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Abstract

Chromatin organization can be probed by Chromosomal Capture (5C) data, from which the

encounter probability (EP) between genomic sites is presented in a large matrix. This matrix

is averaged over a large cell population, revealing diagonal blocks called Topological Asso-

ciating Domains (TADs) that represent a sub-chromatin organization. To study the relation

between chromatin organization and gene regulation, we introduce a computational proce-

dure to construct a bead-spring polymer model based on the EP matrix. The model permits

exploring transient properties constrained by the statistics of the 5C data. To construct the

polymer model, we proceed in two steps: first, we introduce a minimal number of random

connectors inside restricted regions to account for diagonal blocks. Second, we account for

long-range frequent specific genomic interactions. Using the constructed polymer, we com-

pute the first encounter time distribution and the conditional probability of three key genomic

sites. By simulating single particle trajectories of loci located on the constructed polymers

from 5C data, we found a large variability of the anomalous exponent, used to interpret live

cell imaging trajectories. The present polymer construction provides a generic tool to study

steady-state and transient properties of chromatin constrained by some physical properties

embedded in 5C data.

Author summary

Chromatin organization remains poorly understood and polymer models are used to

reconstruct such organization, to reveal hidden structures and to quantify genomic inter-

actions. We use a generalized Rouse model (a linear chain of beads connected by springs)

with additional interacting molecules that allow stable loop formation. The polymer mod-

els are constructed using the minimal number of binding molecules, positioned according

to the encounter probability matrix obtained from experimental chromosomal capture

data. We determine the conditional encounter probability of 3 key loci regulating gene

inactivation from our calibrated polymer model. Using polymer simulations, we generate

single particle trajectories and explore their transient properties. The present results sug-

gest that the heterogeneity of anomalous exponents measured in live cell imaging is due to
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the large combinatorics in reconstructing the chromatin organization from Chromosomal

Capture data. The present method and algorithms are generic and can be used to recon-

struct a polymer model at a given scale from any Chromosomal Capture data.

Introduction

Chromatin is organized in heterogeneous sub-regions of various sizes, as recently revealed by

Chromosome Capture (5C) data [1, 2]. This multiscale organization is generated by short and

long-range genomic interactions between DNA segments, observed in the statistics of a large

number of cells. Mammalian chromatin at a resolution of 3kb, [3, 4] contains an organization

at 1Mbp scale, where several sub-structures are enriched with intra-connectivity, reflecting an

increased encounter probability (EP) between genomic segments. This increased EP is

described in the two-dimensional encounter frequency (EF) matrix, containing diagonal

blocks called Topologically Associating Domains (TADs) [3, 5]. TADs are associated with

gene regulation [3], DNA replication timing [6], DNA entanglement or cross-linking by mole-

cules such as cohesin, CTCF [7] and condensin [3]. Cross-linking between chromatin sites are

precisely the events sampled by Chromosome Capture data (3C, 4C, 5C, HiC) [3, 8], and single

cell HiC confirms that positions of cross-links can vary between cell types and phases [9]. In

that context, TADs represent average chromatin conformations, characterized by a higher

numbers of binding molecules compared to non-TAD regions.

Over the past ten years, polymer models have been used to analyze statistics hidden in

Chromosome Capture (CC) data and to characterize the decay of the encounter probability

with the genomic distance s. For example, the EP between two monomers A, B for a (linear)

Rouse polymer decays with s−3/2, thus the exponent is 3/2 [10]. A range of decay exponents

lower than 3/2 can be produced by other polymer models, where stable transient loops are

formed between segments [11]. By varying the number of loops, a large range of chromatin

configurations can be generated and the associated polymer characteristics are reflected in the

EP decay exponent. By including transcriptional information, dynamic-loop model [11, 12]

can reproduce chromatin looping associated with transcriptional activity. Similar polymer

models describe chromosomal territories [13], suggesting that inactive genes are located inside

these territories. The strings-and-binders-switch polymer model consists of reversible binding

between specific genomic segments located in close proximity, when an additional diffusing

molecule is present at the binding site. In an extension of this model, genomic segments having

similar epigenomic state can directly interact [14], revealing the phase diagram of polymer

configurations. These models are used to interpret the contact probability decay in the Hi-C

data [15–18]. In a new class of polymer model, each monomer interacts with any other

through a potential well [5, 19], where pairwise interaction between monomers is represented

by either an attractive or repulsive potential. The parameters of the model are extracted from

data by minimizing the chi-square norm between the EP empirical and Monte-Carlo simula-

tion matrices. However, this highly connected model does not translate easily into molecular

binding because the nature of these potential wells does not have a direct physical interpreta-

tion. When this model is applied to the region containing the X inactivation center of mamma-

lian embryonic stem cells, it predicted novel ensemble of polymer configurations, representing

TAD structures present in the 5C data. Other minimization procedures were used to inter-

chromosomal distances at a large-scale resolution of 1Mbp [20].

Polymer models have also been used to interpret single particle trajectories (SPTs) of tagged

DNA locus [21–27] revealing that chromatin is constantly remodeled. SPTs are characterized by
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their anomalous behavior, which can deviate significantly from classical diffusion and are usu-

ally quantified by the mean-square displacement (MSD). In that context, a model with a mini-

mal number of parameters is still needed to account for both types of data: 1) the EPs decay rate

and 2) dynamical parameters such as the anomalous exponent extracted from SPTs. In the

absence of a systematic procedures to convert the EP into a polymer model with a similar EP

decay rate as the one presented in the 5C data, the connection between 1) and 2) was left open.

We present here a general computational and algorithmic procedure to estimate parameters

of a randomly cross-linked polymer model following the 5C protocol. The procedure consists

in constructing an ensemble of polymer models from the EP of 5C by randomly cross-linking

monomers and in resolving the difficulty of assigning the minimal number of sparse interac-

tions between monomer pairs. These interactions can be directly interpreted as binding mole-

cules. The construction of the polymer model starts with the Rouse model [10], which consists

of beads linearly connected by harmonic spring. We started with the coarse-grained Rouse

polymer that describes accurately the statistics of the chromatin below a scale of few Mbp [28,

29]. To further constrain monomer interactions, we determine monomer connectivity from

the 5C data of mammalian X chromosomes. The construction procedure is divided into two

steps: first, to account for heterogeneity in the 5C data, we added a minimal required number

of connectors (cross-links) between genomic sites chosen at random that can reproduce TAD

blocks. We show that the number of random connectors to be added is uniquely determined

from data. However, this step is insufficient to recover the EP decay peaks contained in the 5C

data. Thus, in the second step, we account for consistent long-range interaction present in the

EP matrix within and between TADs. We calibrate our model by requiring that the EP matrix,

constructed from simulations of the polymer, has the same decay exponent (for each mono-

mer) as that of the empirical data. These calibrated polymer models allow us to study transient

properties and to estimate the conditional encounter probability and the first encounter time

between three specific genomic sites.

Although the generalized Gaussian polymer model we are using here is well known, our

reconstruction using minimal number of short and long-range connectors derived from empir-

ical EP is new and permits generating novel statistics describing transient gene regulation. By

exploring the statistics of simulated SPTs (by computing the anomalous exponent [21–24]), we

further show that the large heterogeneity of the anomalous exponent present in live cell imaging

can be explained by random binding locations on the chromatin that can vary from cell to cell.

Results

The encounter probability of coarse-grained 5C data

We previously described how we construct a polymer model from a symmetrized 5C matrix M
(Fig 1A). By symmetrizing the EP matrix, we averaged-out asymmetrical fluctuations. The 5C

data we used represent a sub-region of the X chromosome (� 92kbp), that was previously seg-

mented into two regions called Topological Associating Domains (TADs) D and E [3]. The

matrix M was further coarse-grained by binning the encounter frequencies into 307 mono-

mers of 3kbp [5], where TAD D (resp. TAD E) is represented by the first 106 monomers

(resp. 107–307), as shown in Fig 1A. We introduce a general polymer model (Fig 1B) with

arbitrary configuration, the properties of which will be extracted from empirical 5C matrix M.

The encounter probabilities between monomer m and monomer n are computed from the

experimental 5C matrix M (see Material and Methods) by

Peðjm � njjnÞ ¼
Mn;nþjm� nj þMn;n� jm� nj

PN
m¼1

Mn;m

; ð1Þ
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Fig 1. Statistics of conformation capture data. A. Average encounter frequency map of two 5C replica spanning

�1Mbp genomic region containing two Topologically Associating Domain (TAD) D (monomers 1–106) and TAD E

(monomers 107–307) [3], where the map was coarse-grained into 307 monomers of size 3kbp [5]. B. Schematic

representation of a polymer model with randomly connected monomers. C. Empirical encounter probability Pn, for

monomer n plotted with respect to the genomic distance d [monomer units], reveals long-range interactions

(localized peaks). Pn are fitted with functions Ad−β, where β is the decay exponent and A the normalization factor.

For the mean encounter probability �P�
, the value of the parameters are A = 0.08 and β = 0.77 (thick red curve). D.

Distribution of the βn exponents (n = 1‥307) (blue dots): Monomers m24, m100, m162 (red square dots) with β24 =

0.22, β100 = 0.46, and β162 = 0.33, respectively, accounts for high peaks (first and last), while the middle one

corresponds to the boundary between TADs. E. Encounter probability Pn for monomers n = 24, 100, and 162,

corresponding to local minima shown in box D.

https://doi.org/10.1371/journal.pcbi.1005469.g001
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which depends on the genomic distance |m − n| (Fig 1C). Although the average encounter

probabilities decays with |m − n| for each n, they contain peaks that reflect consistent long-

range interactions between monomers. To quantify the decay of the EP, we fitted its average

value Peðjm � njÞ ¼ 1

N

PN
n¼1

Peðjm � njjnÞ (black dotted line in Fig 1C) with the function

~Pðjm � njÞ ¼
C

jm � njb
; ð2Þ

where C and β> 0 are two constants. For a Rouse polymer, the EP function ~P is characterized

by a decay exponent β = 3/2 [10]. Fitting Eq 2 to data, revealed that β = 0.77, from which we

concluded that the polymer model should be modified to account for higher compaction than

allowed by a Rouse polymer [30].

To better account for the heterogeneity in the EP of each monomer, we plotted the distribu-

tions of the exponent βn for n = 1‥307 along the polymer (Fig 1D blue dots). The exponents βn

were extracted by fitting the function 2 to the empirical EPs Eq 1. The large variability in βn,

n = 1‥307 reflects the local heterogeneity of the chromatin architecture at the current scale (a

monomer represents 3kbp). The average value β for TAD D and E was found to be βD = 0.81

and βE = 0.74 respectively. The local minima of β deviated significantly from the mean values

(Fig 1D red squares), where the deviation is 2–3 times the standard deviation computed from

the β values in each TAD. The minima may represent chromatin features (Fig 1E) such as spe-

cific long-range interactions or boundary between chromatin sub-domains. Indeed, point

m100 (around monomers 102–107 in Fig 1D red) is located at the boundary between TAD D

and E, while m24 and m162 are characterized by strong long-range interactions (Fig 1E).

To conclude, the distribution of β values extracted from the EP is quite heterogeneous,

which can disclose chromatin subregions and long-range strong interactions. We shall account

in the next two sections for these characteristic features and include in the polymer model

both random and persistent long-range connections between monomers.

Encounter probability in the random loop polymer model

To determine the level of connectivity of the generalized Rouse polymer which reproduce the

EP-decay using a prescribed exponent β, we first studied the case of one TAD-like region

using the simulation of a 307 monomer chain. For each realization, we added connectors

between random non-nearest neighbor monomer-pairs in the subregion 103–203 (Fig 2A).

The number of connectors, or the connectivity percentage ξ (fraction of the number of con-

nected monomer-pairs to the maximum, described in Materials and Methods), was increased

in the range 0–2%. By adding connectors, the EP between distant monomers has increased, as

presented in the EP-matrix (Fig 2B). In contrast, outside the region 103–203 the EPs were sim-

ilar to the case ξ = 0 (linear chain), showing that the connected region did not affect the EP in

the non-connected ones. At this stage, we have shown that adding random connectors allows

recovering the shape of TAD regions.

To find the minimal numbers of connectors necessary to recover a given TAD, we aim of

elucidating the relationship between the connectivity percentage ξ and the decay exponent β.

For that purpose, we simulated an ensemble of polymers to their relaxation time (Materials

and Methods), and used the equilibrium configuration to estimate the EP of each monomer

for ξ 2 [0, 2]%. We calculated the exponent β by fitting the function 2 to the simulated encoun-

ter probability data: the values of βn for n 2 [103, 203] decreased with ξ. Indeed, for ξ� 0.2%,

the coefficients βn decreases below the Rouse exponent (equals to βRouse = 1.5), indicating com-

pact polymer configurations. For ξ = 2%, the mean decay exponent βn and n = 103–203 was

�b ¼ 0:47, with a minimal value 0.42 obtained for the boundary monomers 103 and 203

Polymer models and stochastic simulations constructed from Chromosomal Capture data
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Fig 2. Statistics of simulated generalized Rouse polymer chain for various connectivity in one and two sub-regions.

A. Schematic bead-spring chain connected at random positions (two-sided green arrows) between non-nearest-neighbor

monomers. B. Encounter frequency maps of a 307 monomers chain. Connectors are added randomly between monomers

103–202 for each realization. The connectivity ξ (number of connectors) increases from 0 to 2%. C. Distribution of βn (n = 1‥
307) fitted by the function Ad−β, where d is the distance along the chain [monomer units], to the encounter probabilities of

numerical simulation. D. Average value of β for monomers in the interval 103–202 with respect to the connectivity percentage ξ.
E. Schematic polymer chain, where two defined regions: monomers 1–106 (TAD 1, orange circles) and monomers 107–307

(TAD 2, blue circles), are randomly connected (green arrows). No connections were added between the two TAD regions.

Lower panel: three snapshot realizations of a random loop chain with TAD 1 (orange) and TAD 2 (blue) and random connectors

Polymer models and stochastic simulations constructed from Chromosomal Capture data
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(Fig 2C). These results confirm that polymer condenses when ξ increases, as confirmed by

computing the mean radius of gyration Rg [10], showing a decay from Rg = 11.9 for ξ = 0 to

Rg = 11 at ξ = 2% (measured for 307 monomers, Fig 2D). Values of β outside the TAD region

(monomers 1 to 102 and 204–307) were mostly unchanged, fluctuating around β = 1.5, con-

firming that statistical properties of a Rouse chain are unaltered when connectors are added

to the middle region (n = 103 – 203). Finally, the average value of βn (computed over n =

103 – 203) versus ξ is shown in Fig 2D and, as we shall see, will serve to extract the connectivity

percentage ξ from the empirical data.

To reproduce the two TADs D and E of the X-chromosome, we started with a polymer of

307 monomers and added connectors randomly (green arrows) between monomers 1–106

and between monomers 107–307, as described in Fig 2E upper panel). This partition follows

the empirical TAD segmentation described in [3, 5] at the scale 3kbp of the polymer model.

Three polymer realizations for ξ = 0, 0.2, 1% are shown in Fig 2E bottom panel, showing poly-

mer condensation into two distinct regions. The EF matrix shows that two TAD-like regions,

named TAD1 and TAD2 (Fig 2F), emerge as the connectivity ξ increases from 0 to 2%. To

extract the exponent β (Fig 2G, colored curves) we fitted the function 2 to the EP matrix for

each monomer inside TAD1 and 2. In both cases, the exponent β decreased below βRouse = 1.5

(ξ = 0% blue curve) and for ξ = 0.2%, 11 and 39 random connectors were added for TAD1 and

TAD2, respectively. The boundary between TADs is characterized by an abrupt decay of the β
value, reflecting high long and short-range encounters. The average β exponent (averaged over

each TAD), plotted with respect to the connectivity ξ (Fig 2H), was used to determine the

number of connectors necessary to reconstruct the empirical data. Indeed, we extracted from

the EP matrix (Fig 1A) that βD = 0.81, βE = 0.78 the associated connectivity percentages ξD =

0.12, ξE = 0.23, respectively (Fig 2H). To conclude, we obtain the minimal number of random

connectors to be added on a generalized Rouse polymer such that the decay exponents of the

reconstructed and empirical EP-matrix are as close as possible.

Incorporating long-range empirical interactions in the polymer model

A key feature present in the 5C EF-matrix (Fig 1A) is the ensemble of persistent long-range

interactions between monomers (Fig 1C). To account for these interactions, we connected

monomers corresponding to off-diagonal local maxima of the EF matrix for which their EP

exceeds that of nearest neighboring monomers threshold (Materials and Methods). We found

24 long-range connections: 7 (resp. 13) within TAD D (resp. E) and 4 across the two (see SI for

the list of monomers pairs) as shown in Fig 3A. We adjusted the spring constant κm, n between

monomer m and n corresponding to consistent long-range interactions, based on the values of

their EPs (Materials and Methods). The scaled coefficient κm, n are summarized in the SI, and

were found to be 1.1 to 3 times higher than the spring constant assigned to connectors of the

linear backbone (κ = 0.97). As revealed by simulations of a Rouse polymer with fixed long-

range connectors, the polymer configuration are condensed, characterized by a radius of gyra-

tion of about Rg = 9.1 (compared to Rg = 12 for the Rouse chain). Three realizations of the

polymer are shown in Fig 3A.

(green) for three increasing values of connectivity ξ = 0, 0.2, 1%. F. Encounter frequency maps showing two TAD regions for an

increasing number of random connectors. G. Distribution of β− exponent for ξ 2 [0, 2]%, showing the border (n = 106) effect

between TADs. H. Average β over each TAD 1 (blue) and TAD 2 (orange) for xi 2 [0, 2]. The curves decrease until plateau at

0.42 (0.24) for TAD 1 (resp. TAD 2). We use these curves to recover the connectivity percentage ξ of the experimental TAD D,

with βD = 0.74 (resp. TAD E with βE = 0.81) for which ξD = 0.23% (resp. ξE = 0.12%.).

https://doi.org/10.1371/journal.pcbi.1005469.g002
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To quantify the effect of adding consistent long-range connections on the EP decay, we

simulated a Rouse chain containing 307 monomers with the addition of fixed monomer con-

nectivity extracted from the peaks of the empirical EP-matrix. We computed the decay expo-

nents βn of each monomer by fitting the function 2 to the EPs from simulations, and

compared it to the ones computed from the experimental data (Fig 3B). To estimate the quality

of the reconstruction we use the L1-norm, defined for a function f by |f|1 = ∑k|f(k)|, and com-

puted the difference between the experimental βExp and simulated βSim curves normalized by

the norm jβExpk1 and we find

kbExp � bSimk1

jbExpk1

¼ 0:312: ð3Þ

The experimental values βn (Fig 3B red) were generally lower than the ones obtained from

simulations (blue), indicating that the reconstructed chromatin polymer is less condensed for

both TADs. The mean β values for TAD D and E were quite similar with βD = 1.02 and βE =

0.99. Therefore, we conclude that long-range connectors are insufficient to reproduce the sta-

tistics of the 5C data.

Combination of random loops and long-range interactions to construct a

polymer model of a TAD

We previously evaluated separately the effect of adding random connectors and fixed long-

range interactions on the EPs. We computed the decay exponent β and compared it with

coarse-grained 5C data. We now combine these two constraints, such that specific and non-

specific connectors are added to each realization of a generalized Rouse polymer (Fig 4). We

first find the connectivity percentage matching that of the experimental data in each TAD ξD =

0.23% and ξE = 0.12%. These values summarize the contribution from the two types of connec-

tors (Fig 2H). For long-range specific interactions (Fig 3), we previously obtained βD = 1.02,

βE = 0.99, corresponding to ξD = 0.12%, ξE = 0.07%(Fig 2H) for TAD D and E, respectively.

Therefore, we attributed the remaining percentages to the addition of random connectors, that

is ξD = 0.11, ξE = 0.05. The number of added random connectors corresponding to ξD = 0.11%,

ξE = 0.05% are 6 and 10 in TAD D and E, respectively.

Fig 3. Effect of persistent long-range connectors on polymer folding. A. Upper panel: schematic

representation of the bead-spring polymer model with added fixed connectors (red) representing specific

long-range monomer interactions (peaks) shown in Fig 1C. Lower panel: three different realizations of the

same polymer, showing TAD D (orange), TAD E (blue), and fixed connectors (red). B. Simulated (blue) and

experimental (red) β exponent of the fitted encounter probability. The polymer model contains only specific

long-range interactions. Average β values for TAD D and E are βD = 1.02 (resp. βE = 0.99).

https://doi.org/10.1371/journal.pcbi.1005469.g003
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To reconstruct the polymer, we started with a Rouse chain (Fig 4A (gray)) and added 24

connectors between monomer pairs corresponding to peaks of the EP matrix (red). Three

polymer realizations, simulated with the two types of connectors, are shown in Fig 4B, char-

acterized by a radius of Gyration Rg = 6.4. We computed the EF-matrix (Fig 4C) that showed

similarity with the experimental data (compare Fig 1A with Fig 4B), for which two TAD-like

structures are visible. We find a satisfactory agreement between simulations and experimen-

tal data, measured by the Kolmogorov-Smirnov distance DMax = 0.06 computed on the

cumulative density function between the reconstructed and experimental data, as shown in

S1 Fig).

We further quantified the similarity between the two matrices by comparing the decay

exponent for each monomer βn, (n = 1‥307) from numerical simulations to those of the exper-

imental data. We used the function 2 to fit the EP of monomers 1–307 after long time polymer

simulations (Materials and Methods). The fitted value for β shows an good agreement with the

experimental β values (Fig 3C). Comparing the normalized difference between β signals we

find kβExp − βSimk1/kβExpk1 = 0.2 (compared with 0.312 Fig 3B). To conclude, accounting for

long-range deterministic and short-range stochastic interactions leads to a more accurate poly-

mer model for chromatin reconstruction. The quality of this approximation is measured by

the decay norm of the β exponent between the data and the simulations, also confirmed by the

Kolmogorov-Smirnov distance as shown in S1C Fig and to be compared with S1D Fig.

Fig 4. Coarse-grained reconstruction of chromatin using extracted random loops and connectors

corresponding to peaks of the 5C data. A. Schematic polymer model, where TAD D (orange, monomers

1–106), and TAD E (blue, monomers 107–307) are recovered by random loops (green arrows) using the

connectivity ξ and persistent long-range connectors (red bars). B. Three realizations of the polymer model. C.

Encounter frequency matrix of the simulated polymer model, showing two TADs where off-diagonal points

indicate fixed connectors. D. Comparison between β computed from experiments and simulations data.

https://doi.org/10.1371/journal.pcbi.1005469.g004

Polymer models and stochastic simulations constructed from Chromosomal Capture data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005469 April 3, 2017 9 / 20

https://doi.org/10.1371/journal.pcbi.1005469.g004
https://doi.org/10.1371/journal.pcbi.1005469


Encounter probabilities and distribution of search times of three genomic

sites

We showed previously how to construct a polymer, the statistical properties of which match

the ones extracted from 5C data. However, the 5C data cannot be used to study transient prop-

erties of the chromatin, as they represent a static genomic encounter interactions averaged

over cell population. We shall now use the calibrated polymer described above, constrained by

the steady-state properties of the 5C data (Fig 5A), to evaluate transient properties of the

chromatin.

We focus here on the 5C data harboring the Xist loci, which is the master regulator of X

chromosome inactivation (XCI), and its antisense transcript, Tsix, which plays a key role in

Fig 5. Transient properties of the chromatin: Conditional mean time and probability for three sites to

meet. A. (upper panel) Representation of the polymer model for TAD D (orange, monomers 1–106), where

loci Linx (monomer 26, red) meets Chic1 (monomer 62, cyan) and Xite/Tsix (monomer 87, gray), respectively.

Random connectors (green arrows) and specific long range-connectors (red bar) are added, following the

connectivity ξ. Fixed connectors (red bars) correspond to specific peaks of the 5C data. Two realizations

(bottom panel) of the polymer model containing TAD D and E, show the encounter of Linx (magenta) with

Chic1 (cyan), and Xite/Tsix (gray), respectively. The color code is from the upper panel. B. Histogram of the

conditional encounter times between Linx and Chic1 (upper panel, green), and Linx and Xite/Tsix (bottom

panel, blue) with TAD D and E. C. Two polymer realizations with a single TAD D (monomers 1–106, orange),

showing the encounter between Linx (magenta) and Xite/Tsix (gray, left panel), and the encounter between

Linx and Chic1 (cyan, right panel). D. Histogram of the conditional encounter times for a polymer with only

TAD D, showing an exponential decay as in sub-figure B.

https://doi.org/10.1371/journal.pcbi.1005469.g005
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modulating Xist expression during mouse development [3, 5]. Tsix is believed to play a key

role in the choice of the Xist allele that will be expressed during X inactivation. Thus, we decide

to estimate how chromatin conformation within TADs can contribute to this transcriptional

variability using the present polymer model. We estimated the first encounter time distribu-

tion and the probability that monomer 26 (position of the Linx) meets monomer 87 (Xite)

before monomer 62 (Chic1). These monomers represent three key sites on the X chromosome

[3, 5], located in TAD D. We show three realizations in Fig 5A and indicate the location of the

three sites inside TAD D (yellow) and E (blue).

We started the polymer simulations from the steady-state distribution and performed

around 10,000 runs. As predicted by the narrow escape theory [31, 32], the encounter time

between two of the three monomers is Poissonian, and we confirmed this result by simulating

the distributions (Fig 5B). The reciprocal of the mean encounter time is by definition [33] the

encounter rate that we extract in Fig 5B–5D. We found also that the encounter probability,

computed from the encounter rates (rate divided by the sum of the rates) as between Linx and

Chic1 is P = 0.55, while the mean encounter times between each pair (Linx-Chic1) and (Xist-

Linx) are comparable of the order of 131s (table C in Fig 5).

Finally, to check the impact of TAD E on the encounter time inside TAD D, we ran

another set of stochastic simulations after removing TAD E (Fig 5D). Surprisingly, the

encounter probability was inverted compared to the case of no deletion, while the mean time

was increased by almost 50% to 195s (Linx to Chic1) and 205s (Linx to Xite). This result sug-

gests that specific long-range interactions between TAD D and E (table in S1 Text) serve to

modulate the probability and the encounter time between the three key genomic sites. This

result further indicates that the search time inside a TAD can be influenced by neighboring

chromatin configurations.

Statistics of single loci trajectories in the reconstructed polymer model

To further study the statistical properties of loci trajectories, we simulated the three loci

monomer 26 (Linx), monomer 87 (Xite) and 62 (Chic1), following classical single particle

tracking experiments (Fig 6A). We used the calibrated polymer model reconstructed in sec-

tion Encounter probabilities and distribution of search times of three genomic sites. Starting

from an equilibrium configuration following a relaxation time, we estimated the mean-

square displacement (MSD) and computed the anomalous exponent over all realizations.

The MSD of a stochastic process X(t) is computed by averaging over trajectory Xi(t) realiza-

tions [33],

hjXðtÞ � Xð0Þj2i ¼ lim
Np!1

1

Np

XNp

i¼1

jXiðtÞ � Xið0Þj
2 ð4Þ

and for short time, we use the asymptotic behavior

hjXðtÞ � Xð0Þj2i � Ata; ð5Þ

where A is a constant and α is called the anomalous exponent. In practice, we computed the

MSD from the estimator 1

Np

PNp
i¼1 jXiðtÞ � Xið0Þj

2
, where the number of trajectories Np is of

the order 1000. We fitted the function Atα to the MSD Eq 5, computed on the simulated tra-

jectories and then extracted α.

We explore now the consequence of computing the MSD when averaging over a cell popu-

lation. To reproduce this situation, we consider a class of polymer configurations C6,10

obtained by fixing the number of random connectors 6, and 10 for TAD D and E respectively.
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However, their positions in each realization is allowed to vary, generating a variability. We

shall now estimate the anomalous exponent αw of a locus for a given configuration w 2 C6,10

and then compute the average <αw>w 2 C6,10
over the ensemble C6,10. We shall emphasize that

long-range specific connectors (table in S1 Text) are also accounted for in the polymer ensem-

ble C6,10.

For two specific configurations from C6,10, one with TADs E + D (Fig 6A Upper) and the

other TAD D alone (Fig 6A Lower), we show SPTs for each monomer m = 26, 62, 87, projected

in two dimensions. We then computed the MSDs curves by averaging over all realization (Fig

6B). Further, the distribution of the anomalous exponents is shown in Fig 6C. Interestingly, we

found that each locus m = 26, 62, 87 had a different mean anomalous exponent aDþE
26
¼ 0:39,

aDþE
62
¼ 0:4, aDþE

87
¼ 0:31, revealing the intrinsic heterogeneity present in the chromatin. The α

values we have computed for all monomers are indeed heterogeneous, as can be seen in histo-

grams of Fig 6B (right column), 6C and S2A–S2B Fig left columns. Values are spreading in the

range 0.3 to 0.5, however there is a peak in the histogram between values 0.4 to 0.45.

To evaluate how the anomalous exponent is influenced by persistent long-range interac-

tions present in the EP data, we repeated polymer simulations and MSD analysis by removing

Fig 6. Statistics of SPTs simulated from the reconstructed polymer model. A. Representation of the polymer model described in

Fig 5 for TAD D (orange, monomers 1–106). Trajectories for the three loci Linx (monomer 26, red) Chic1 (monomer 62, cyan) and Xite/

Tsix (monomer 87, gray). B. MSD of trajectories shown in A for TAD D + E (left, upper) and TAD D alone (left, lower). The anomalous

exponents for the three loci are α26 = 0.39, α62 = 0.4, and α87 = 0.31 (TAD D + E), while the anomalous exponent become a� E
26
¼ 0:46,

a� E
62
¼ 0:4, a� E

87
¼ 0:43, when TAD E is removed. The histograms of the anomalous exponent (right column) is computed by averaging

over 500 realizations with different random connectors positions. C. Box plot of the anomalous exponents (25–75%) computed over 500

realizations by changing the random connectors locations.

https://doi.org/10.1371/journal.pcbi.1005469.g006
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TAD E. The distribution of the anomalous exponent α shows that removing TAD E results in

the loss of low values, which characterize high chromatin connectivity (Fig 6B, right). We

found the following changes in the anomalous exponents: aD
26
¼ 0:46, aD

62
¼ 0:4, aD

87
¼ 0:43.

This result shows how specific long-range interactions affect the local chromatin dynamics

and locus motion. Finally, the anomalous exponent averaged over all monomers is αD+E =

0.425, whereas for TAD D and E we found αD = 0.433, αE = 0.42. However, when TAD E is

removed, the average anomalous exponent for all monomers in TAD D is αD = 0.458.

To represent the contribution of a single cell experiments in a population, we simulated

SPTs for a fixed polymer configuration (we chose an ensemble of connectors in C6,10). We

computed the MSD of all loci n = 1‥307 that can be divided into 3 classes: low medium and

high anomalous exponent (SI). The distribution of the anomalous exponents of all sites is

quite uniform (S2 Fig). We then vary the connector positions and computed the spread of the

anomalous exponents (Fig 6C). This result shows that changing the connectors position

account for the variability of the anomalous exponents. This result clarifies how the local chro-

matin organization affects the MSD when computed across cell population [21]. Indeed, ran-

dom connectors model molecular binding that can vary from cell-to-cell.

To conclude, the construction of polymer models from 5C data can now be used to simulate

SPTs of any loci of interest and thus to explore the inherent statistical variability found experi-

mentally (Fig 6C). The present results can be used to interpret the variability of the MSD

found in SPTs of live cell imaging, where the same locus in different cells can exhibit a different

anomalous exponent, depending not only on the locus position, but also on the intrinsic vari-

ability due to the random arrangements of binding molecules between cells.

Discussion

We presented here a general method to construct a coarse-grained polymer model from the

5C encounter probability (EP) matrix. This construction preserves the statistical properties of

the 5C data, such as the decay rate of the EP of each monomer. The present approach is not

used to study the configuration space of chromatin geometry, because it is too large to be fully

sampled by elementary polymer models. However, we used this approach to generate statistics

of passage times and radius of gyration, which characterize more accurately chromatin dynam-

ics and are not contained in the 5C data. We built here a coarse-grained polymer model of the

chromatin based on Rouse and we disregarded the repulsion forces between monomers and

possible cross over of bonds that certainly influences the dynamics of the chromatin and statis-

tical results. Future models should clearly examine the effect of repulsion forces on the present

reconstruction, especially to study refined spatial scales below few kbp. We added connectors

between random monomer-pairs to characterize sub-configurations present in 5C data. Con-

nectors are represented by springs between monomer-pairs and account for the chromatin

architectures. By adding connectors between random monomers, we were able to recover

TAD sub-regions. By randomizing connectors positions, we could reproduce the inherent var-

iability in chromatin architecture of nuclei population captured in 5C experiments.

Using our methodology, the characteristics of the reconstructed polymer are derived

directly from the empirical data and do not require any minimization procedure [5]. One of

the key result here is to determine the number of connectors directly from the experimental

EP decay (Fig 2). Connectors can directly be interpreted as molecular interactions mediated by

proteins such as cohesin, condensing and CTCF bindings. For example, cohesin could bind at

random places scattered along the chromatin at 5C data acquisition time. These bounds could

generate TADs, as shown here using simulations (Fig 2). 5C Contact maps represent steady-

state distribution obtained from looping events in large ensemble of millions of cells, where
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TAD structures appears. The present approach differs from classical reconstruction methods,

where 3D structures of a genome are inferred from 5C contact frequency data [34–37]. Previ-

ous models explored the effect of connectors between regions of the chromatin [18, 38] and

examined the consequences on the EP-decay rate, but the positions and the number of these

connectors were not derived from data. Here, we use connectors to resolve a reverse engineer-

ing problem, which is to recover the degree of connectivity from the EP-decay rate (Fig 2). The

relation between the mean number of connectors and the decay exponent β of the EP (Eq 2) is

found using simulations in section Encounter probability in the random loop polymer model.

The decay exponent of the EP characterizes the polymer scaling statistics [38] and for this rea-

son, the present model extends the key switch-and-binders model developed in [38].

It was surprising to find that a TAD subregion could influence the encounter distribution

between monomers located in different TADs (Fig 5). Indeed, the distribution of looping time

in free space depends only on the distance between monomers, while in confined domain, the

nuclear boundary has an effect [30, 32, 39]. We found here that this modulation of loop regula-

tion is due to long-range inter-TAD interactions, that are present in the 5C data and accounted

for here in the construction of the polymer model. Indeed, we reported (SI) significant inter-

TAD interactions between three monomer pairs: 86–234, 86–260, 24–285, where spring con-

stants, representing long-range interactions are at least twice larger than other interactions.

The threshold procedure described in Material and Methods (Eq 11) disregards the peaks of

the 5C data for which the EP falls below the nearest-neighbor threshold Tth. The peaks in the

5C below Tth were ignored because we interpret them as transient events, or a statistic that was

not shared by the majority of the chromatin events or it could simply be due to some random

fluctuations in the data. Long-range stable interactions have also been found in other mamma-

lian chromosomes [4].

Finally, the present polymer reconstruction allows probing the dynamics of single particle

trajectories (SPTs). We use our reconstructed polymer model to explore transient properties

and the encounter time distribution between any two sites. Additionally, we simulated single

particle trajectories from a reconstructed polymer model (Fig 4) and estimated the anomalous

exponents, following the routine procedure in experimental SPTs. The present analysis reveals

that the variability of the anomalous exponent of a given loci is due to the heterogeneity of the

local polymer configurations constructed from the 5C data. This heterogeneity is simulated

here as the random cross-links between monomer pairs. Indeed, for a Rouse polymer or any

uniformly connected polymers, the anomalous exponent is constant [30, 40, 41].

We suggest that the inherent fluctuations of the chromatin interactions can be due to the

random positions of binding molecules. Indeed, even for a fixed number of connectors, there

still remains an intrinsic variability of monomer binding positions, leading to the same EP

decay rate. This structural heterogeneity originating from connector positions certainly influ-

ences the anomalous exponents and can be used to re-interpret experimental SPTs [19, 21, 42,

43]. The present method and algorithms are generic and can be used to reconstruct a polymer

model at a given scale (number of monomers and number of bps coarse-grained in a mono-

mer) in a limit of few Mbp. Analyzing chromatin condensation and its transient properties

can now integrate chromosomal capture data and SPTs statistics.

Materials and methods

Presentation of a generalized Rouse polymer model with long and short-

range connections

The Rouse model [10] describes a polymer as a collection of beads Rn(n = 1. . .N) linearly con-

nected by harmonic springs and driven by Brownian motion. The energy of the polymer is
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given by [10]

�RouseðR1; ‥;RNÞ ¼
1

2

XN� 1

j¼1

kðRj � Rjþ1Þ
2
; ð6Þ

where k ¼
3kBT
gb2 and b is the standard deviation of the distance between adjacent monomers, γ

is the friction coefficient, kB the Boltzmann coefficient, and T the temperature.

To account for a sub-chromatin region CN , characterized by a higher EP than the rest, we

will add connectors between monomer-pairs chosen randomly (with uniform distribution)

inside this subregion such that an additional potential

�RandðR1;‥;RNÞ ¼
1

2

X

j;k2CN

kðRj � RkÞ
2
; ð7Þ

is added to ϕRouse, where CN is the ensemble of indices defining the sub-region. The number of

connectors is a free parameter, that will be determined from experimental 5C data.

In addition, to account for consistent long-range interactions, reflected by peaks in EP

matrix (Fig 1C), we will fix connectors between monomer-pairs by adding a spring constant

κm, n between monomer m and n, so that the associated energy related to the peak interactions

is described by

�PeaksðR1; . . . ;RNÞ ¼
1

2

X

n;m2SMax

kn;mðRn � RmÞ
2
: ð8Þ

We will discuss below how the spring constant κm, n is computed from empirical data. In

summary, the total energy of a polymer containing random connectors and prescribed peaks,

is the sum of three energies Eqs 6, 7 and 8:

FðR1;‥;RNÞ ¼ �RandðR1; ‥;RNÞ þ �PeaksðR1; . . . ;RNÞ þ �RouseðR1;‥;RNÞ ð9Þ

and the stochastic equation of motion for n = 1, ‥, N is

dRn

dt
¼ � rRn

FðR1;‥;RNÞ þ
ffiffiffiffiffiffi
2D
p don

dt
; ð10Þ

where D ¼ kBT
g

is the diffusion constant, γ is the friction coefficient, and ωn are independent

3-dimensional Gaussian noise with mean 0 and standard deviation 1.

Polymer parameter calibration from 5C data

To account for the 5C-data, comprised of a subsection of the X-chromosome from female

mice embryonic stem cells reported in [3], showing TAD D and E as two diagonal blocks (Fig

1A), we use the coarse-graining procedure of [5], with a polymer of length N = 307. Each

monomer represents a genomic segment of 3kbp and is connected to its 2 nearest neighbors by

a harmonic spring (see subsection above). TAD D (resp. E) is represented by the range of

monomers from 1 to ND = 106 (resp. 107 to 307), and NE = 201 for TAD E.

To reproduce the empirical EP extracted from data (see formula 1), we connected non-

nearest neighbor pairs of monomers chosen randomly with uniform probability 1

N1
(resp. 1

N2
))

where N1 = (ND − 2) (ND − 1)/2 (resp. N2 = (NE − 2) (NE − 1)/2). The number of connectors in

each TAD is a percentage ξ of the total possible number of non nearest neighbor pairs, for

TAD D (resp. E), we have CD ¼ xD
N1

100
(resp. E CE ¼ xE

N2

100
) and ξD, ξE 2 [0, 100], which will be

Polymer models and stochastic simulations constructed from Chromosomal Capture data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005469 April 3, 2017 15 / 20

https://doi.org/10.1371/journal.pcbi.1005469


extracted from data. Random connectors were not added between monomers belonging to dif-

ferent TADs.

The procedure of adding random loops to a Rouse polymer is implemented using the

energy of random loops, as described in the previous subsection. Finally, 24 connectors were

added (SI) in all polymers, corresponding to the selected peaks present in the EP matrix,

obtained in the following procedure: we located the positions of peaks that form a subset SMax

of the ensemble of the off-diagonal local maxima in the EP-matrix, such that their EP is higher

than a threshold Tth. In practice, we assumed that the encounter probability between neighbor-

ing monomers is almost not affected by the global chromatin structure. Therefore, any EP

value in the matrix Mi, j above the threshold Tth (equals to the the EP of the nearest neighbor

monomers) is considered to be a stable loop. The threshold Tth is defined as follows:

Tth ¼

P
iMii� 1 þMiiþ1P

i;jMij
: ð11Þ

In a second step, we determine the spring constants κm, n between monomer m and n in the

ensemble SMax from the empirical EP Pm, n at each peak position. We recall that for a Rouse

chain the joint probability density function of beads Rm and Rn is given by [10, p.15]

FðRm;Rn;Dm;nÞ ¼
3

2pb2Dm;n

 !3=2

exp �
3ðRm � RnÞ

2
Þ

2b2Dm;n

 !

ð12Þ

where Δm, n = |m − n|. We assume that the encounter probability between neighboring mono-

mers is not affected by global polymer structure, thus for the nearest neighbors Δm, n = 1 the

EP occurs at small distances such that the exponential term is almost 1, that is

Pm;n ¼
3

2pb2

� �3=2

�
km;mþ1

2p

� �3=2

; ð13Þ

We approximate the chromatin structure as a polymer chain with a variance b2 between

adjacent monomers. Thus, the constant �b is estimated as the mean EP over the sub- and super-

diagonals:

3

2p�b2

� �3=2

�
X

i

ðPii� 1 þ Piiþ1Þ ¼

P
iMii� 1 þMiiþ1P

i;jMij
¼ Tth ð14Þ

To account for long-range interactions, we applied formula 13 to estimate the effective

spring constant from the empirical EP ~P, so that

km;n ¼ 2p~P2=3
m;n: ð15Þ

Finally, the energy related to peak interactions is described by

�PeaksðR1; . . . ;RNÞ ¼
1

2

X

n;m2SMax

kn;mðRn � RmÞ
2
: ð16Þ

Numerical simulations of the reconstructed polymer model

Using the reconstruction method described in the two previous subsections, we generate poly-

mer realizations, each differs in the position of random connectors inside a TAD. To generate

statistics from the EP matrix, we started from an initial random walk configuration and
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simulated the polymer until its equilibrium after a relaxation time τR. The time τR is deter-

mined for each realization from the formula τR = 1/(κminλ1), where κmin is the minimal posi-

tive spring constant, and λ1 is the smallest non-vanishing eigenvalue of the polymer’s

connectivity matrix [44], which we computed numerically (in practice it is of the order of

thousands of simulation steps with Δt = 0.01s).
For the numerical simulations, we divide Eq 10 by

ffiffiffiffi
D
p

and the spring constants are scaled

by the friction coefficient such that k ¼
dkBT
gb2 ¼

dD
b2 , in dimension d = 3. The encounter fre-

quency matrix of the 307 monomers is computed at time τR, where two monomers are consid-

ered to have encountered if their distance is less than �. The time step for all simulations is

Δt = 10−2 s. The value of the parameter b is computed using formula 14. Using the b value in

the relation κ = 3kBT/b2 [10], we computed the spring constant for random connectors and

the linear backbone of the polymer. The spring constants for persistent long-range connectors

were estimated using Eq 15 and are summarized in the table in S1 Text, other simulation

parameters are summarized in Table 1.

Supporting information

S1 Text. Supplementary information. This supplementary information contains three sec-

tions. In the first section, we summarize in a table the spring constants associated to long-

range connections used in Figs 3–6 of the main text. In the second section, we present the pro-

cedure for comparing the experimental encounter probability (EP) matrix with simulations. In

the third section, we discuss the distribution of anomalous exponents and the Mean-Square-

Displacement (MSD) computed over the simulated single particle trajectories (SPTs). These

trajectories are generated by the polymer model reconstructed from the 5C data. This part

links chromosomal capture data to SPTs.

(PDF)

S1 Fig. Simulations and experimental 5C encounter matrices. A. Three-dimensional repre-

sentation of the empirical encounter probability matrix B. Three-dimensional representation

of the simulation encounter probability matrix for polymer with persistent long-range and

random connectors. C. Cumulative distribution function of monomer encounters for a poly-

mer model with only persistent long-range connectors, simulations (blue) vs. experimental

(orange) data. The Kolomogorov-Smirnov distance is Dmax = 0.15. D. Cumulative distribution

function of monomer encounter for a polymer model with persistent long-range and random

connectors, simulations (blue) vs. experimental (orange) data. The Kolmogorov-Smirnov dis-

tance is Dmax = 0.06.

(EPS)

Table 1. Values of simulation parameters.

Parameter Value Description

d 3 Dimension

b 0.6 [μm] STD of distance between adjacent monomers

D 4 × 10−2 [μm2/s] Monomer diffusion coefficient [45]

� 0.03 [μm] Encounter distance

γ 3.1 × 10−5 Ns/m Friction coefficient [45]

κ 3 × 10−5 N/m Spring constant

Δt 10−2 s Time step

https://doi.org/10.1371/journal.pcbi.1005469.t001
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S2 Fig. MSD and anomalous exponent of polymer realizations. A. Distribution of the anom-

alous exponent for 3 polymer realizations (left column). The MSD curves for each realization

is shown in the right column. MSD curves are classified into 3 classes: low (blue), medium

(green) and high (red) based on the MSD value at time 35 sec. B. Distribution of anomalous

exponent (right column) for TAD D, when TAD E is removed. The distribution in each class

is given by low (blue, 85%) medium (green, 12% of curves) and high (red, 1% of curves).

(EPS)
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