of the disease through blood
transfusion (128). Other work has confirmed that platelets and
B cells in the blood of deer, infected with chronic wasting
disease carry infectious prions, and are substantially involved
in transmitting the disease phenotype (79). In a sheep model
of variant Creutzfeldt Jakob disease, the disease could be
transmitted through several blood components, such as whole
blood, plasma, red blood cells, buffy coat and platelets (80).
These data from animal studies suggest a high probability that
spongiform encephalopathies are transmissible through blood
(79, 80), even in pre-clinical stages of the disease (80). However,
only a few cases suggest this possibility in humans, where
the lack of a causal link between blood transfusions and the
development of prion diseases makes it difficult to draw a
conclusion (130–132).

PLATELETS—A NOVEL THERAPEUTIC
AVENUE FOR THE TREATMENT OF
NEURODEGENERATIVE CONDITIONS?

Impairments in platelet function are a common observation
in neurodegenerative disorders; however, healthy platelets and
their secreted factors also represent a possible approach for the
development of therapeutic interventions for the treatment of
neurodegenerative conditions. Among the primary applications
are the use of platelet lysate and platelet-rich plasma, both
of which are easy to obtain from immune-compatible healthy
donors. The beneficial effects of platelet-rich plasma treatment
are likely to be attributable to the abundant variety of growth
factors that platelets carry in their granules. Neural and glial
cells express surface receptors for a range of these growth
factors, including vascular endothelial growth factor, epidermal
growth factor, fibroblast growth factor-2, platelet-derived growth
factor, brain-derived neurotrophic factor, platelet factor 4,
transforming growth factor-ß, insulin-like growth factor-1,
connective tissue growth factor and bone morphogenetic
protein-2,−4, and−6, suggesting a fundamental role of platelets
in tissue growth and regeneration, including in the brain (133–
135). Moreover, human platelet lysate comprises a plethora of
growth factors, including those with neuroprotective properties.
Although emerging research has shown promising results,
diverse protocols for the isolation of platelet-rich plasma and
platelet lysates exist, resulting in products which contain variable
ranges of growth factors (136). Moreover, novel protocols are
continuously being published, describing optimized preparations
for specific use in different applications (137–139). These

factors therefore represent an important consideration when
evaluating study outcomes and planning future clinical trials
across different fields.

Platelet-Rich Plasma
Platelet-rich plasma can easily be prepared from whole blood
using a slow centrifugation speed and physiological washing
buffers that support platelet purification. This method achieves
a nearly pure population of platelets [>99.99% purity (140)],
and the platelet preparation can be used immediately or stored.
However, upon freezer storage and subsequent thawing of the
samples, a substantial number of cells will be lyzed, leading to
the release of growth factors from platelet granules. These are
also present in frozen/thawed platelet-rich plasma preparations,
making them a physiological cocktail of intact cells and released
bioactive molecules.

Beneficial therapeutic effects of platelet-rich plasma treatment
have been reported in numerous tissues, including during
burn healing (141, 142), cartilage repair (143) and healing
following dermal injuries (144). Other studies have demonstrated
that platelet-rich plasma treatment enhances the recovery of
peripheral nerves following injury, including cavernous nerve
injuries (145) and damage of the facial (146) and sciatic (147)
nerves. Moreover, platelet-rich plasma injections into the injured
spinal cord of rats have been shown to promote locomotor
recovery, local angiogenesis and neuronal regeneration (148).
Another study in mice suggested the therapeutic use of
platelet-rich plasma in neuroinflammatory central nervous
system diseases, as platelet-rich plasma treatment considerably
improved the clinical symptoms in the EAE mouse model
of MS (149). This effect was accompanied by significantly
lower gene expression and a decrease in the protein levels of
inflammatory markers in the lumbar parts of the spinal cord,
including the microglial marker Iba1 and the pro-inflammatory
cytokine interleukin 1-β, as well as the reduced infiltration
of inflammatory cells (149). The platelet-rich plasma injection
also protected the cells from demyelination in the affected area
(149). Other studies which used the plasma rich in growth
factors Endoret R© technology to isolate platelet-rich plasma from
human blood have demonstrated that treatment with these
preparations significantly reduces amyloid-β plaque density in
the hippocampus and improves cognitive function in APP/PS1
AD model mice (150). Another study complemented this
finding showing that the same preparations enhanced adult
neurogenesis in the hippocampus of APP/PS1 mice, a process
known to be affected during AD, and that this enhancement was
likely due to a reduction in amyloid-β-mediated neurotoxicity
(151). The same method also promoted neuronal survival and
diminished the inflammatory responses in a mouse model of
PD, as well as reducing the associated motor impairments
(152). These data suggest that platelet-rich plasma treatment
represents a promising approach which could be applied to
several neurodegenerative disorders.

Platelet Lysate
Similar to platelet-rich plasma, platelet lysate can be easily
obtained from whole blood samples. Platelets are first enriched
by centrifugation steps, followed by freezing and thawing of the
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samples. An additional centrifugation step then separates the
freeze/thaw-triggered secreted platelet factors, which constitutes
the platelet lysate, from the remaining cell debris.

Given their essential role in wound healing and tissue
repair, platelet lysates are being investigated as a therapy for a
number of neurodegenerative diseases. Human platelet lysates
have been investigated as a novel biotherapy for ALS and PD
patients. In an NSC-34 cell-based model of ALS, human platelet
lysates conferred a neuroprotective effect against staurosporine-
induced apoptosis and menadione-induced oxidative stress,
indicating that neuronal loss can be diminished by platelet factors
in those conditions (153). In a Lund human mesencephalic
cell-based model of PD, pre-treatment of the cells with
human platelet lysates also protected again erastin-induced
ferroptotic cell death (153). The authors further optimized
the isolation protocol to produce platelet lysate preparations
which are more enriched for neurotrophins and at the same
time depleted of plasma proteins, thereby preventing potential
adverse thrombotic effects during in vivo applications (137).
Following intranasal administration of the optimized platelet
lysate, obvious protective effects were observed on dopaminergic
neurons in the substantia nigra and the striatum of PD model
mice (137). The intranasally administered platelet factors were
also found in several other regions of the brain, including
the striatum, olfactory bulb, and cortex (137), making this
treatment method a promising tool for application in various
neurodegenerative conditions.

Although we have not addressed stroke and other brain
injuries in this review, human platelet lysate treatment has
also been shown to produce positive outcomes in these
conditions. Following stroke, human platelet lysate injections
into the lateral ventricles of rats had neuroprotective effects
(154). The platelet lysate-treated rats exhibited a larger number
of proliferating neural precursor cells in the subventricular
zone, accompanied by increased angiogenesis (151). They
also displayed lower motor function deficits (154). Another
study demonstrated that administrating human platelet lysate
decreased apoptosis and stimulated the survival of proliferating
neural precursor cells in the same brain region after a
lysolecithin-induced demyelination lesion in the corpus callosum
(12), further suggesting a neuroprotective role of platelets after
cerebral damage.

Platelets and Platelet
Microparticles—Potential Vehicles for the
Delivery of Therapeutic Drugs?
In addition to platelet-rich plasma and platelet lysate
preparations, an interesting approach is emerging, whereby
platelets are used as a physiological vehicle to deliver molecules
to target regions that might otherwise be difficult to access. With
their context-dependent and specific cell-cell communication
capacity, platelets could serve as a selective and non-toxic drug
delivery system in order to target specific cells and tissues.
This approach has been extensively discussed previously,
with a particular focus on the use of platelets to deliver
chemotherapeutic agents to tumors (155). However, this novel

strategy still requires additional studies to confirm its efficacy.
Microparticles, which are released by platelets upon activation,
have also been proposed as a natural delivery system for drugs
(155, 156). The majority of all microvesicles in the blood are
platelet-derived (157), indicating a vital contribution of platelets
to intercellular communication. Platelet microparticles, which
are 0.1–1µm in diameter, are shed from the plasma membrane
(158) and contain cytoplasm, microRNA, mRNA, lipids and
proteins. These can be transferred to other cells, thereby affecting
their function (159–162). Given their capacity to influence and
communicate with neural cells, platelets and their secreted
microparticles could also be engineered as drug carriers for
the treatment of neurodegenerative disorders. However, until
the exact mechanisms of the specific cell-cell communication
between platelets and brain cells are fully understood, the value
of this approach remains speculative. Furthermore, in order to
develop human therapies with drug-loaded blood cells, extensive
studies are needed to establish clinical grade protocols which
standardize the varying methods of isolation and storage of
platelets and platelet microparticles prior to their regulated
reintroduction into individuals. Drug loading protocols for these
natural vehicles, in terms of their capacity and compatibility with
the drugs required to target neurodegenerative phenotypes, also
need to be established. Nonetheless, in the field of regenerative
medicine, considerable headway has already been made toward
engineering extracellular vesicles and blood cell-inspired
nanoparticles for therapeutic use (163–166).

CONCLUSION

As summarized in this review, data connecting platelets and
the factors they secrete to neurodegeneration have accumulated
over recent years. However, it remains unclear whether platelet
malfunction initiates the pathophysiological events that occur in
neurodegenerative conditions, or whether platelet dysfunction
arises as a consequence of other unfavorable changes that occur
at early stages of these disorders. More data regarding the
origin of platelet dysfunction are therefore required. During
the onset of neurodegenerative conditions, factors released from
healthy platelets could also have a protective role, as suggested
by recent studies of AD (92) and cancer, where platelets
initially suppress tumor angiogenesis (167). Moreover, platelets
exhibit a sophisticated endocytic machinery (168) via which
they could collect products that are released into the blood
from other malfunctioning cells in an attempt to clear the
systemic environment of cytotoxic components in the early stages
of disease.

Although platelets and their released factors are gaining
recognition for their potential therapeutic value in regenerative
medicine, research is still in its infancy. Furthermore, the origin
of platelets, the bone marrow, should not be overlooked, as
a functional predisposition may also be inherited from their
parent cells, the megakaryocytes. In conclusion, it remains highly
interesting, but at the same time extremely challenging, to
understand how platelets exert manifold actions across different
tissues in physiological as well as pathological conditions.
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Their functional complexity clearly demands interdisciplinary
approaches in order to develop novel therapeutic interventions
which benefit from the multifaceted nature of platelets, including
their capacity to facilitate crosstalk between the systemic
environment and the brain.
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