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Abstract: Natural sunlight permits organisms to synchronize their physiology to the external world.
However, in current times, natural sunlight has been replaced by artificial light in both day and
nighttime. While in the daytime, indoor artificial light is of lower intensity than natural sunlight,
leading to a weak entrainment signal for our internal biological clock, at night the exposure to
artificial light perturbs the body clock and sleep. Although electric light at night allows us “to
live in darkness”, our current lifestyle facilitates nighttime exposure to light by the use, or abuse,
of electronic devices (e.g., smartphones). The chronic exposure to light at nighttime has been
correlated to mood alterations, metabolic dysfunctions, and poor cognition. To decipher the brain
mechanisms underlying these alterations, fundamental research has been conducted using animal
models, principally of nocturnal nature (e.g., mice). Nevertheless, because of the diurnal nature of
human physiology, it is also important to find and propose diurnal animal models for the study
of the light effects in circadian biology. The present review provides an overview of the effects of
light at nighttime on physiology and behavior in diurnal mammals, including humans. Knowing
how the brain reacts to artificial light exposure, using diurnal rodent models, is fundamental for the
development of new strategies in human health based in circadian biology.
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1. Introduction

Earth’s 24 h rotation induces cycles of day and night that synchronize the physiology
of living organisms [1]. Thus, sunlight is the most important natural signal to entrain our
rhythms of sleep, feeding, body temperature, and metabolism. Moreover, light effects
on physiology are modulated by seasons, when the length and intensity of natural light
change. Therefore, sunlight impacts daily and seasonal physiology [2].

In the beginning, organisms (including humans) regulated their daily activities ac-
cording to the natural dawn and dusk. Then, with the industrial revolution, a relevant
event in the human history, several changes arrived to “facilitate” human life; among them
the discovery of electric light. In the last part of the industrial revolution (1879), Thomas
A. Edison invented the electric light bulb that was immediately used for both domestic
and industrial tasks. It is very likely that at that time people did not visualize what would
be the impact of this event in biology and health. Today, it is well known that artificial
light affects the physiology of living organisms, and mainly the biological functions with
rhythmic properties.

One of principal effects of artificial light at night on physiology is the suppression
of the hormone melatonin (MEL); this indicates that light regulates the neuroendocrine
system [3]. Notwithstanding, because MEL is rhythmically secreted at night under the
control of the body clock, light also affects the circadian system. Furthermore, since
retina projections target directly to other brain regions, beyond the circadian clock, light
(artificial or natural) may also influence and regulate functions such as mood, cognition,
and metabolism [4]. The study of the circadian and non-circadian mechanisms underlying

Clocks&Sleep 2021, 3, 236–250. https://doi.org/10.3390/clockssleep3020014 https://www.mdpi.com/journal/clockssleep

https://www.mdpi.com/journal/clockssleep
https://www.mdpi.com
https://doi.org/10.3390/clockssleep3020014
https://doi.org/10.3390/clockssleep3020014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/clockssleep3020014
https://www.mdpi.com/journal/clockssleep
https://www.mdpi.com/2624-5175/3/2/14?type=check_update&version=1


Clocks&Sleep 2021, 3 237

the effects of light on physiology is essential for the understanding of when and how light
is beneficial or detrimental for health.

2. The Core of the Body Clock Entrained by Light: Following the Right Path

To recognize the endogenous structure able to tick every function in our body and
to synchronize to day-night cycles, the first studies identified the anatomical pathway
by which light enters to the body and entrains circadian rhythms. Therefore, one of the
first experimental approach was to track pathways and brain targets using tracers injected
into the eye. Hence, in rats, the retino-hypothalamic tract (RHT) was characterized as
the principal monosynaptic projection from the retina to the ventral hypothalamus [5].
Interestingly, this study had already indicated that the RHT arises from retinal ganglion
cells, which years later were identified as melanopsin-containing cells [6]. Then, two
studies revealed that the ablation of this retino-recipient area in the ventral hypothalamus,
harboring the suprachismatic nucleus (SCN), eliminates behavioral and hormonal rhythms
in rats [7,8]; these studies gave the first recognition to the SCN as the central circadian clock
in mammals [9].

The SCN is a bilateral mid-nucleus in the anterior ventral hypothalamus with approxi-
mately 10,000 neurons per nuclei. It contains a diverse amount of peptides and neurotrans-
mitters, all of them with specific functions on the reception, integration and transmission
of biological timing [9,10]. The inhibitory neurotransmitter gamma-Aminobutyric acid
(GABA) is contained in almost every cell in the SCN. GABA production and release show
a daily and circadian rhythm with a main activity in the middle of daytime. GABA has an
important role in the coupling of clock cells into the SCN [11].

Anatomically, the SCN is subdivided into a ventral region containing vasointestinal
polypeptide cells (VIP) and a dorsal vassopresinergic (AVP) region. Whereas VIP cells
are the gate to transmit light information from the retina to the dorsal SCN clock [12,13],
AVP neurons are the clock core that integrate this information. The circadian time is then
transmitted to the rest of the brain and body to entrain peripheral clocks and physiological
rhythms [14,15]. Moreover, VIP clock cells (as GABA) play a role in the SCN clock coupling;
when VIP or its receptor VPAC2 are deficient, behavioral and molecular rhythms are
disrupted in mice [12]. Importantly, recent studies reveal a new and interesting role of VIP
neurons not only in the reception of light and SCN cell coupling, but also in the control of
sleep at night in mice [16]. This gives a diverse and dynamic role of each subgroup of clock
cells into the SCN.

Research on the molecular mechanisms of circadian oscillations in the SCN has ad-
vanced considerably [17]. The basis of these mechanisms depend on two principal feedback
loops (a negative and a positive one) of transcription and translation of genes and proteins.
The two transcription factors, Clock and Bmal1, once translated into proteins, form a dimer
complex with the capacity to go back to the nucleus and bind at the site of transcription
for genes such as Period (Per1-3) and Cryptochrome (Cry1-2) at the middle of the day. At the
beginning of the night, the protein products PER and CRY also have the ability to form
dimers to return to the nucleus and inhibit the CLOCK/BMAL1 activity, and therefore their
own gene transcription [18]. To inform the other brain regions and organs in the body of
the circadian time, the molecular clockwork uses the named clock-controlled genes (CCG),
such as AVP, VIP, or the humoral factors Prokinotecin 2 (PK2) or the transforming growth
factor alpha (TGF-alpha) [19].

3. The Retina-Brain Network: The Route to Synchronize (or Desynchronize) Circadian
Rhythms and to Regulate Behavior by Light

In the retina, cells from the ganglion layer contain the photopigment melanopsin.
These intrinsically photosensitive retinal ganglion cells (ipRGCs) have a maximum sensi-
tivity to blue short-wavelength light (480 nm), and play a fundamental role for non-image-
forming visual functions [20]. In rodents (mice), five subtypes (M1-5) of ipRGCs have been
characterized [21]. Interestingly, in a recent study, the function of human ipRGCs was
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evaluated and at least three subtypes of ipRGCs were revealed according to their electrical
activity responses to light; these responses are similar between rodents and humans [22].

ipRGCs (M1 subtype) fire in a tonic manner after light stimulation, then relaying this
electrical information to the SCN clock. In addition, in nocturnal mice, ipRGCs contact
other retino-recipient brain regions beyond the SCN, such as the intergeniculate leaflet
(IGL), the olivary pretectal nucleus (OPN), the peri-habenular region (PHb), and indirectly
(via the IGL) the lateral habenula (LHb) [23–25]. Extra-SCN ipRGC’s projections have also
been reported in the diurnal rodent Arvicanthis niloticus [26,27]. Furthermore, M1-type
melanopsin cells are subdivided in two types: those containing the transcription factor
Brn3b that project to the extra-SCN brain sites (e.g., midbrain, thalamus), and the Brn3b-
negative cells that project to the SCN [24,28]. Extra-SCN projections allow light to influence
a wide range of non-image forming beyond the photic entrainment of the clock (e.g., sleep,
mood, and metabolism).

In the SCN, ipRGC’s axons from the RHT contact principally ventral VIP cells, which
contain glutamate and PACAP (pituitary adenylate cyclase-activating peptide) receptors.
When light stimulates ipRGCs at night, in the RHT terminals glutamate or PACAP are
released to bind their receptors. This leads to an important increase of calcium (Ca2+) flux
and the activation of specific intercellular cascades which include the protein kinase A
(PKA), cAMP response element binding protein (CREB), and the CREB-regulated tran-
scription coactivator 1 (CRTC1) [29]. When CREB is phosphorylated and partnered to
CRTC1, it binds the CRE sequences in the promotor of Per (Per1-2) genes to induce their
transcription. Importantly, the effects of light on the clock physiology are time-dependent.
Light stimulation at early and late-night delays and advances, respectively, the clock and
the over rhythms (e.g., locomotor activity, melatonin) [30,31].

4. Light Effects on Physiology: Differences between Diurnal and Nocturnal Species

In chronobiology, nocturnal species such as mice, rats, or hamsters have been widely
used for behavioral and molecular studies, giving many significant advances in the under-
standing of the mammalian circadian system.

The effects of nighttime light exposure (NLE) on physiology have also been studied
using classical nocturnal rodents (e.g., rats, mice and hamsters) [32]. Nonetheless, it is not
evident at what level these might be useful as the best models for translational studies in
human chronobiology.

Nocturnal rodents, unlike humans, sleep during the day and behave at night; although
the hormone MEL is released in a circadian manner with a peak of release at night in
both diurnal and nocturnal species [33–35] (Figure 1). Moreover, whereas NLE provokes
awakening in humans, it triggers sleep in nocturnal rodents; thus, the use of nocturnal
rodents for translational studies remains limited.

Some of the negative effects of NLE on physiology are in part due to the sleep de-
privation and MEL suppression induced by light [36]. Nevertheless, in many studies
using nocturnal mice, MEL production is deficient (C57BL6 strain). This highlights an
important factor, different between diurnal vs. nocturnal species, to consider when we try
to understand the effects of NLE on human physiology.

For some years now, some diurnal rodent models have been available for the study of
the neuronal and molecular mechanisms of the circadian system, which can complement
and reinforce existing knowledge in chronobiology in nocturnal rodents [37].

Circadian expression of clock genes, as well as electrical and metabolic activity in the
SCN, is similar between nocturnal and diurnal species [38–41]. In addition, photic phase
resetting of circadian rhythms (i.e., locomotor activity rhythms) and gene expression (Per)
in the SCN induced by light are also similar between day- and night-active species [38,39].
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Figure 1. (A) Daily rhythms of physiology in diurnal (humans and rodents) and nocturnal (mice, 
rats) mammals are entrained to the light-dark (LD) cycle. Except for the daily rhythm of melatonin 
(MEL) that peaks at night in both diurnal and nocturnal mammals, other physiological rhythms 
show opposed phases between diurnal and nocturnal species. (B) Nighttime light exposure (NLE; 
blue arrow) affects in a similar manner behavioral and physiological rhythms in both humans and 
diurnal rodents (suppression of MEL; triggers arousal and eating; phase-shifts of activity 
rhythms). In nocturnal rodents, NLE also phases delays (double red arrows) rhythms of locomotor 
activity (dotted red lines) and suppresses MEL. However, different to diurnal species, NLE sup-
press locomotor activity and does not induce feeding. Therefore, the use of diurnal rodent species 
needs to be considered for translational studies and for the understanding of the negative conse-
quences of light at night in human physiology. 

Notwithstanding, clock gene expression in peripheral clocks and extra-SCN circa-
dian oscillators are phase-opposite between day vs. night species [42–44]. In the brain, Per 
gene expression in structures such as the cortex, striatum, or hippocampus exhibits high 
amplitude and peak at day in the ground squirrel and the diurnal rodent Octodon degu, 
and at dusk in nocturnal species (e.g., rats, mice, hamsters) [42–45]. 

In addition, a recent study revealed daily rhythms of gene expression in central and 
peripheral organs in a diurnal primate, the Papio anubis (baboon); these rhythmic profiles 
showed a different phase from that of nocturnal species [46]. 

In another study in diurnal non-human primates, it was reported that the knock-
down of the clock gene BMAL1 induces circadian (e.g., loss of hormonal rhythms) and 
sleep alterations, which were potentiated when primates were exposed to constant light 
conditions [47]. Furthermore, BMAL1-KO primates showed anxiety and depressive-like 
behaviors [47]. Interestingly, in nocturnal mice the specific Bmal1 gene deletion in the SCN 
causes anxiety-like behavior [48]. Therefore, these comparative results between diurnal 
and nocturnal species arise two important points: (1) the role of clock genes in circadian 
and non-circadian behavior in nocturnal and diurnal species and (2) the possible use of 
diurnal species for translational studies in circadian biology in physiological and patho-
physiological conditions. 

In addition to the phase differences of peripheral clocks between diurnal and noctur-
nal mammals, non-circadian effects of light have been reported to be different between 

Figure 1. (A) Daily rhythms of physiology in diurnal (humans and rodents) and nocturnal (mice,
rats) mammals are entrained to the light-dark (LD) cycle. Except for the daily rhythm of melatonin
(MEL) that peaks at night in both diurnal and nocturnal mammals, other physiological rhythms
show opposed phases between diurnal and nocturnal species. (B) Nighttime light exposure (NLE;
blue arrow) affects in a similar manner behavioral and physiological rhythms in both humans and
diurnal rodents (suppression of MEL; triggers arousal and eating; phase-shifts of activity rhythms). In
nocturnal rodents, NLE also phases delays (double red arrows) rhythms of locomotor activity (dotted
red lines) and suppresses MEL. However, different to diurnal species, NLE suppress locomotor
activity and does not induce feeding. Therefore, the use of diurnal rodent species needs to be
considered for translational studies and for the understanding of the negative consequences of light
at night in human physiology.

Notwithstanding, clock gene expression in peripheral clocks and extra-SCN circadian
oscillators are phase-opposite between day vs. night species [42–44]. In the brain, Per
gene expression in structures such as the cortex, striatum, or hippocampus exhibits high
amplitude and peak at day in the ground squirrel and the diurnal rodent Octodon degu, and
at dusk in nocturnal species (e.g., rats, mice, hamsters) [42–45].

In addition, a recent study revealed daily rhythms of gene expression in central and
peripheral organs in a diurnal primate, the Papio anubis (baboon); these rhythmic profiles
showed a different phase from that of nocturnal species [46].

In another study in diurnal non-human primates, it was reported that the knock-
down of the clock gene BMAL1 induces circadian (e.g., loss of hormonal rhythms) and
sleep alterations, which were potentiated when primates were exposed to constant light
conditions [47]. Furthermore, BMAL1-KO primates showed anxiety and depressive-like
behaviors [47]. Interestingly, in nocturnal mice the specific Bmal1 gene deletion in the
SCN causes anxiety-like behavior [48]. Therefore, these comparative results between di-
urnal and nocturnal species arise two important points: (1) the role of clock genes in
circadian and non-circadian behavior in nocturnal and diurnal species and (2) the possible
use of diurnal species for translational studies in circadian biology in physiological and
pathophysiological conditions.

In addition to the phase differences of peripheral clocks between diurnal and nocturnal
mammals, non-circadian effects of light have been reported to be different between day-



Clocks&Sleep 2021, 3 240

vs. night-active rodents, for example, the masking effects of light in locomotor activity are
opposite between mice (nocturnal) and the diurnal rodent Arvicanthis niloticus (diurnal).
Whereas light stimulation at night in nocturnal rodents induces a significant suppression
of locomotor activity (negative masking), in diurnal rodents it induces an increase of
locomotion and arousal (positive masking) [49,50] (Figure 1).

At the cellular level, light at night induces the expression of the protein c-FOS in
the brain of the diurnal grass rat Arvicanthis niloticus and the nocturnal mouse. However,
except for the SCN, a brief light stimulation at night leads in different c-FOS activity in
specific brain areas between species [49]. Among those areas with opposite c-FOS responses
to light, the LHb; in the diurnal rodent Arvicanthis, but not in mice, light at night triggers a
significant increase of the protein c-FOS in the LHb [49]. In addition, a striking anatomical
difference in the LHb between nocturnal and diurnal species was recently observed. In this
study, authors reported that the glutamic acid decarboxylase (GAD), the essential enzyme
in the formation of the neurotransmitter GABA, is present in the LHb of the diurnal Nile
grass rat but not in the nocturnal rat [51]. The functional role of GAD in the LHb of diurnal
Arvicanthis remains to be determined.

In humans, light also affects the activity of the habenula (Hb). A human’s fMRI study
revealed that the Hb is sensitive to light changes in healthy volunteers. Hb activity is
reduced when subjects were exposed to a change in luminance. Moreover, these changes
are circadian-dependent, with a much more significant decrease of the Hb activity by light
at morning than afternoon [52]. Whether luminescence increases Hb activity in humans
at night as in diurnal rodents (c-FOS expression) has not been yet reported [49]. Notwith-
standing, these findings give important evidence on how light affects brain structures
(beyond the SCN) in humans, and how this can lead in changes in behavior (e.g., mood,
cognition, etc.).

The LHb is a key structure to highlight due to its circadian properties and role in the
regulation of behavior [53,54]. The LHb shows a self-sustained circadian profile with a
high amplitude and peak of electrical activity and clock gene expression at daytime in
nocturnal rodents [55–57].

If in diurnal species the LHb shows a daily or circadian rhythm of activity (i.e.,
electrical, gene expression, metabolic) similar to that observed in nocturnal rodents is not
known. However, according to the previous results in which light at day decreases activity
of the human Hb [52], and increases of c-FOS expression at night in diurnal rodents [49], it
is possible that the daily activity of the diurnal LHb peaks at daytime. This is an important
issue to point out when considering the LHb as part of the circuit that mediates the effects
of light (light therapy) on depressive-like behaviors [25,58].

In short, because behavioral, cellular, and molecular responses to light are similar
between humans and diurnal rodents, but opposite to nocturnal rodents, it would be
interesting and relevant to propose the use of diurnal animal models (in addition to the
nocturnals) to study the mechanisms underlying the effects of light (benefit or negative) on
human physiology (Figure 1).

5. Nighttime Light Effects on Sleep and Circadian Biology of Diurnal Mammals

Currently, people worldwide are constantly exposed to nocturnal light due, in part, to
the high availability and sometimes the “necessity” of using electronic devices emitting
blue light (e.g., smartphones, tablets, computers). The excessive use of these devices at
night leads to alterations in physiology. Amongst the negative consequences induced by
NLE are the alterations of the sleep-wake cycle, which in a long term may lead in cognitive
and mood deficits [59–61]. Under laboratory-controlled conditions, NLE, by the use of
electronic tablets, induces alterations in sleep, such as a reduction of rapid eye movement
(REM) sleep and an increase of alertness and of the latency to initiate sleep [60–63].

Previous studies have reported significant correlations between the exposure to indoor
room illumination at night and sleep quality (i.e., latency to initiate sleep, sleep efficiency,
wake after sleep onset, reduced total sleep time) in healthy young volunteers and elderlies.
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In healthy young male and female volunteers, the exposure to room light at nighttime
affects REM sleep (increases awaking after sleep onset), leading to a reduction of total time
of sleep and poor sleep quality [64,65]. Moreover, room light exposure at night induces
a significant suppression of the production of MEL, and a delay of the daily rhythm of
secretion [36].

In elderly individuals exposed to light at night under home setting conditions, similar
effects were observed on sleep (i.e., increase of the latency to initiate sleep) [66]. Further-
more, in subjects suffering from bipolar disorder, a significant correlation between the
intensity of light exposure at night and the presence of manic symptoms and altered sleep
(e.g., latency to initiate sleep and episodes of waking during sleep) was reported [67,68].

Many studies on the effects of NLE on physiology have been conducted in labora-
tory and in home setting conditions. However, other studies have reported the negative
consequences of NLE outdoors on physiology (light pollution). Adolescents, who spend
important time exposed to light at night using electronic devices, are also the most exposed
to outdoors light. In fact, nighttime outdoor light exposure is positively associated with a
later bedtime, mood alterations, and anxiety in adolescents [69].

Together, these studies have significantly correlated indoor and outdoor NLE to sleep,
hormonal, and circadian perturbations in humans. What are the possible brain mechanisms
that underlie these effects?

Beyond the entrainment of the circadian system, light reaches the brain to activate,
inhibit or modulate its activity and then behavior. ipRGCs project to other extra-SCN brain
sites to control and regulate sleep, mood, cognition, and reward [4]. Within the extra-SCN
structures targeted by ipRGCs are the principal areas implicated in the regulation of sleep
such as the ventrolateral preoptic area (VLPO; sleep-promoting neurons) and the lateral
hypothalamus (LH; wake-promoting neurons) [23,70]. Thus, sleep can be affected directly
by light and independently of the SCN clock.

In nocturnal mice, light affects sleep in a wavelength-dependent manner [71]. Whereas
blue-rich light (470 nm) induces arousal and delays the sleep onset, green light (530 nm)
induces a rapid sleep onset. The opposite effects of blue vs. green light in arousal and
sleep, respectively, lead in a differential increase of the cellular marker c-FOS in the SCN
(by blue light) and the VLPO (green light). These data confirm the role of the VLPO in sleep
promotion, and give new insights on the brain pathways playing a role in the regulation
of sleep by light [71]. Nonetheless, this study was conducted in nocturnal mice; thus,
light (blue or green) exposure at night was at the activity phase [71]. Therefore, it will be
interesting to evaluate the effects of blue and green light on sleep using diurnal rodents.

In fact, spontaneous c-FOS activity in sleep and wake promoting brain areas is opposite
between nocturnal rats and the diurnal rodent Arvicanthis niloticus. The daily rhythm of
c-FOS activity in the sleep-promoting VLPO shows a higher amplitude and peak at the
light onset in rats (rest period) [72], and at night (inactive period) in Arvicanthis [73]. These
results raise the question whether light at night (blue, green) in diurnal species, or even in
humans, has similar effects on sleep regulation as in nocturnal species.

Sleep has been well studied in nocturnal rodents such as rats and mice [74]. Impor-
tantly, there are interesting data on the characterization of sleep physiology in diurnal
chipmunks and ground squirrels [75], and in the diurnal rodents Octodon degus and Arvican-
this ansorgei [76,77]. In the diurnal Arvicanthis ansorgei it has been reported that both NREM
and REM sleep occur at dark period, thus, opposite to that observed in nocturnal rodents
(i.e., rats, mice) [77]. Furthermore, as in humans, light stimulation at night decreases pineal
MEL levels and induces arousal in the Arvicanthis ansorgei [33,77] (Figure 1). Hence, it is
conceivable that NLE in diurnal rodents induces sleep alterations similar to those observed
in humans; an interesting hypothesis for translational studies on the effects of light at night
in sleep homeostasis.
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6. Nighttime Light Effects on Mood of Diurnal Mammals

Sleep disturbances are often followed by mood disorders (e.g., depression). Patients
with major depressive disorder (MDD) exhibit alterations of the rhythms of hormone
release (e.g., melatonin) and of the sleep-wake cycles [78,79]. One of the possible causes
that alter circadian rhythms in MDD is a poor entrainment to the day-night cycle [80].

Seasonal affective disorder (SAD) has also been related to a poor light entrainment
(low light intensity exposure). People with SAD show anxiety and depressive symptoms
principally in winter when natural day light intensity and duration are low and short,
respectively [81]. Therefore, daytime bright light exposure is a good therapeutic option to
treat MDD, SAD, and other psychiatric disorders in part due to the synchronization of the
circadian system [81–83].

Despite some studies in humans showing brain changes induced by seasons, the
central mechanisms implicated in SAD and in the therapeutic effects of bright light exposure
are not totally known, although the brain monoaminergic (e.g., serotonin, dopamine)
activity could be strongly implicated [84–87].

SAD rat and mice (nocturnal) models show alterations in both the circadian and
monoaminergic systems [88]. Moreover, some previous studies have reported possible
brain mechanisms of SAD using diurnal rodents as models.

Diurnal Arvicanthis niloticus exposed to low levels of light at daytime develop depres-
sive and anxiety-like behavior with elevated levels of corticosterone (stress response), and
morphological neural changes in the hippocampus [89]. Furthermore, these LD housing
conditions (low light intensity or shorter day-length) lead to a deficient serotonergic sig-
naling, without affecting daily rhythms of locomotion or SCN clock proteins expression.
This suggests a SCN-independent implication of the brain monoaminergic pathways on
the effects of daytime low intensity light exposure in behavior of diurnal rodents [90,91].

In another study, the day-night variations of the dopamine content in the forebrain
are altered in the diurnal grass rat Arvicanthis ansorgei exposed to winter-like photoperiod
conditions. Interestingly, these effects are reversed when animals are treated with daily
light (1 h) stimulation [92]. In similar diurnal species (Arvicanthis niloticus), light exposure
at the circadian day increases c-FOS expression in hypothalamic orexin neurons and
in serotonergic cells from the dorsal raphe nucleus [93]. Overall, these results indicate
that mood-related behavior in diurnal rodent species is sensitivity to changes in light
intensity and duration. Moreover, these studies support the hypothesis on the direct effects
of daytime light exposure on the monoaminergic system (e.g., serotonin, dopamine) to
improve mood-related behaviors.

In spite of the therapeutic effects of light at daytime in mood in humans (and diurnal
rodents), nighttime light exposure may have important consequences in mood in both
humans and animal models.

Adolescents use light emitting devices at night, in an excessive manner, allowing
a considerable increase of NLE before bedtime. This condition has been considered as
a risk factor for the development of mood disorders. Teenagers (12–17 year old) who
use smartphones in bed before sleep showed a reduced sleep duration and depressive
symptoms [61]. The negative effects of NLE appear to be more pronounced in adolescents
due to their transparent lenses that permit a higher sensitive to light. Indeed, adolescents
exposed to light at night show a strong suppression of MEL, larger phase-shifts of the
circadian system, and poor sleep [94].

The effects of light at night on circadian physiology (phase changes) are intensity,
time, duration, and wavelength dependent [95]. Thus, it is possible that the effects of
light at night in non-circadian biology (e.g., mood, cognition) are also dependent on these
variables.

For example, in elderly people, light exposure at night in home settings (indoor light)
is significantly associated with depressive symptoms, being higher in individuals with the
exposure to intensities ≥5 lux. This correlation was independent of other factors such as
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sleep habits, physical activity, or even light exposure at daytime. Furthermore, depressive
symptoms disappear when subjects are exposed to constant darkness at nighttime [96,97].

Recent studies evaluated the possible correlation between outdoor light exposure at
night and the presence of depressive symptoms. For that purpose, researchers selected
people from a Dutch (18 to 65 years old) and a Korean population (20–59 years old), and
using a satellite measure of exposure to nocturnal illumination outdoors, they reported a
positive correlation between depressive symptoms and the levels of light exposure [98,99].

In animal models, few studies have reported the effects of light at night in mood-
related behaviors using diurnal rodents. Diurnal rodents Arvicanthis niloticus exposed to
a LD cycle with dim light at night phase (5 lux) showed anhedonia (decrease of sucrose
preference) and behavioral despair (more immobility in the forced swim test), with a
reduction of the dendritic length in neurons from the hippocampus, but without alterations
of the daily rhythms of locomotion [100].

On the other hand, nighttime light exposure in diurnal grass rats produces an increased
immune response and elevated corticosterone concentrations [101]. This study suggests
the possibility that light at night may act as a long-term stressor inducing alterations in the
glucocorticoid signaling and the immune response, which may lead to the development of
mood alterations [101].

Since light at night impacts extra-SCN brain regions differentially between nocturnal
vs. diurnal rodents [49], and some of them are importantly implicated in the regulation of
mood (LHb) [102], research on the mechanisms underlying the effects of NLE on mood-
related behavior in diurnal species remains to be explored.

7. Nighttime Light Effects on Eating and Metabolism of Diurnal Mammals

In industrialized countries, in addition to the negative effects of light pollution, society
faces the negative consequences of unhealthy overeating; both conditions have been
correlated with the development of metabolic diseases such as obesity and diabetes, two
major global public health problems [103]. Even worse, the exposure to light and eating
at night might enhance the negative effects on human health. Night workers are a clear
example of people exposed to light at night and prone to developing overeating and obesity;
thus, this is an important group in society strongly affected by NLE [104].

Recent studies have evidenced important effects of light at night in metabolism and
feeding in both humans and animal models. For example, night blue-enriched light
exposure in healthy adults induces higher values of blood glucose, accompanied of a
reduction in subjective sleep [105].

In the elderly, NLE has been associated with body weight increase and lipid dys-
regulation (dyslipidemia) in both male and female volunteers [106]. Interestingly, in this
study NLE-exposed subjects showed significantly higher waist circumference (an indirect
measurement of body fatness). These effects were independent of other physiological
factors such as age, sleep duration, or MEL levels. Therefore, although sleep loss has been
associated with an increase in food intake, hunger, and body weight, in this study the
effects of NLE in body weight could be related to other mechanisms independent of sleep
deprivation [66].

In a subsequent study in elderly volunteers, authors reported that the effects of NLE
on body weight are time-dependent; the correlation between NLE and the increase of body
mass index (BMI) and the ratio of waist circumference is more significant when light occurs
at late vs. early night [107]. Moreover, in some elderly participants, there was a significant
association between NLE and the increase on the incidence to develop diabetes [108]. On
the other hand, the exposure to long periods of darkness at night and to light at daytime
was associated to a lower BMI and to a reduced ratio of waist circumference [107]. Similarly,
in a large cohort study in UK women, BMI and waist circumference increased in subjects
exposed to light at night [109].

In another recent longitudinal study, a significant association between body weight
increase and light exposure at night in women while sleeping was identified [110]. In
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fact, authors followed, for more than five years, a group of women that had the habit of
sleeping with the television or lights on in their room. Under these conditions, women
with a greater light exposure to light at night showed a significant and positive correlation
with being overweight and the risk of developing obesity [110].

Many of the studies of the effects of NLE on metabolism have been reported in adults
or the elderly. However, it would be interesting to evaluate if these effects are also observed
in a youngest population. A late chronotype has been associated with an increase in caloric
intake and obesity [111,112]. Teenagers and young adults show a night chronotype and are
often exposed to higher intensities of light at night. Furthermore, the circadian system of
adolescents is more sensitive to light [94]. Therefore, the effects of NLE on body weight
gain remain to be determined in teenagers and young adults.

NLE also affects eating behavior and metabolism. In healthy young individuals, a
brief light exposure at night alters hormonal and metabolic profiles. In the metabolic
response, healthy people exposed to bright light showed post-meal higher glucose and
insulin levels compared to dim-light exposed subjects [113]. Moreover, in another study,
using a similar protocol of light exposure, it was observed that healthy subjects exposed to
bright light at night report more appetite, hunger and desire to eat (Figure 1) [114].

Several studies on the effects of NLE in glucose and lipid metabolism, body weight,
and food intake have been conducted in nocturnal rodents such as rats and mice [32].
Interestingly, a recent study using diurnal species describes new data on the effects of NLE
in feeding and metabolism.

In the diurnal rodent Arvicanthis ansorgei, a single exposure to blue light at the begin-
ning of the night (rest period) dysregulates glucose metabolism and induces feeding. In
fact, animals exposed to 1 h of blue light and to a glucose tolerance test showed glucose
intolerance and a reduced insulin secretion, possibly by a decreased beta cell activity [115].
No effects were observed on leptin concentrations by NLE. Similarly, in humans, bright
light exposure does not affect plasma leptin concentrations [116]. Leptin is a hormone that
stimulates satiety and shows a circadian rhythm controlled by the SCN in both rodents
and humans [117,118]. Since light at night resets the SCN, thus, changes in leptin by NLE
may possibly be observed in the timing (phase) of the circadian rhythm.

Interestingly, in nocturnal rats, green light, but not blue light exposure at night,
leads in similar glucose intolerance as in diurnal Arvicanthis exposed to blue light [119].
These results suggest that the effects of NLE on glucose metabolism between diurnal and
nocturnal rodents are wavelength-dependent.

In diurnal Arvicanthis, the increase in food intake by light exposure was diet- and
gender-specific. In Arvicanthis fed with a highly palatable meal containing fat and sugar,
blue NLE triggers sucrose intake in male, but not female, animals (Figure 1). These results
highlight the relevance of melanopsin cells, which are more sensitive to low wavelength
light (blue-rich), on the effects of NLE on metabolism and food intake.

Notably, in nocturnal rats, different to diurnal Arvicanthis, the exposure to dim-light
at night decreases nighttime feeding and energy expenditure [120]. In addition, green and
blue light exposure at the late night reduces food intake in rats [121].

These last data are important to consider for further translational studies, not only for
the difference between the nocturnal phenotype of rats and the diurnal nature of Arvicanthis,
but also for their retinal differences (sensitivity, morphology) [122]. Furthermore, the
opposite effects of NLE in feeding behavior between diurnal and nocturnal species should
be taken into consideration when attempting to explain the effects of light at night in
glucose metabolism between day- and night-active rodents.

Therefore, due the similar effects of NLE on feeding between the diurnal rodents and
humans, for translational studies it will interesting to use this animal species, despite the
comparable findings of NLE effects on glucose metabolism in nocturnal rats and diurnal
Arvicanthis.

What are the mechanisms underlying the effects of light on eating and metabolism?
This question remains to be answered, but different hypotheses have been proposed. One
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of these is the misalignment among the central pacemaker (SCN) and peripheral circadian
clocks regulating metabolism (e.g., pancreas, liver).

Furthermore, NLE may affect metabolism through the SCN clock and the autonomous
nervous system, by which light can contact peripheral organs (e.g., liver, pancreas,
adrenals) [123,124].

On the other hand, due to the direct effects of light in other brain substrates regulating
energy balance and feeding (e.g., hypothalamus, limbic substrates), NLE may directly
reach these structures to induce eating or alter metabolism [23]. However, these are still
hypotheses that remain to be confirmed.

Another mechanism by which NLE alters metabolism might be through MEL signaling.
MEL release at night is suppressed by light in an intensity-dependent manner. MEL has an
important role in metabolism acting in peripheral tissues, such as the liver or pancreas for
the regulation of glucose and insulin, respectively [125]. However, this mechanism cannot
be considered to explain the effects of NLE on metabolism of nocturnal MEL-deficient mice.
Therefore, studies using MEL-proficient diurnal rodents, with similar sleep-wake cycles as
humans, would support the possible role of MEL in the effects of NLE on metabolism.

8. Conclusions

Currently, fundamental research in natural sciences uses principally nocturnal rodents
such as rats and mice giving an enormous advance in the understanding of physiology and
behavior. In some fields of biological research, the nocturnal nature of animal models seems
to be not relevant. However, in chronobiology this might be an important issue to look at,
mainly when we try to understand the human circadian timing system in physiological
and pathophysiological conditions. The proposition of diurnal rodents is limited, but the
few studies using these give important and new data to consider in the study of the effects
of light, or other time cues (e.g., food, exercise) [126] on the circadian system. Furthermore,
recent data in diurnal primates (closer to human physiology) support the relevance of the
use diurnal species for translational studies [37,46,47]. This will increase and reinforce
the very important current knowledge of the circadian system in nocturnal rodents. The
use of diurnal models may provide an additional and valuable understanding of human
circadian timekeeping in health and disease.
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