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A B S T R A C T   

Wire arc additive manufacturing (WAAM) is being extensively used in various industrial fields. In 
WAAM, if a bead is deposited without considering the central angle, its shape may collapse with 
increasing number of layers. To address this problem, a new method for optimizing the bead 
geometry using a support vector machine (SVM) classifier was established in this study. The 
ranges of the optimal deposition conditions were determined using the SVM classifier and verified 
by experiments. Geometric data of deposited beads were extracted using a laser profiler, and an 
SVM binary classifier was used to predict suitable ranges of the deposition conditions. Data were 
extracted through 20 single-layer basic experiments, classification was performed based on 4◦, 
and the appropriateness of SVM classification was found through 8 single-layer and 3 multi-layer 
verification experiments. 

The results showed that the SVM classifier successfully selected the ranges of the optimal 
deposition conditions. Verification experiments revealed that the results in all cases were 
appropriately classified based on the boundary of the classification line. Moreover, the SVM 
classifier was efficient even when a small amount of input data was available. The contribution of 
this study is that the developed method can help build desired bead geometries in scenarios where 
deposition is required in the WAAM process, such as re-manufacturing. Thus, this method can be 
used in real-world industrial applications through further research on the bead shape with multi- 
layer deposition.   

1. Introduction 

Wire arc additive manufacturing (WAAM) is a type of direct energy deposition process for fabricating fully dense large three- 
dimensional (3D) near net shape metal parts, and it offers multiple advantages, such as high deposition rate and low 
manufacturing cost [1]. Therefore, owing to its economic benefits, WAAM has received considerable interest in several fields related to 
large-scale industrial production, particularly in the aerospace industry. Common arc welding technologies include gas metal arc 
welding (GMAW), gas tungsten arc welding (GTAW), and plasma arc welding (PAW) [2]. Fig. 1 shows the schematics of the GMAW, 
GTAW and PAW processes. 

GMAW is a welding process where external shielding gas and consumable wires are injected. It is widely used owing to its high 
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productivity and reliability. Cold metal transfer (CMT) is the most commonly used process in WAAM by GMAW and is a modified short- 
arc method because of its low heat input and high deposition rate [3] GTAW can produce high-quality welds using a separately fed wire 
with a nonconsumable tungsten electrode without spatter or slag. The PAW process is similar to that of GTAW, except that the PAW arc 
is squeezed through a torch nozzle [4]. Several studies have focused on the WAAM process. Hwang et al. [5] investigated the effects of 
the pressure rolling of wire arc additively manufactured IN625-SS308L bimetallic structure. Ren et al. [6] proposed a novel WAAM 
process to produce porous metal. The novelty is to convert harmful welding pore defects into a beneficial structure of porous metal, and 
then the parts can be additive manufactured layer by layer. Vora et al. [7] performed the GMAW based WAAM process for fabricating a 
multi-structure at optimized process parameters on SS316L using metal wire of SS316L. Gürol et al. [8] performed a comparative study 
on the stainless steel 316 parts manufactured by WAAM and sand casting to reveal the microstructural, mechanical, wear, and 
corrosion behaviors. Chen et al. [9] studied the effect of equivalent heat input on WAAM aluminum-silicon alloy. The refinement of 
microstructure was easily obtained by using the smaller current and voltage. Vora et al. [10] optimized the bead morphology for 
GMAW-based WAAM of 2.25 Cr-1.0 Mo steel using metal-cored wires. The Box–Behnken design was employed to perform the ex-
periments with the considerations of process variables of wire feed speed, travel speed, and voltage. The bead width and the bead 
height were selected as the response variables. The teaching learning-based optimization algorithm was used for the optimization of 
the response variables. The aforementioned studies reviewed the overall aspects of WAAM research, such as material properties and 
path planning. Recently, with the development of various algorithms, machine learning (ML) has been increasingly applied to all types 
of WAAM, regardless of the material, process, and shape. 

WAAM is also used to repair damaged metal parts. In this process, if the torch angle is adjusted during deposition without 
considering the deposition conditions, the bead shape may collapse. Therefore, when depositing on a damaged part, adjusting the 
angle is necessary. 

This study aimed at minimizing the bead collapse in the WAAM process. To this end, the ranges of the optimal deposition conditions 
were determined using the ML method. 

The bead central angle is typically several degrees off the vertical axis, as shown in Fig. 2. A large inclination angle can decrease the 
geometry accuracy. 

In WAAM, if a bead is deposited without considering the central angle, its shape may collapse with increasing number of layers. A 
large inclination angles of the beads can cause the collapse during multi-layer deposition. To address this problem, a new method for 
optimizing the bead geometry using a support vector machine (SVM) classifier was established in this study. 

In this study, the trends in recent studies focusing on the application of ML to WAAM were reviewed and summarized. Section 2 
discusses the state-of-the-art ML applications in WAAM. Section 3 presents the newly established method for optimizing the quality of 
deposition by ML, which is identified as an area still lacking in research, and describes the WAAM experiments conducted to evaluate 
the developed method. Section 4 presents and discusses the single-layer experimental results. Subsequently, it presents the multi-layer 
deposition experiments and analysis performed under single-layer conditions selected based on a support vector machine (SVM) 
classifier. Finally, Section 5 summarizes the conclusions of the study. 

2. State of the art 

This section discusses the recent research on the application of ML to WAAM. The industrial use of WAAM still faces challenges such 
as low dimensional accuracy and layered morphologies. Resolving these problems and improving the geometric accuracy are 
important for appropriately manufacturing products. In addition, the mechanical properties and defects of products, such as humping, 
pores, and arc instability, need to be improved. 

An artificial neural network (ANN) is an ML algorithm that imitates the principles and structures of a human neural network [11]. 
The inputs are stimulation and signal data, the threshold is a weight, and the output data are the results of the performed computations. 
Various studies have been conducted on the applications of ANNs to WAAM, including bead shape optimization, surface roughness 

Fig. 1. Schematic of different types of arc welding techniques: (a) GMAW, (b) GTAW, and (c) PAW.  
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prediction, path strategy planning, and residual stress and interpass temperature prediction [12–19]. Karmuhilan and Sood [13] used a 
forward and reverse ANN model to predict bead geometry and welding parameters. The results showed that this method can be used to 
predict the process parameters of WAAM. Yaseer and Chen [18] developed random forest (RF) and multi-layer perceptron (MLP) 
models to predict the layer roughness when using a weaving path for WAAM. Nguyen et al. [14] introduced an advanced tool path 
planning strategy to fill the gap in the rib–web WAAM process. Wacker et al. [15] proposed an enhanced ANN model to predict the 
distortion of WAAM products and compared it with a standard ANN model. Xiao et al. [17] reported that standard methods (e.g., ANN 
and regression models) cannot effectively determine the optimal printable area based on a desired bead shape. Thus, a novel ML model 
that achieved a higher accuracy than the regression and ANN models was proposed. Wu et al. [16] analyzed residual stress data of three 
alloys using neural networks and an RF algorithm to predict the hierarchical effects of the influencing factors. Farias et al. [12] 
developed an interpass temperature prediction model for the WAAM process based on an ANN using finite element method (FEM) 
simulation results. Their method combined the advantages of precision and cost reduction of FEM simulations with those of fast and 
adaptive calculation capability of ANNs to achieve a balance between manufacturing productivity and part behavior. Yu et al. [19] 
developed an advanced ANN prediction model for welding reinforcement using backpropagation. The verification showed that the 
developed model accurately predicted welding reinforcement. Studies have also been conducted using deep neural networks, which 
consist of ANNs with two or more hidden layers. He et al. [20] designed a predictive network to estimate the offset of a layer during the 
CMT process. Welding pool images captured under seven different offset conditions were classified with an accuracy of 96.65 %. 

The loss of image space information caused by their structures makes ANNs inefficient when extracting and learning features, 
thereby limiting their accuracy. Convolutional neural networks (CNNs) offer advantages over ANNs for solving complex tasks [21]. 
Therefore, many studies have focused on image processing [22–27]. Lee et al. [25] proposed a novel methodology for detecting weld 

Fig. 2. Schematic of the bead central angle.  

Table 1 
Studies on the use of ANNs and CNNs for WAAM.  

Process Materials ML methods Inputs Outputs Ref. 

GMAW Copper coated 
mildsteel 

ANN Voltage, wire feed rate, welding speed Bead geometry [13] 

GMAW ER70S-6 ANN(RF,MLP) Wire feed speed, travel speed, weaving 
wavelength, weaving amplitude 

Layer roughness [18] 

GMAW ER70S-6 ANN(bayesian) Turning point, configurate junction Path strategy [14] 
GMAW ER70S-6 ANN Amount of beads preheat temp, welding 

speed, wire feed speed, 
Geometry and distortion 
prediction 

[15] 

GMAW AISI420 ANN Arc current, voltage, travel speed Bead geometry [17] 
GMAW IN718 ANN(RF) Arc power, scanning speed, substrate 

thickness and preheat temperature, 
Residual stress, 
delamination 

[16] 

GMAW ER90S–B3 ANN idle time, layer number Interpass temperature [12] 
CMT STS ANN(Back-propagation neural networks) Weld pool images Weld quality [19] 
CMT STS 316L Deep residual network Weld pool images Deposited layer offset [20] 
GTAW IN625 CNN, VGC16, VGC16-PRETR, VGC16- 

PRETR-FINETUNE 
Weld-pool/bead images Detection performance of 

weld-pool/bead 
[25] 

CMT ER70S-6 CNN, GoogLeNet, VGG-16, ResNet, 
EfficientNet 

Robot suspend, normal, humping, 
spattering (image) 

Bead quailty [28] 

GTAW- 
P 

STS304L CNNs Shapes of weld pool Weld pool detect, weld 
penetration predict 

[22] 

GMAW ER316L ResNet-34, VGG-15, AlexNet, deep 
learning 

Welding current Layer width [26] 

GTAW Molybdenum MobileNetV2, DenseNet169, 
ResNet50V2, InceptionResNETV2 

Melt pool images Defect detection [23] 

GTAW STS CNN, RNN 
Transfer learning 

Top-side view images Weld penetration [24]  
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pool and bead defects. Applying a CNN model on data collected using a high-dynamic range camera revealed that its performance was 
improved by image preprocessing. They also compared four types of CNN models, and the non-pretrained VGC16 wt model exhibited 
the best performance, with an accuracy of 0.965 (± 0.013). Xia et al. [28] conducted a study to visually monitor the defects in melt 
pools generated during the WAAM process. Four types of CNNs were used for anomaly detection: GoogLeNet, VGG-16, EfficientNet, 
and ResNet. The extracted images were classified by each network into four categories: humping, sputtering, robot suspended, and 
normal. The classification results showed that all models were highly accurate in classifying weld pool images, with GoogLeNET, 
VGG-16, EfficientNet, and ResNet achieving classification accuracies of 97.25 %, 97.15 %, 97.45 %, 97.62 %, respectively. Therefore, 
ResNet showed the best classification performance on weld pool images. Cheng et al. [22] proposed an innovative method for detecting 
the dynamic development of weld pools during the GTAW process. The CNN learning dataset included images collected using an active 
vision-based sensing system. Further, a model was designed to analyze the penetration state, yielding an accuracy of 97.5 % and a loss 
of 0.054. Wang et al. [26] established a monitoring and control system to improve the stability and accuracy of the WAAM process, and 
the developed closed-loop control algorithm offered a satisfactory forming accuracy by adjusting the weld width and reinforcement 
when fabricating thin-walled parts. Cho et al. [23] presented a real-time anomaly detection method for WAAM. Four CNN-based 
models were trained to detect abnormalities in melt pool image data. The performance of the four models was evaluated in terms 
of their classification accuracies and processing times. For all models, classification accuracies exceeding 95 % and processing times 
between 0.033 and 0.054 s/frame were obtained, indicating successful anomaly detection. Jiao et al. [24] applied a CNN and a residual 
neural network to predict weld penetration based on weld pool and arc top-side images. A passive vision system was used to simul-
taneously capture top- and back-side images. The top-side images were selected as the input data, and the penetration statuses were 
used as the labels. More than 120 experiments were conducted, and 28,494 image pairs were collected as the raw dataset, which was 
divided into validation, training, and testing datasets comprising 22,794, 2849, and 2851 images, respectively. The results showed that 
the ResNet with transfer learning and CNN models achieved welding prediction accuracies of 96.35 % and 92 %, respectively. Table 1 
summarizes the studies on the use of ANN and CNN algorithms for WAAM. 

Owing to the advantages of SVMs for classification, their application to WAAM for weld quality evaluation and defect detection has 
been studied [29–33]. Support vector regression (SVR) is a generalized type of SVM that introduces an insensitivity loss function ε-in 
regression analysis [34]. Some studies have used SVR algorithms to predict process parameters and surface roughness [27,35]. Huang 
et al. [29] used an SVM model for detecting surface defects and classified extracted topography images into normal and defect cat-
egories by converting 3D profiles into two-dimensional (2D) ones. A classification accuracy of 99.8 % was achieved by selecting 
features based on importance. Nalajam and Ramesh [33] compared the performances of SVM and RF classifiers for porosity detection. 
The pixel texture features of each image used in learning were extracted using Gabor filters. The proposed RF and SVM classifier 
models yielded accuracies of 99.49 % and 98.75 %, respectively. Li et al. [31] combined an SVM algorithm and an incremental learning 
model to detect defects, such as pores and humps. The experimental results showed that after training, the reliability of the novel 
system exceeded 90 % and that it was suitable for retraining to include new defects. Moinuddin et al. [32] used decision tree and 
nonlinear SVM classifiers to monitor the weld quality of a semi-automated GMAW process and found that both models appropriately 
classified weld defects. Jimi et al. [30] presented a new method based on a gray-level co-occurrence matrix for processing melt pool 
images. The gas flow rate in the CMT + Pulse (CMT + P) additive manufacturing process was predicted by SVM-cross-validation 
(SVM-CV) classification, with an accuracy of 91 %. Ding et al. [35] proposed a WAAM automated welding bead modeling system. 
The process parameters were predicted from overlapped distances (ODs) and bead heights (BHs) obtained from experiments using an 
SVR algorithm. The mean square errors of the OD and BH were 0.0474 and 0.0068, respectively, indicating high accuracy. In addition, 
this method could effectively reduce material waste and improve production efficiency compared with conventional weld bead 
methods. Xia et al. [27] used ML algorithms—adaptive neuro-fuzzy inference system (ANFIS), extreme learning machine (ELM), and 
SVR—to predict the surface roughness of layers deposited by WAAM. The welding speed, wire feed speed, and overlap ratio were 
selected as the input data, and the surface roughness was selected as the output. The ANFIS model was optimized using a genetic 
algorithm (GA) and particle swarm optimization (PSO). Among these methods, the GA-ANFIS achieved the best performance with an 
R2 value of 0.9351, which was higher than that of the SVR model (0.862). Table 2 summarizes the studies on the use of SVM and SVR 
algorithms for WAAM. 

In addition to the research on ANN, CNN, and SVM algorithms, studies have focused on the use of other types of ML algorithms for 

Table 2 
Studies on the use of SVM and SVR for WAAM.  

Process Materials ML methods Inputs Outputs Ref. 

CMT AL5087 filler SVM Topography image Defect detection [29] 
CMT AA4043 SVM, RF, Microstructural images Porosity detection [33] 
CMT ER706-S SVM Current, voltage Defect detection [31] 
GMAW ER70S-6 SVM, 

Decision tree 
approach 

Wire feed rate, stick out distance, travel speed, gas 
flow rate 

Weld quality [32] 

CMT +
Pulse 

HCr20Ni10Mn7Mo SVM-CV Weld pool images Gas flow status [30] 

CMT-P AISI4043 SVR OD(Overlap distance), BH(Bead height) WFS(mm/min), TS(mm/min), 
IPT 

[35] 

GMAW ER70S-6 ANFIS, ELM, SVR Welding speed, WFS, overlap ratio Surface roughness [27]  
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WAAM. Reisch et al. [36] investigated anomaly detection in a multivariate time series using long short-term memory (LSTM), 
one-dimensional convolutional (Conv1D), and autoencoder learning models, which were adopted to avoid data labeling. To emphasize 
the modular concept, each model was used for current and voltage prediction and video evaluation. The proposed approach detected 
defects such as oxidation, polluted surfaces, and shape deviations, offering good performance using all three models. Panda et al. [37] 
predicted bead dimensions using various algorithms such as gene expression programming (GEP) and multi-gene genetic programming 
(MGGP). The peak current, travel speed, and wire feed speed were used as input parameters. The 2D and 3D geometry analyses 
revealed that the peak current significantly affected the BH and width. Reimann et al. [38] proposed a novel regression equation to 
predict t8/5 cooling times and mechanical properties, such as hardness, tensile strength, yield strength, and elongation at break. The 
proposed equation achieved a high prediction accuracy, with deviations between the predicted and measured hardness, tensile 
strength, yield strength, and elongation at break values of only 1.2 %, 1.1 %, 0.7 %, and 2.6 %, respectively. Dharmawan et al. [39] 
proposed an integrated learning-correction framework based on model-based reinforcement learning to control multi-layer multi-bead 
deposition. The experimental results revealed that the proposed learning framework improved the surface finishing and closeness to a 
near net shape in the WAAM process. Lee [40] proposed a parameter optimization model using Gaussian process regression (GPR). The 
wire feed rate, travel speed, and interpass time output values were optimized to improve the accuracy of the deposited shape and 
productivity. The deposition quality was subsequently analyzed in terms of the effective area, height difference, and deposition angle, 
which were predicted with errors of only 4.2 %, 4.3 %, and 0.1 %, respectively, compared to the experimental values. Barrionuevo 
et al. [41] compared the wall widths for plasma WAAM predicted using various regression ML methods. The importance of hyper-
parameter tuning was demonstrated by comparing the prediction results obtained using the lazypredict library and traditional al-
gorithms. The latter included MLP, longitudinal SVR (LSVR), extreme gradient boosting regression (XGBR), RF regression (RFR), 
genetic programming (GP), GBR, adaptive boosting (AdaBoost), and decision tree regression (DTR). Thompson Martínez et al. [42] 
combined two ML techniques to predict weld bead geometry. First, weld bead dimensions—width, depth, and height—were obtained 
using a CNN-based algorithm. Subsequently, regression algorithms with good predictive performance were selected. The wire feed 
speed, voltage, welding velocity, un-melted wire length, and volume were used as the input. The proposed framework showed high 
potential for predicting and controlling the GMAW process. Oh et al. [43] predicted the deposition bead geometry in WAAM using 
machine learning. Le et al. [44] developed a robust surrogate model for predicting the temperature history in WAAM based on the 
combination of machining learning and finite element simulation. The model was built to predict the temperature history in the WAAM 
of single weld tracks. Sharma et al. [45] forecasted the process parameters using machine learning techniques for WAAM process. The 
study investigated the forward and backward correlation of data predictions of respective output and input from a machine learning 
perspective. 

Table 3 summarizes the aforementioned studies. 
While ANN and CNN consist of input, hidden, and output layers, SVM is structured around support vectors to define decision 

boundaries. ANN and CNN, leveraging backpropagation, exhibit robust performance on extensive datasets, albeit with potentially 
extended training times. In contrast, SVM operates effectively even on smaller datasets, employing support vectors to determine 
decision boundaries. 

These differences underscore the suitability of each model for specific purposes and datasets, emphasizing the critical importance of 
informed model selection in research and applications. 

Achieving an accurate bead geometry is important for meeting production requirements. In industrial fields where WAAM is used, 
deposition may be performed by adjusting the torch angle. When multiple layers are deposited, the bead shape may collapse as the 
deposition progresses. 

Therefore, this study developed a method for optimizing the bead central angle by applying ML to the WAAM process. Geometric 
data of deposited beads were extracted using a laser profiler, and an effective SVM binary classifier was selected as the ML model for 
optimizing the bead central angle and predicting suitable ranges of the deposition conditions. 

wire length, and volume were used as input. The proposed framework has a high potential for predicting and controlling the GMAW 

Table 3 
Studies on the use of various ML methods for WAAM.  

Process Materials ML methods Inputs Outputs Ref. 

GMAW AISI12 LSTM, Conv1d,Autoencoder Current, voltage Defect detection [36] 
GTAW SA06 Gep, m-ggpg Peak current, wire feed speed, and 

travel speed 
Bead geometry [37] 

GMAW ER70S-6 The regression equations t8/5 cooling time and hardness, 
tensile strength, yield strength and 
elongation 

Mechanical properties 
based on different cooling 
times 

[38] 

GMAW ERCuNiAl Reinforcement Learning Torch speed(mm/s), wire feed rate 
(m/min) 

Surface finish, bead shape [39] 

CMT M-316L GPR Wire feed Rate(m/min), Travel 
speed(m/min) Interpass Time 

Process parameters [40] 

PAW Ti–6Al–4V MLP,LSVR, XGBR, 
RFR,GPs,GBR, AdaBoost,DTR 

Current, voltage, plasma gas flow 
rate 

Layer geometry [41] 

GMAW ER770S Lasso regression, Ridge regression, ElasticNet regression, 
Least Angle Regression (LARS), Bayesian regression, SVM 
polynomial,SVM-RBF 

Welding images Bead geometry prediction [42]  
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process. Table 3 summarizes the aforementioned studies. 
Bead geometry accuracy is important for meeting production requirements. In industrial fields where WAAM is used, deposition 

may be performed by adjusting the torch angle. When multiple layers are deposited, the shape of the bead may collapse as the 
deposition progresses. 

Therefore, this study proposes a method for optimizing the bead central angle by applying ML to the WAAM process. The geometric 
data of the deposited beads is extracted using a laser profiler and an effective SVM binary classifier is selected as the ML model for 
optimizing the center angle of the beads and predicting a suitable range of deposition conditions. 

3. Materials and methods 

3.1. Methods 

ML can be classified into three categories: supervised, unsupervised, and reinforced learning. Supervised learning predicts results 
after learning based on labeled data. Unsupervised learning identifies hidden structures and features in unlabeled data. Reinforcement 
learning optimizes decision-making via feedback. Classification is a type of supervised learning that identifies the relationships be-
tween categories of raw data and determines the category of a new data point. Classification algorithms include K-nearest neighbor 
(KNN), decision tree, naive Bayes, and SVM. KNN determines the label of a data point by finding data close to this point among other 
data with various labels. A decision tree is a combination of predictable rules that represent patterns existing in data by data analysis. 
The naive Bayes algorithm uses probabilities to learn about events that have already occurred and predict new events. SVMs use 
decision boundaries to identify boundaries that classify two groups and offer excellent performance for clearly classifiable data groups. 
The principle of an SVM is as follows. A dataset is classified by selecting an appropriate plane. The SVM model selects a suitable 
hyperplane in a high-dimensional space for classifying input data. This hyperplane creates the maximum margin between the classes in 
the input data, representing the longest distance between the data points. The margin is the distance between the classification 
interface and the minus and plus planes dividing the classes. The width of the margin is 2

‖w‖
, where w is the vector perpendicular to the 

classification interface. When the margin is maximum, w is minimum and the SVM is optimized. The advantage of SVM models is that 
they can be constructed by regression or classification using a relatively small amount of data. Fig. 3 shows the functional diagram of 
an SVM. 

3.2. Experimental setup 

A 6-axis robot arm (IRB 6700 of ABB Ltd., Zurich, Switzerland) was used to deposit ER308L wires. A metal inert gas welding 
machine (TPS 500i of Fornius CO., Ltd., Pettenbach, Austria) was used to control the welding process. The shielding gas and wire were 
supplied by the welding machine through a welding torch. A 3D line laser scanner (Keyence GmbH., Osaka, Japan) was used to 
measure the bead widths and bead heights. Fig. 4 shows the experimental setup. 

3.3. Materials 

Stainless-steel AISI304 was used as the substrate (100 mm × 100 mm × 25 mm) in the experiments. Metal wire ER308L with a 
diameter of 1.2 mm was used as the deposition material. The chemical compositions of the substrate and metal wire are summarized in 
Table 4. 

Fig. 3. Functional diagram of an SVM [46].  
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3.4. Procedure 

In this study, the travel speed and torch angle parameters were adjusted to select appropriate ranges for depositing beads with 
suitable central angles. The input process parameters are listed in Table 5. The deposition was performed with a single path of 50 mm, 
and the cross-sectional shapes of the beads were measured at 1.5 mm intervals using a laser profiler from 10 mm to 40 mm after 
deposition. The average value of 21 data per experiment was selected as the central angle of a bead based on the deposition conditions; 
subsequently, an SVM classification model was generated, and the optimal deposition parameters were selected. The bead central 
angle is the inclination angle from the vertical direction of the deposited shape. Fig. 5 shows schematics of the experiments and the 
measurements of the widths and heights of the specimens. 

4. Results and discussion 

4.1. Data collection and processing 

A total of 20 experiments were conducted under different deposition conditions. Data were classified as good when the measured 
bead central angle was smaller than 4◦ and as bad otherwise. The central angle and class selection results are summarized in Table 6. 

The experimental results indicate that for a given combination of the wire feed speed (WFS) and the torch angle, a high travel speed 
implies a strong effect of the torch angle on the bead central angle. Fig. 6 shows the classification of the results according to the 
deposition conditions. 

4.2. Verification experiments 

Based on the experiments and analysis of the results, the deposition conditions at bead central angles below 4◦ were collected. 
Subsequently, experiments were conducted to verify the classification accuracy. The verification experiments were repeated eight 
times, randomly selecting deposition conditions that did not overlap with those used in the experiments. In addition, 21 central angle 
data were extracted for each experimental case to obtain the average value. The results of the eight repetition experiments are 
summarized in Table 7. 

The experimental results in both the good and bad regions show that the upper and lower bead central angles are smaller and larger 
than 4◦, respectively, based on the boundary. This suggests that a simple binary classification using the SVM model is effective even 
when the number of samples is small. 

Fig. 4. Experimental setup.  

Table 4 
Chemical composition of substrate and filler (wt%).  

Material C Mn Cr Ni S P Cu Nb Ti V Fe 

AISI 304 0.080 2.000 19.50 10.50 0.030 0.007 – – – – Bal. 
ER308L 0.030 2.500 25.00 14.00 0.030 0.030 0.75 – – – Bal.  

D.-O. Kim et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e23372

8

4.3. Multi-layer experiments using predicted conditions 

Analyzing multi-layer deposition is necessary for obtaining a desired deposition shape. Therefore, based on the verification results, 
as presented in Section 4.2, process parameters were selected to optimize the central angle of a single-layer bead classified using the 
SVM. Fig. 7 shows the selected multi-layer deposition conditions used in the experiments. The process parameters are listed in Table 8. 
The multi-layer deposition was conducted in one direction. The direction strategy is shown in Fig. 8. 

Table 5 
Process parameter ranges used in experiments.  

Process parameter Variables 

Current (A) 130 
Voltage (V) 14.1 
Travel speed (mm/s) 4, 5, 6, 7 
Wire feed speed (m/min) 4.8 
Torch angle (◦) 50, 60, 70, 80, 90 
Argon gas flow (L/min) 25 
Deposition length (mm) 50  

Fig. 5. Schematics of the (a) experiments and (b) measurements of the widths and heights of the 3D profiles.  

Table 6 
Experiment design and results.  

Case Torch angle(degree) Travel speed(mm/s) Central angle(◦) Class 

1 50 4 11.57 Bad 
2 50 5 12.61 Bad 
3 50 6 16.57 Bad 
4 50 7 19.54 Bad 
5 60 4 7.98 Bad 
6 60 5 6.31 Bad 
7 60 6 10.84 Bad 
8 60 7 8.43 Bad 
9 70 4 3.27 Good 
10 70 5 5.68 Bad 
11 70 6 6.54 Bad 
12 70 7 4.56 Bad 
13 80 4 3.41 Good 
14 80 5 2.85 Good 
15 80 6 5.68 Bad 
16 80 7 4.12 Bad 
17 90 4 3.14 Good 
18 90 5 3.58 Good 
19 90 6 1.32 Good 
20 90 7 0.8 Good  
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The multi-layer deposition experimental results show similar trends as those of single-layer deposition; particularly, a high travel 
speed of the torch has a significant effect of the bead central angle. Table 9 summarizes the bead central angle results according to the 
conditions in each experiment. Fig. 9 shows the appearance of each five-layer deposition result obtained in the experiments. The travel 
speed is lowered as the torch angle increases, and a bead geometry close to the vertical may be produced. 

However, the bead width or BH according to the deposition rate is not considered. If the torch angle and the travel speed are well 
distributed, the desired shape can be obtained. 

5. Conclusion 

In this study, the trends in recent research on the application of different ML methods to WAAM were examined. New methods 
using various ML models have been proposed to address the limitations and problems in the WAAM process. 

In addition, inspired by previous studies, a new method for optimizing the bead central angle was established. The ranges of the 
optimal deposition conditions were determined by classifying the bead central angle according to the travel speed and the torch angle 
using an SVM algorithm. Through 20 experiments, bead center angle data according to deposition parameters were collected, and 
binary classification of good and bad data was performed based on 4◦. Subsequently, it was verified that the classification was per-
formed correctly based on the generated binary line. The results of 8 single-layer experiments showed that all classifications were 
performed correctly based on the boundary line. 

Finally, three multi-layer deposition verification experiments were performed. It can be seen it is correctly classified according to 
the criteria of the binary line according to the criteria of the binary line. The conclusions are summarized as follows.  

1) To investigate the suitability of the developed method, experiments were conducted under 20 different deposition conditions. The 
ranges of the deposition conditions were obtained using the SVM classifier after classifying the results according to the bead central 
angle.  

2) For verification, experiments were conducted under eight randomly selected deposition conditions. The results showed that all 
experimental values were correctly classified based on the boundary line. This indicates that the SVM classifier is effective, even 
when a small amount of data is available. 

Fig. 6. Results of classification by the bead central angle.  

Table 7 
Results of verification experiment.  

Case Torch angle(degree) Travel speed(mm/s) Central angle(◦) 

1 75 6 8.42 
2 80 5.5 5.34 
3 85 7 3.91 
4 90 4.5 1.47 
5 55 6 13.48 
6 65 5.5 7.87 
7 70 6.5 6.13 
8 80 4.5 3.4  
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Fig. 7. Selected multi-layer deposition conditions.  

Table 8 
Process parameter ranges used in multi-layer experiments.  

Process parameter variables 

Current (A) 130 
Voltage (V) 14.1 
Travel speed (mm/s) 4.5, 7 
Wire feed speed (m/min) 4.8 
Torch angle (◦) 55, 90 
Argon gas flow (L/min) 25 
Deposition length (mm) 50 
Idle time (min) 10 
Layer number (n) 5 
Contact tip with distance (mm) 15  

Fig. 8. Direction strategy of the multi-layer deposition.  
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3) Multi-layer deposition experiments were performed using the process parameters selected by the SVM classification. The experi-
mental results showed that the performance of the SVM classifier according to the angle and travel speed of the torch was suitable 
for both single-layer and multi-layer deposition. 

Geometry data extracted from single-layer deposition by WAAM were selected to optimize the bead central angle using the SVM, 
and the results were successfully used for multi-layer deposition. However, the width and height of the bead shape according to the 
deposition conditions were not considered. Thus, the applicability of the established method to industrial applications is limited. To 
apply the method proposed in this study to the actual industry, multivariate analysis should be performed in consideration of current, 
voltage, process method, etc. A clustering method that groups similar results from multiple variables or a dimension reduction method 
that can effectively represent a given set of variables could be used. Therefore, further research on the bead central angle is required to 
improve the geometrical accuracy of the products manufactured by WAAM. Future work will focus on studying the bead central angle 
considering various deposition conditions. 
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Table 9 
Results of multi-layer central angle.  

Case Torch angle(degree) Travel speed(mm/s) Central angle(◦) Results 

a 55 7 17.61 Bad 
b 55 4.5 6.86 Bad 
c 90 4.5 1.72 Good  

Fig. 9. Results of the multi-layer deposition experiments.  
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Nomenclature 

LIST OF ACRONYMS 

Abbreviation Description 
AM Additive manufacturing 
PBF Powder bed fusion 
DED Directed energy deposition 
WAAM Wire arc additive manufacturing 
MIG Metal inert gas 
CMT Cold metal transfer 
ML Machine learning 
SVM Support vector machine 
ANN Artificial neural network 
CNN Convolutional neural network 
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