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A B S T R A C T

In resting state fMRI, it is necessary to remove signal variance associated with noise sources, leaving cleaned
fMRI time-series that more accurately reflect the underlying intrinsic brain fluctuations of interest. This is
commonly achieved through nuisance regression, in which the fit is calculated of a noise model of head motion
and physiological processes to the fMRI data in a General Linear Model, and the “cleaned” residuals of this fit
are used in further analysis. We examine the statistical assumptions and requirements of the General Linear
Model, and whether these are met during nuisance regression of resting state fMRI data. Using toy examples
and real data we show how pre-whitening, temporal filtering and temporal shifting of regressors impact model
fit. Based on our own observations, existing literature, and statistical theory, we make the following
recommendations when employing nuisance regression: pre-whitening should be applied to achieve valid
statistical inference of the noise model fit parameters; temporal filtering should be incorporated into the noise
model to best account for changes in degrees of freedom; temporal shifting of regressors, although merited,
should be achieved via optimisation and validation of a single temporal shift. We encourage all readers to make
simple, practical changes to their fMRI denoising pipeline, and to regularly assess the appropriateness of the
noise model used. By negotiating the potential pitfalls described in this paper, and by clearly reporting the
details of nuisance regression in future manuscripts, we hope that the field will achieve more accurate and
precise noise models for cleaning the resting state fMRI time-series.

1. Introduction

When characterising or quantifying brain activity using fMRI data,
it is essential that we differentiate the true signal of interest from other
noise-related fluctuations. Methods for isolating activation in task-
based fMRI, where an experimental stimulus can be modelled, are well-
developed and validated. However, this differentiation is more challen-
ging in resting state fMRI, where we have no model of the intrinsic
brain activity of interest. Instead, in these experiments we approach
analysis from the other direction: although we cannot model the
activation, we can measure and model numerous noise sources. Any
signal not accounted for by our noise model becomes the de facto
representation of intrinsic brain activity. The method by which we
define and remove noise fluctuations is therefore integral to our
interpretation of resting state fMRI and functional connectivity.

Confounding noise sources include scanner artefacts (e.g., drift), head
motion with related spin history effects, and numerous physiological
factors related to cardiac and respiratory processes (Murphy et al.,
2013). Extensive research has focused on how to measure, model, and
remove noise, as reflected by several of the other articles in this special
issue. There is evidence that current denoising is insufficient, and there
remains a bias in connectivity values due to noise confounds (Liu,
2016; Murphy et al., 2013); the temptation is then expansion of our
noise model to address this systematic bias. However, as the noise
model is expanded, we are more likely to encounter the pitfalls of using
linear regression to accurately denoise data. For example, we have
shown that nuisance regression results in incorrect classification of
intrinsic signal fluctuations in multiple brain networks as “noise”
(Bright and Murphy, 2015). This problem is compounded as the size
of our noise model is increased, resulting in a real concern that our
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efforts to remove confounding noise fluctuations may also result in
unintentional removal of our signal of interest. In this paper, we
highlight some of the potential pitfalls encountered when applying and
interpreting linear models in the context of resting state fMRI. Many
researchers are likely already aware of the issues at hand, however it is
not clear from the literature whether these problems are appropriately
negotiated across the field. We explain the requirements and assump-
tions of the general linear model, and assess whether they are met
during resting state denoising. We show how existing pre-whitening
techniques can be applied to enable valid statistical inference of the
model fit, using real resting state fMRI data to demonstrate the impact
of pre-whitening on the variance removed by both real and simulated
noise models. The temporal properties of individual nuisance regres-
sors, both inherent to the noise source and the result of pre-processing
steps (e.g., inherent spectral properties, temporal filtering, temporal
shifting), can artificially inflate the amount of variance removed during
regression; we characterise these potential confounds and discuss ways
in which they can be taken into account. Finally, we present our
recommendations and highlight areas of future research that we hope
will improve how we, as a field, approach the cleaning and interpreta-
tion of resting state fMRI data.

2. Theory

2.1. The general linear model

The basic form of the general linear model (GLM) is

Y Xβ e= +

where the statistical assumptions and requirements are as follows:

1. The system must be linear
2. X is a design matrix containing linearly independent explanatory

variables
3. Y is (linearly) dependent on the explanatory variables contained in

X through the weights β; these weights are the model parameters.
4. The model is complete, such that the explanatory variables explain

the deterministic variance in Y leaving only residual errors. These
errors should ideally be estimates of e.

5. The true errors, e, are independent and identically distributed (i.i.d.)
and have constant variance (heteroscedasticity). The estimates of e
have similar requirements, although they are not strictly indepen-
dent due to the parameters β.

If inference on the model parameters is desired, there is an
additional requirement:

6. In addition to being i.i.d., the errors must be normally distributed:
e N Σ~ (0, ).

It is typically expected that the error, e N σ I~ (0, )2 , where I is the
identity matrix. In this case, parameter estimation and inference is by
t-tests, and a test of the overall model fit is analytic. However, if the
errors violate the assumptions, statistical inference using the GLM may
not be valid; in the absence of a-priori knowledge of the distribution of
the errors, an alternative non-parametric method may be used at the
cost of some statistical power (Nichols and Holmes, 2002).

2.2. GLM requirements for nuisance regression in resting state fMRI

We have discussed how such statistical inference is necessary to the
systematic assessment and refinement of our noise model in resting
state fMRI, and that it is critical we determine whether the statistical
requirements listed above are met in the context of nuisance regres-
sion.

Typically, the design matrix X is formed from nuisance regressors
reflecting head motion and physiologic noise sources, while the
observations Y are the resting Blood Oxygenation Level Dependent

(BOLD) fMRI time-series data, often with basic pre-processing applied
(e.g., motion correction). The denoised resting state time-series is
defined as the residual of the model fit. In the field of functional brain
connectivity we hypothesize that these time-series contain coherent
signal fluctuations, reflecting coupled neural activity across different
brain regions.

In this context, we encounter several issues affecting the GLM:

• The explanatory variables, which are the nuisance regressors, are
not typically linearly independent. Motion of the head during
scanning may impact all translation and rotation parameters in a
correlated way, and changes in heart rate and arterial blood gases
may also be coupled due to shared physiologic mechanisms.

• The model is not complete: the underlying intrinsic brain fluctua-
tions that are ultimately of interest are not modelled.

• Because the residual errors are the de facto BOLD signal of interest,
we have the axiomatic problem that these “errors” are non-white.

The use of the GLM for nuisance regression in resting state fMRI is
clearly in conflict with the statistical assumptions listed above.

The first concern is that the nuisance regressors in the noise model
are not completely linearly independent and may exhibit shared
variance. However, providing that the nuisance regressors are not
linear combinations of each other, a solution to the GLM can be
obtained. The difficulty will arise later, when signal variance may be
arbitrarily attributed to temporally similar nuisance regressors. Thus,
while the covariance inherent in the explanatory variables does not
preclude the use of the GLM, it makes the relative contribution of
specific nuisance regressors more difficult to interpret (e.g., during
model selection).

However, the incompleteness of our model (and, as a direct
consequence, the non-white properties of the residual errors) directly
calls into question the validity of all inference in the GLM.

2.3. Achieving valid statistical inference via pre-whitening

There exist numerous techniques for addressing the problem of
non-white residuals in the GLM. Because the true autocorrelations of
the residuals are not known, filtering may be employed to shape (“pre-
colour”) the residuals into something that is known (Smith et al.,
2004). Alternatively, pre-whitening estimates the autocorrelation in the
residuals and removes it (Bullmore et al., 1996; Woolrich et al., 2001).
Numerous pre-whitening tools are readily available in the major fMRI
analysis packages, and are typically recommended when using a GLM
to model task-activation fMRI data (Smith et al., 2004).

For example, if assuming the residuals can be characterized by an
auto-regressive AR(p) model, then we must solve the equation

Y X β e= +t t t

where the residuals et are described as an AR(p) process

e Σ γe ε= +t i
p

i t i t=1 −

and ε represents i.i.d. and normally distributed errors.
An algorithmic approach for estimating the unknown model fit

parameters β and the unknown AR(p) time-series parameters γ is as
follows (Bullmore et al., 1996; Cochrane and Orcutt, 1949):

1. Estimate β using ordinary least squares and extract the residuals e.
2. Fit the residuals with an AR(p) model (estimate the γi parameters)
3. Redo the ordinary least squares fitting on a modified model.

The modified model is defined as

Y X β e′ = ′ + ′,

where
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Y Y Σ γY′ = −t t i
p

i t i=1 −

and

X X Σ γX′ = −t t i
p

i t i=1 −

This procedure can be iterated if needed, or adjusted to incorporate
more complex models such as Auto-Regressive Moving Average
(ARMA) or Auto-Regressive Integrated Moving Average (ARIMA)
models.

In denoising resting state fMRI data, our residuals are our signal of
interest; thus in pre-whitening we are effectively modelling the under-
lying intrinsic brain fluctuations as an autocorrelative process. Exactly
how to model these fluctuations is non-trivial. In task-activation fMRI
analysis, the residuals consist of unmodeled physical or physiological
noise sources and are generally considered to be well modelled by an
AR(p) process. It is not clear whether this model would sufficiently
characterise resting state fluctuations, or whether ARMA, ARIMA, or
other models would be required. The order of the autoregressive model
p (the maximum number of lags to consider) may also depend on
scanning parameters. Much of the intrinsic autocorrelation in fMRI
time-series comes from the sluggish haemodynamic response that
produces the BOLD signal following an underlying neuronal event. If
the fMRI sampling frequency is increased (TR is reduced), a greater
number of lags may need to be included in the model (Arbabshirani
et al., 2014).

Thus it is not the aim of this paper to prescribe specific pre-
whitening methods, but rather to demonstrate that some form of pre-
whitening, confirmed to be appropriate for a given study, should be
employed during nuisance regression to enable interpretation and
assessment of the noise model.

2.4. Assessing individual nuisance regressors

After ensuring that the fit statistics estimated in the GLM fit are
valid via pre-whitening, it is important to also consider whether any
other factors, either inherent to the data or created by pre-processing
steps, may create bias in these statistics.

2.4.1. Temporal filtering
A motivating factor for temporal filtering is that it hypothetically

differentiates signal and noise frequency bands. Given that we are
directly modelling multiple noise sources, this is greatly redundant.
There is also evidence that the intrinsic brain fluctuations may be
broadband in nature, extending up to 0.8 Hz (Chen and Glover, 2015;
Lee et al., 2013; Niazy et al., 2011).

If filtering is performed, it must be either

a) applied following GLM fitting
b) applied prior to GLM fitting, and applied identically to both the

noise model and the fMRI data to avoid the re-introduction of
filtered frequencies (Hallquist et al., 2013)

c) applied during GLM fitting, by including additional regressors into
the noise model (e.g., polynomials, sines and cosines, etc)
(Hallquist et al., 2013; Jo et al., 2013).

In addition to the method of applying filtering, it is also critical to
consider how temporal filtering affects the degrees of freedom available
in the data, and how this impacts the statistical tests on GLM fitting
parameters. It is perhaps easiest to consider temporal filtering in
frequency space (the Fourier transform of the time-series). Fig. 1 is a
schematic showing the degrees of freedom available before and after
applying a bandpass filter. In frequency space, the maximum frequency
sampled is the Nyquist frequency, f TR= 1/2max , and the frequency
spacing is the inverse of the total scan duration, Δf t= 1/ max. A bandpass
filter of 0.01–0.2 Hz applied to 5 minutes of data acquired at a TR of
1 s will reduce the degrees of freedom from 150 to ∼57, whereas a

bandpass filter of 0.01–0.1 Hz reduces this even further to 27.
If filtering is applied during the GLM, each new term added to the

noise model removes one degree of freedom, and the statistical tests
would reflect this change in the available data. Concern would only
arise if extensive amounts of additional filtering terms were added to
the model such that any linear combination of them were collinear with
any linear combination of noise regressors, causing the matrix to
become singular. However, if filtering is applied to the data and noise
model before GLM fitting, the correlation statistics will be artificially
inflated (Fig. 2a, b). We refer you to the literature for a thorough
description of how to correct t-statistics and p-values in this scenario
(Davey et al., 2013); note, however, that this type of correction is only
useful in correctly testing the significance of a given nuisance regressor
in the noise model; it does not correct the fMRI variance removed by
that regressor in the GLM.

2.4.2. Temporal shifting
There are numerous instances where we may expect some temporal

lag between a nuisance regressor and the corresponding fluctuations in
fMRI signal. This is particularly true in our modelling of physiological
noise, which may be lagged due to delays in the measurement (e.g.,
end-tidal gas measurements are delayed by slow breathing and
potentially long sample lines) as well as delays inherent to the
physiologic process (e.g., different vascular pathways and properties
may cause brain regions to respond to changes in arterial gases at
different times) (Bright et al., 2009).

It is therefore desirable to optimise any temporal offset between our
nuisance regressors and the fMRI data to achieve the most “accurate”
noise model by allowing the regressor to be shifted forwards and

Fig. 1. Schematic demonstrating how bandpass filtering influences the degrees of
freedom in data of different durations and TRs. The Fourier transform of an fMRI
time-series produces a frequency spectrum in which the maximum frequency is defined
by the Nyquist frequency TR1/2 and the frequency spacing is determined by the total
duration of the scan. The degrees of freedom remaining after applying a bandpass filter is
dependent on the duration of the scan, whereas the proportion of degrees of freedom
remaining in the filtered data relative to the unfiltered data depends on TR.
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backwards in time. One option is to include many of these shifted
variants of the original nuisance regressor in the noise model, remov-
ing any fMRI fluctuations that correspond to any of these temporal lags
(e.g., “multi-lagged” approach presented in (Bianciardi et al., 2009)
uses 8 shifted variants of the original respiratory noise regressor);
however, this potentially reduces the degrees of freedom available in
the data unnecessarily. An alternative two-step option is to identify the
optimal shift in the regressor that results in maximal correlation with
the fMRI data, and then use only that regressor in the model. For
example, using the RIPTiDe technique, 61 temporally shifted variants
of a physiological regressor were tested separately, and the variant with
maximum correlation was identified for every voxel for use in further
analysis (Tong et al., 2011).

The crucial point in both scenarios is that considering shifted
variants is practically guaranteed to increase the variance explained by
the nuisance regressor, even when it reflects a spurious relationship. In
Fig. 2c, d we demonstrate this using randomly generated time-series:
when the time-series are allowed to shift forwards and backwards in
time, the maximal correlation at an “optimal” shift follows a bimodal
rather than normal distribution. The new distribution is clearly biased
towards stronger correlation values. In nuisance regression, this will
equate to artificially “significant” relationships observed between the
regressor and the data when none may exist, and increases in variance
removed from the fMRI data at random.

This issue can be viewed as a multiple comparisons problem: each
variant of the regressor, shifted forwards or backwards in time, results

Fig. 2. Simulated toy examples demonstrating the effect of temporal filtering and temporal shifts on the correlation between randomly generated time-series. a) Ten thousand pairs of
random, normally distributed time-series (15 minutes of data at TR=1 s) were generated and bandpass filtered; the correlation between each time-series pair was calculated, and the
distribution of the measured Pearson correlation coefficient r is plotted. The critical r-value associated with a threshold of p=0.05 is indicated (dashed lines). When the data are filtered,
the normal distribution of r widens, causing a greater number of “false positive” significant correlations greater than this threshold value. b) The percentage of correlation values (out of
10,000) with an absolute value greater than the critical r-value is plotted for each bandpass filter, showing how filtering increases this “False Positive Rate.” Note that while increasing TR
reduces the impact of bandpass filtering on the False Positive Rate, it also reduces the dataset's degrees of freedom for a given length of scan, which is not represented here. c) Using the
unfiltered simulated data, one time-series of each pair was allowed to shift forwards and backwards in time (using the xcorr function in Matlab) and the (absolute) maximum correlation
across the shifts was recorded. Histograms of the resulting maximum correlation values are plotted for different ranges of temporal shift considered (no shift, ± 1TR, ± 2TR, ± 5TR, ±
10TR). As a greater number of temporal shifts is considered, the distribution of the maximum r-value changes from a normal distribution to a bimodal distribution. d) The number of r-
values above the critical r-value was counted and is plotted as a function of maximum temporal shift, showing over a ten-fold increase in the False Positive Rate when 20 shifted variants
of one time-series are considered.
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in another correlation test. The Šidák correction adjusts p-values for
multiple independent tests (Šidák, 1967). Assuming a significance
threshold for correlation, α, the Šidák corrected threshold is

α α= 1 − (1 − )sidak m
1

where m is the number of tests (or number of regressor variants)
considered. For example, in the aforementioned case where 61 variants
of the regressor were considered, the maximal correlation should have
a p-value less than 8.4×10−4 (Z > 3.1) to be deemed statistically
significant at α=0.05, and a p-value less than 1.6×10−4 (Z > 3.6) to be
deemed statistically significant at α=0.01. Note that this correction is
sufficient for normally distributed random time-series, but further
corrections may be needed if testing time-series with autocorrelative
properties (Arbabshirani et al., 2014).

In the case of shifted nuisance regressors, the time-series are not
independent. Thus, the Šidák correction is a conservative approach for
accounting for temporal shifting in a noise model. Alternative methods
for correcting correlation statistics for multiple temporal shifts may be
found in the literature (Shmueli et al., 2007).

Ultimately, temporal shifts are often appropriate, however the
correlation identified at an optimal temporal shift of the nuisance
regressor should exceed a significance threshold that has been properly
corrected for multiple tests. This will be demonstrated using real data
examples in the next sections.

3. Methods

Although the statistical theory described above and the toy exam-
ples in Fig. 2 aptly demonstrate the fundamental statistical concepts
involved in nuisance regression, it is important to assess how these
concepts manifest in real fMRI data. We examine the model fit
parameters of nuisance regression in resting state fMRI data acquired
in a small cohort with fairly typical acquisition parameters. Based on
our observations, we will make recommendations for how the denois-
ing of similar datasets may be best approached.

3.1. Data acquisition

Resting state fMRI data were acquired as part of a prior study
(Bright and Murphy, 2013a). Twelve healthy subjects (aged 32 ± 6
years, 5 female) were scanned using a 3 T GE HDx scanner
(Milwaukee, WI, USA) equipped with an 8-channel receive head coil.
An eyes-open resting state scan lasting 5.5 min was acquired using a
T2

*-weighted gradient-echo echo-planar imaging sequence (TR/
TE=2000/35 ms; FOV=22.4 cm; 35 slices, slice thickness=4 mm;
resolution=3.5×3.5×4.0 mm3, 165 volume acquisitions). The data were
motion corrected, corrected for slice timing differences, and brain
extracted (AFNI, http://afni.nimh.nih.gov/afni (Cox, 1996)). The first
5 volumes, during which steady-state magnetisation was not yet
achieved, were removed.

3.2. True nuisance regressors

Cardiac pulsations were monitored using the scanner finger
plethysmograph; the timing of each pulse was recorded and beat-to-
beat heart rate was calculated. Expired CO2 content was monitored
during scanning via a nasal cannula (AEI Technologies, PA, USA) and
end-tidal CO2 (PETCO2) values were extracted using bespoke software
(MathWorks, Natick, MA, USA). The heart rate and PETCO2 data were
smoothed using a CRF and HRF function, respectively (Chang et al.,
2009) before inclusion in our noise model.

The six head motion regressors derived during motion correction
(x-, y-, z-translations and pitch, roll, yaw rotations) were also included
in our noise model. Combined with the above heart rate and PETCO2

regressors, these are referred to as the “true” nuisance regressors.

3.3. Simulated noise models

To form our null hypothesis, we also analysed two additional noise
models consisting of nuisance regressors that are unrelated to the fMRI
data. First, we considered the nuisance regressors from a different
subject, which may have similar time-series properties but are theore-
tically independent of the fMRI data from a different scan. For
simplicity, in the noise model for subject N, we used the regressors
of subject N+1. Second, we considered phase-randomised versions of
the true nuisance regressors. This procedure was used previously
(Bright and Murphy, 2015) to simulate new regressors with the same
frequency content as the original ones. Note that in both scenarios we
do not enforce orthogonality with the true regressors, and by chance
there may be some similarity between the regressors across subjects or
after phase randomisation.

3.4. Model fitting

The variance associated with the 8-regressor noise model (either
from true regressors, regressors from another subject, or simulated
regressors using phase-randomisation) was removed from the func-
tional fMRI data of each subject using the 3dDeconvolve and
3dREMLfit programmes in AFNI. 3dDeconvolve is a standard GLM
programme, whereas 3dREMLfit uses pre-whitening to account for
serial autocorrelation in the GLM residuals, modelling them as an
ARMA(1,1) process using Restricted Maximum Likelihood (REML). In
all cases, additional parameters were included to detrend the data,
removing baseline values and linear/quadratic trends during the fitting
rather than applying temporal filters prior to fitting. As described
above, this approach was chosen to remove scanner drift without
making assumptions about higher frequency signal contributions, and
it was incorporated into the model to account for the impact on degrees
of freedom.

In the 3dREMLfit results, the residuals were assessed for any
remaining autocorrelation, and the cleaned fMRI time-series were
calculated by subtracting the noise model fit from the original data. In
all results, the R2 of the noise model (not including detrending terms)
was extracted for each voxel, and an uncorrected threshold of p < 0.05
was used to identify voxels where the fit was significant.

3.5. Temporal shifting

To ascertain the benefits and challenges of temporally shifting a
given nuisance regressor, we examined the correlation between the
mean %BOLD grey matter time-series from each dataset (calculated in
(Bright and Murphy, 2013a)) and the associated PETCO2 regressor
across a range of temporal shifts. The PETCO2 regressor was linearly
interpolated to achieve an apparent temporal resolution of 0.2 s and
demeaned; 81 shifted variants of the regressor were extracted, ranging
from −4 s to +12 s in steps of 0.2 s, and the empty time-points were
zero-filled. The correlation value between the fMRI time-series and the
PETCO2 regressor was calculated for all shifted variants.

The same analysis was performed using 10 simulated regressors
(phase-randomised variants of the true PETCO2 regressor).

Lastly, the relationship between fMRI data and the PETCO2

regressor was determined, for the same range of temporal shifts, in a
second dataset that contained 6 consecutive 20-second breath-holds
(acquired during the same study as the resting state data (Bright and
Murphy, 2013a)). By instructing participants to hold their breath, large
increases in PETCO2 levels (i.e., hypercapnia) were induced, and a large
BOLD signal response was evoked.

The optimal temporal shift was identified in all cases. The optimal
shifts were also calculated using the first and second halves of the data
independently, and compared using Pearson's correlation coefficient
for validation.
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4. Results

4.1. Impact of pre-whitening on noise model fit

The results of the fitting procedure without (3dDeconvolve) and with
(3dREMLfit) pre-whitening are summarised in Fig. 3. We observed that the
incorporation of pre-whitening reduced the number of voxels where the
model fit was significant, as well as the median voxelwise R2 for the noise
model, for all noise models examined (paired t-tests, p< 0.05, corrected for
multiple comparisons). However, the size of this effect was dependent on
whether the noise model consisted of true or unrelated nuisance regressors.

When the true noise model was assessed, the percentage of brain
voxels where the model fit was significant was reduced by 9% due to
pre-whitening, whereas it was reduced by 76% and 74% for the
simulated and incorrect subject noise models, respectively (mean
across subjects). The median voxelwise R2, approximately representing
the amount of variance removed by the noise model, was also affected
differently by pre-whitening across the three types of noise models, as
shown in Fig. 3. R2 was reduced by 24%, 45%, and 33% for the true
noise model, simulated noise model, and incorrect subject noise model,
respectively. This observation is consistent with the hypothesis that
pre-whitening will impact true relationships less than it will spurious
relationships between the data and the noise model. However, the
effects we observe cannot be easily interpreted without “ground-truth”
knowledge of the true signal contributions of different noise sources to
voxelwise data.

4.2. Temporal shifting of regressors

The correlation between resting state data and PETCO2 is plotted as
a function of the temporal shift applied to the PETCO2 regressor for
each subject in Fig. 4. The equivalent results for simulated regressors,
which have identical frequency content to the true regressor but which
should be “unrelated” to the data, are also plotted.

The strength of the measured correlation varies substantially across
subjects, and there are several datasets in which the correlation is not
significant for any temporal shift (significance threshold indicated with
shaded grey region). There are also datasets (e.g., Subject 1) in which
the fMRI time-series is more correlated with the simulated regressors
than the true regressor at a given lag. The maximum absolute
correlation is sometimes observed to be negative correlation (e.g.,
Subjects 2 and 4), which is not physiologically expected for the grey
matter average time-series (Bright et al., 2013; Wise et al., 2004).
Finally, the optimal temporal shift for the true PETCO2 regressor varies
greatly across subjects, sometimes not demonstrating a robust max-
imum within the temporal bounds considered (e.g., Subjects 3, 7 and
10). The results of the validation testing are presented in Fig. 5; there is
no significant relationship observed between the optimal temporal
shifts identified in the two halves of the fMRI dataset (r=−0.03,
p=0.92). Combined, these observations indicate that the PETCO2

regressor may not be robustly related to the resting state fMRI data,
and in this circumstance it may not be appropriate to select an “optimal
shift.”

Fig. 3. R2 maps estimating the percentage of variance removed by the total noise model (true, simulated, and from another subject) for an example subject, thresholded at R2 > 0.097 (p
< 0.05, uncorrected for multiple comparisons). Maps were generated using a General Linear Model without pre-whitening (AFNI 3dDeconvolve) or with pre-whitening steps (AFNI
3dREMLfit). The percentage of voxels in the brain where R2 exceeded the significance threshold, and the median R2 across all voxels, are plotted for each of the 12 subjects, with and
without pre-whitening.
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By contrast, the breath-hold data show a significant positive
correlation between the grey matter time-series and PETCO2 regressor
(Fig. 4, red lines), which reaches a clear local maximum at a positive
temporal shift that is consistent when assessed in the two halves of the
data (Fig. 5, r=0.83, p=4×10−4). Applying an optimal temporal shift in
these data appears strongly justified.

5. Discussion

The results presented in Fig. 3 suggest that pre-whitening primarily
removes “false positive” associations between the model and data, i.e.,
when the nuisance regressors are hypothetically unrelated to the data.
However, pre-whitening only reduced the voxelwise “false positives”
from 51% to 13% (simulated model) and 34% to 9% (incorrect subject
model), not reaching the expected 5% chosen as our p-value threshold.
This is potentially due to two factors: firstly, the pre-whitening may not
have been optimal. We tested the pre-whitened residuals produced in
3dREMLfit for remaining autocorrelation using the Durbin-Watson
statistic, and observed that no brain voxels in the whitened residuals
demonstrated evidence for positive autocorrelation. However, there
was statistical evidence for negative autocorrelation in 4.5 ± 0.05% of
brain voxels (mean and standard deviation across subjects). This
suggests that the ARMA(1,1) model used in this pre-whitening

procedure did not optimally describe the resting state intrinsic brain
fluctuations in all voxels, and future work to determine optimal pre-
whitening for these data may be worth pursuing.

The apparent false positive rate may also exceed 5% because of non-
zero correlation between the simulated nuisance regressors and the
true regressors, and between the true regressors of different subjects.
As presented in Supplementary Figure 2 in (Bright and Murphy, 2015),
the noise model from another subject shares variance with the true
noise model by chance; we therefore expect the model to explain
significant variance in the data more frequently than chance. Thus, we
contend that the observed rate across all brain voxels of significant R2

for the noise model is reduced to a reasonable level following pre-
whitening.

In addition to testing the fit of the total noise model, we also probed
potential problems that arise in evaluating and optimising an indivi-
dual nuisance regressor, using the PETCO2 regressor as our test case.
The literature provides compelling evidence for the relationship
between PETCO2 and the BOLD signal (Blockley et al., 2011; Kastrup
et al., 2001; Posse et al., 2001; Zande et al., 2004), and measuring
“cerebrovascular reactivity” to CO2 is an emerging tool in clinical
imaging (Pillai and Zacá, 2011; Spano et al., 2013). The majority of
such studies examine the response to large changes in PETCO2 levels
induced by breath-hold, gas inhalation, hyperventilation, or other

Fig. 4. Optimisation of the temporal shift applied to the PETCO2 regressor. For each subject, the correlation between PETCO2 and the %BOLD time-series averaged across grey matter
voxels is plotted as a function of the temporal shift, ranging from −4 to +12 seconds in steps of 0.2 s (81 shifts). The correlation values obtained in the resting state data for the true
regressor (blue) and ten simulated phase-randomised regressors (cyan) are presented. The correlation values obtained in breath-hold data from the same subjects are also shown (red).
The optimal shifts identified for the true regressors are indicated; the grey shaded regions represent the significance threshold of p < 0.05 (r=0.16), and the same threshold after Šidák
correction for 81 tests (p < 6×10−4, r=0.27). The time-series and PETCO2 regressors for the resting state data and breath-hold data of Subject 5 are provided as a reference.
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respiratory challenges. Still, resting fluctuations in PETCO2 have been
observed as significantly correlated with the BOLD time-series (Wise
et al., 2004), supporting the removal of this variance from resting state
data via nuisance regression to remove vascular confounds in brain
connectivity measures.

Despite these well-established physiological links, our results
suggest that the relationship between the BOLD signal and PETCO2 is
not always robust in the resting state data. After Šidák correction of the
significance threshold, only subjects 3, 5, 6, 11, and 12 demonstrate a
significant correlation that also exceeds the relationship with simulated
regressors. The breath-hold data, however, presents a much more
straightforward picture: all datasets demonstrate significant correlation
that peaks at a physiologically plausible (and consistent) temporal shift.

From these observations we conclude the following:

1. Established nuisance regressors may not significantly contribute to
the BOLD signal time-series in all datasets. In such cases, including
these regressors in the noise model may remove variance from the
fMRI data at random, acting similarly to unrelated regressors with
similar frequency content.

2. Temporal shifting of PETCO2 regressors is merited. The “optimal
shift” in the breath-hold data is consistently non-zero, and thus the
PETCO2 regressor should be shifted to remove the correct noise
variance from the fMRI data. This is likely also true for other
physiological regressors.

3. The optimal temporal shift may not be reliably identified in resting
state datasets where there is weak correlation between the BOLD
and PETCO2 data. In several subjects, the optimal shift in the resting
state data does not match the optimal shift identified in the breath-
hold data. Furthermore, the optimal shift may result in negative
correlation, although negative reactivity is not expected except in a
small subset of voxels (Bright et al., 2013), or else there may be no
clear optimal shift within a physiologically plausible range.

4. Validation of the optimal temporal shift should be applied to test
whether shifting of the nuisance regressor is justified. Validation can
be achieved by comparing the optimal shift obtained in subsets of
the data: a significant correlation between repeated estimations of
the optimal shift should be observed prior to applying that shift to a
given nuisance regressor.

To summarise, the relationship between nuisance regressors and
fMRI data should be routinely examined, even when there is ample
evidence for a certain relationship in the literature (as is the case with
PETCO2). In addition, there are varied motivations for shifting or
otherwise optimising a given nuisance regressor at the group, indivi-
dual, or voxel level, but unless these optimisations are demonstrated to
be statistically significant (with appropriate corrections) and appro-
priately validated they may result in increased fMRI variance being
removed from the dataset at random.

We have applied a simple validation technique at the individual
subject level, comparing the results derived from the first and second
halves of the average grey matter data from one fMRI dataset. Time-
permitting, a second “training” dataset could be acquired to increase
the degrees of freedom available in the analyses. A training dataset with
amplified noise variance (e.g., breath-holds) would make the relation-
ship between the nuisance regressor and fMRI signal more robust, and
thus improve characterisation of any temporal lags. Here, we have used
the correlation coefficient to validate the repeated measurements of the
optimal temporal shift for the PETCO2 regressor, however more
rigorous cross-validation approaches may also be warranted. For
example, metrics such as the Intraclass Correlation Coefficient (ICC)
can test whether the optimisation of temporal shifts at the voxel level
results in more or less reliable spatial maps of the correlation between
the nuisance regressor and fMRI time-series across the study cohort
(Bright and Murphy, 2013a; Shrout and Fleiss, 1979).

5.1. Functional connectivity

We have focused on how different statistical factors impact the
process of nuisance regression, which aims to result in an accurately
and sufficiently cleaned fMRI time-series that can be further analysed
for functional connectivity. However, the pitfalls we have discussed are
often problematic in connectivity analyses as well.

Similar to temporal shifting of nuisance regressors, sliding window
analysis is often performed on resting state fMRI time-series to observe
changes in connectivity over time (Hutchison et al., 2013). Although
several groups apply rigorous statistical corrections to ascertain
whether dynamic changes in connectivity are significant, these correc-
tions are not universally adhered to, and this specific pitfall has been
recently addressed in the literature (Shakil et al., 2016).

Because the cleaned fMRI time-series are highly autocorrelated
(driving the aforementioned need for pre-whitening), the correlation
between two of such time-series from unrelated brain regions will be
inflated. Correcting for this autocorrelation prior to calculating correla-
tion values has been tried, and although it did not significantly impact
network results in healthy participants (Arbabshirani et al., 2014), it
may impact quantitative comparison of connectivity metrics between
cohorts with different inherent autocorrelation properties.

It was also proposed that functional connectivity measurements
should be made on whitened residuals, rather than the “cleaned” time-
series we have been discussing (Christova et al., 2011; Lewis et al.,

Fig. 5. Validation of the optimal temporal shift of the PETCO2 regressor. The optimal
shift was defined as that which resulted in maximal (absolute) correlation between the
regressor and grey matter average %BOLD time-series. The optimal shift was identified
in the first and second halves of the data, for both the resting state (blue) and breath-hold
(red) datasets, and then compared. There was no relationship between the shifts
identified in the two halves of the resting state data (r=−0.03, p=0.92), suggesting that
temporal shifting of the PETCO2 regressor can not be accurately optimised in these data.
By contrast, the breath-hold data revealed significantly correlated optimal shifts (r=0.86,
p=4×10−4), demonstrating that the PETCO2 regressor can (and should be) temporally
shifted to best model the associated signal variance. Validation analysis, such as the
correlation results presented here, should be used to confirm the robustness of any
temporal shifts applied to nuisance regressors.
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2012). Whitened time-series are known as “innovations” to denote that
they carry new information that is unrelated to previous time-points.
These papers assert that correlations between innovations more
accurately reflect the true underlying relationships between brain
regions. After applying pre-whitening (modelling the BOLD signal as
an ARIMA(15,1,1) process), the correlation between the innovations of
52 brain regions was calculated. This connectivity analysis revealed
none of the “resting state networks” typically observed in the literature;
hierarchical tree clustering revealed instead a functional organisation
of brain regions that closely resembled cortical anatomy and showed
strong links between homologous areas across hemispheres (Lewis
et al., 2012). The authors present a strong and coherent argument for
correcting non-stationarities and autocorrelations in BOLD time-series
prior to calculating correlations between time-series, which we parallel
here in the context of nuisance regression. We recommend that future
connectivity studies consider the impact of autocorrelation on their
connectivity metrics, whether by correcting correlation statistics or by
analysing the whitened innovations present in the data.

5.2. Future work

Returning to the main motivation of this paper, it is generally
beneficial to use the smallest sufficient noise model to avoid unneces-
sary reduction in the degrees of freedom in the fitting procedure.
Although many of the contributing nuisance regressors in the resting
state fMRI noise model are very well established, improved and
potentially fewer regressors may be better for precise, accurate
denoising.

Principal Component Analysis (PCA) of 4-D fMRI datasets gener-
ated using motion correction transformations has been used to create
improved head motion regressors that may better reflect the nonlinear
effects of movement during scanning (Patriat et al., 2016). PCA has
also been applied to isolate the dominant signal fluctuations in regions
of interest, such as white matter or ventricles, that are hypothesized to
be dominated by noise. For example, in CompCor (Behzadi et al., 2007;
Soltysik et al., 2015), multiple noise sources are described by a single
nuisance regressor estimated from a subset of the fMRI data, which can
substantially decrease the size of the noise model and potentially
improve the accuracy of denoising.

A similar technique, ANATICOR (Jo et al., 2010) uses a local white
matter region of interest to characterise multiple sources of signal noise
in one nuisance regressor, which is tailored for each grey matter voxel
across the brain. Adaptive noise models, where the specific nuisance
regressors vary from voxel to voxel, are currently employed throughout
the field. RETROICOR is typically applied using slice-specific temporal
shifts to account for systematic delays in image acquisition in typical
2D EPI scans (Glover et al., 2000; Murphy et al., 2013). SLOMOCO
provides slice-specific motion regressors that increase the accuracy of
de-noising without relying on temporal shifts from known acquisition
delays (Beall and Lowe, 2014). In dual echo acquisitions fMRI
acquisitions, a short-echo time-series with minimal BOLD contrast
can be applied as a voxel-specific nuisance regressor to remove head
motion and cardiac pulsation noise (Bright and Murphy, 2013b; Buur
et al., 2009). It may be desirable to further develop voxel-specific noise
models, using both the data-driven and modelled nuisance regressors
described in this paper. However. this could result in regional varia-
tions in the effective degrees of freedom in the fMRI time-series, for
which we would need to account.

Similarly, it may be more appropriate to use expanded noise models
in patient cohorts with large movement or physiological artefacts, while
using reduced models in healthy controls; this would reduce the
amount of interesting signal variance that was removed at random,
but would also necessitate careful statistical compensation for the
varying degrees of freedom in the resulting data. Such decisions to
expand or reduce the noise model should be made in a systematic way,
based on fitted parameter estimates. The field of model selection is

extensively documented elsewhere, and is outside the scope of this
paper. However it is important to consider the covariance across the
many nuisance regressors included in the noise model, as some model
reduction techniques assume independence of individual regressors.

We also observed that the ARMA(1,1) model did not fully pre-
whiten the GLM residuals in this study, and more complex models may
need to be used to identify the optimal pre-whitening method in
denoising resting state data. Although the bias introduced by imperfect
pre-whitening may not ultimately impact model fit estimates in task-
activation fMRI (Marchini and Smith, 2003), it is yet unclear whether it
is an important consideration in nuisance regression. Spatial smooth-
ing of autocorrelation structure during pre-whitening is often applied
in task-activation studies (Worsley, 2005); however this must be done
carefully, as non-Gaussian spatial autocorrelations can drive false
positives in further analyses of resting state data (Eklund et al.,
2016). Finally, the application of bandpass filtering prior to GLM
fitting effectively pre-colours the data, and as such, the pre-whitening
techniques described here may no longer be appropriate.

6. Recommendations

Based on our observations and the literature referenced in this
paper, we make the following recommendations:

• Pre-whitening should be applied during nuisance regression
1. Existing pre-whitening tools in standard software packages are

probably sufficient and can be easily applied, although further
optimisation may be warranted

• If applied, temporal filtering should be incorporated into the GLM
procedure
1. Note, bandpass filtering prior to the GLM effectively ‘pre-colours’

the data, and pre-whitening techniques may no longer be appro-
priate.

• Nuisance regressors, particularly ones of physiologic origin, may
need to be temporally shifted (or otherwise adapted) to best model
the associated BOLD time-series
1. The relationship between the regressor and data must be sig-

nificant to obtain a robust estimate of the optimal temporal shift.
2. The reproducibility of the optimal shift obtained from different

subsets of the data should be used to validate the appropriateness
of applying this shift.

• Nuisance regressors should be routinely assessed for significance
and accuracy; in a given resting state dataset, well-established noise
sources may not add significantly to the noise model and instead
remove variance from the data at random.

• The specifics of pre-whitening, filtering, shifting, and associated
statistical corrections during nuisance regression should be docu-
mented in manuscripts to foster consensus of methods across the
field.
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