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Purpose: The immunotherapy of lung adenocarcinoma (LUAD) has received much
attention in recent years and metabolic reprogramming is linked to immune infiltration in
the tumor microenvironment. Therefore, it is indispensable to dissect the role of immune-
related metabolic genes in lung adenocarcinoma.

Methods: In this study, we screened immune-related genes by Pearson correlation. The
function of these genes was explored by gene ontology (GO) and KEGG (Kyoto
Encyclopedia of Genes and Genomes) enrichment analysis. The differently expressed
immune-related genes were analyzed by Limma. Furthermore, the LUAD patients were
clustered based on immune-related genes through consensus clustering. The Unicox was
used to identify survival-immune-related metabolic genes. The Least Absolute Shrinkage
and Selection Operator (LASSO) regression analysis was used to optimize the gene sets.
A prediction model was constructed and tested. The potential therapeutic target was
selected based on two criteria, these immune-related metabolic genes that were highly
expressed in tumor tissues and negatively correlated with the survival of patients in LUAD.
Quantitative real‐time PCR (qRT‐PCR) was used for in vitro experimental validations.

Results: We identified 346 immune-related genes, mainly involved in arachidonic acid
metabolism and peroxisome proliferator-activated receptor (PPAR) signaling. Moreover, a
total of 141 immune-related genes were dysregulated between tumor and normal tissues.
We clustered three subtypes of LUAD based on immune-related metabolic genes and
these subtypes exhibited different survival and immune status. We found Ribonucleotide
Reductase Regulatory Subunit M2 (RRM2) as a potential therapeutic target, which is
positively correlated with the cyclin-dependent kinase family of genes.

Conclusion: We comprehensively analyzed the immune-related metabolic genes in
LUAD. RRM2 was determined as a promising metabolic checkpoint for lung
adenocarcinoma.

Keywords: lung cancer, immune, metabolic, TCGA, immunotherapy
Abbreviations: TCGA, The Cancer Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology;
DEGs, differentially expressed genes; LUAD, Lung adenocarcinoma; ssGSEA, single sample gene set enrichment analysis;
TME, tumor microenvironment; PPI, protein-protein interaction.
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INTRODUCTION

Lung cancer is one of the most common causes of cancer-
related mortality. Adenocarcinoma is the most common
histological type of lung cancer (1, 2). Lung adenocarcinoma
(LUAD) has an unfavorable 5-year survival rate which makes only
15% (3–5). In the past few decades, surgical resection, chemotherapy,
radiotherapy, and targeted molecular therapies have been carried out
in clinical practices to treat LUAD. However, most LUAD patients
are usually diagnosed at advanced and late stages, thus having poor
prognosis. In recent years the relationship among cancer
immunotherapy, tumor microenvironment, and metabolism has
gotten much of attention. Hence, comprehensively understanding
the role of immune-related metabolic genes involved in the
occurrence and development of LUAD is crucial for the diagnositc
and prognositic prospetcs.

The tumor microenvironment (TME) is the cellular environment
in which the tumor develops. TME is closely related to the occurrence
and development of tumors (6, 7). It included inflammatory and
stromal cells that infiltrate the tumors. Lymphocytes infiltrating
tumor tissues have been discovered for more than hundred years.
After 1960, people began to consider the relationship between
immunity and prognosis (8). It has been found that the infiltration
of T cells (80%) in the majority of tumors is positively correlated with
the tumormetastasis (9). Aberrant cellular metabolism is emerging as
a novel therapeutic target, and the interplay between metabolic
remodeling and immune regulation in cancer represents a potential
area of investigations (10, 11).

Abnormal activation of oncogenic genes, such as Myc and Ras
can directly regulate intracellular metabolic pathways (12). Moreover,
immune cells can also change metabolic pathways and further affect
cellular functions (13). The abnormal metabolism of tumors not only
enables tumors to survive in an environment of hypoxia and nutrient
deficiency, but the products of metabolism can inhibit immune
response, promote the formation of immunosuppressive cells, and
help tumors evade host immune killing (14). It has been found that
in acute lymphoblastic leukemia, proliferating T and B cells exhibit
abnormal metabolic stress (15, 16). Similarly, mounting evidence has
confirmed that reprogramming the tumor immune
microenvironment is a necessary process that drives LUAD
metastasis (17). This suggests that the metabolic disorder of cancer
cells may be treated by targeting some genes (18).

In this study, we identified 346 immune-related genes. Among
these, 141 genes were found to be dysregulated between normal
and tumor tissues. Three clusters of LUAD samples were based on
immune-related metabolic genes and different clusters exhibited
distinct survival and immune status. Moreover, we constructed
and validated a prediction model and identified RRM2 as a
potential metabolic target which was positively correlated with
the cyclin-dependent kinase (CDK) family of genes.
MATERIALS AND METHODS

Data Preprocessing
The mRNA sequencing and clinical data of 535 LUAD samples
and 59 normal samples were downloaded from the TCGA data
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portal. The metabolism-related genes were downloaded from
published work (19). The immune-related genes were
downloaded from an online website (https://www.immport.
org/). Low expressed genes were excluded from the study and
the data was normalized to log2 (tpm+1) (average expression
after normalization <0.5). Finally, 346 immune-related metabolic
genes were selected by cor test using the Pearson correlation
method (P<0.05, |R|>0.2).

GO and KEGG Enrichment Analysis and
PPI Network Construction of Immune-
Related Metabolic Genes
We divided 346 differentially expressed genes (DEGs) into up-
regulated and down-regulated genes. R was used to perform GO
and KEGG enrichment analysis. The “clusterProfiler”, “richplot”,
and “ggplot2” packages were used for analysis (20, 21). The GO
analysis was performed to annotate genes and classify up-
regulated and down-regulated DEGs. The GO terms consisted
of 3 parts: Biological Process (BP), Cellular Component (CC),
and Molecular Function (MF). The KEGG database included the
systematic analysis, annotation, and visualization of gene
functions (22). STRING online website was used to construct a
protein-protein interaction (PPI) network for the selected DEGs
(23). For PPI analysis, the confidence score was set to > 0.9, and
only terms with both p- and q-value of <0.05 were considered
significantly enriched. Cytoscape software further analyzed the
most closely connected modules and identified the top 10 central
genes (24).

Identification of Dysregulated Genes
Between Tumor and Normal Tissues
The “limma” package (25) in R was used to identify DEGs
between Cancer and adjacent tissue samples. Merely genes with
| log2fold change | > 1 and P < 0.05 were considered as DEGs.
The “pheatmap” package was used to draw heat maps, and
“ggplot2” was used to draw volcano maps.

Consistent Clustering of Immune-Related
Metabolic Genes
The immune-related metabolic genes were divided into different
clusters by the cell consistency clustering method. We used the
“ConsensusClusterPlus” package (100 iterations and 80%
resampling rate, http://www.bioconductor.org/) to classify
patients with LUAD into different subtypes. The heat map and
dela diagram established the optimal number of clusters. The
cumulative distribution function (CDF) was plotted to identify
the number of best clusters. The Progress Free Survival (PFS)
between various clusters was compared. The survival analysis
was analyzed by the R package “survival”, and the “ggplot2”
package was used for plotting.

Immune Characteristics Between
Clusters-Expression of Immune-Related
Molecules
The expression of immune-related molecules among these
clusters with the ESTIMATE algorithm was analyzed by the R
“ESTIMATE” package. These immune-related genes regulate
July 2022 | Volume 13 | Article 894754
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four immune functions these included, antigen presentation,
chemokine-related genes, cytokines, and immune checkpoints.
“ggplot2” package was used to draw box plots.

Immune Characteristics Between
Clusters-Expression of Infiltrating Immune
Cells and Clinicopathological
Characteristics
Four methods were used to assess the infiltration of immune cells
in three clusters. These methods were single-sample gene set
enrichment analysis (ssGSEA), Microenvironment Cell
Populations (MCP)-counter, CIBERSORT, and Xcell (26–29).
The three different immune cell infiltrating clusters were also
compared and found their immune scores. We compared the
pathological classification proportions between different clusters
to further distinguish the differences between different clusters,
including T, N, M, clinical drug treatment response, and the
pathological stage.

Validation of Prognostic Prediction Based
on Immune-Related Metabolic Genes
Models
The expression matrix of LUAD was randomly divided into
training and test sets. The training set was 70% and the test set
was 30%. We used single-factor analysis on the two groups of
genes. The genes with p<0.05 were selected. The Least Absolute
Shrinkage and Selection Operator (LASSO) cox regression
method was further optimized through multi-factor COX
regression analysis to help us to determine the best number of
genes to build a model (30, 31). Moreover, we collected 80 lung
cancer samples along with complete survival information and
constructed a prognostic model as a control. Finally, the gene’s
risk score was screened to get a good predictive ability on the
patient’s survival. The area under the ROC curve (AUC) was
used to judge the prognostic model’s predictive power. The ten-
fold cross-validation based on the “glmnet” package in R was
used for lasso penalty Cox regression analysis. The survival
analysis was analyzed by R package “survival”, while AUC was
analyzed by R package “survivalROC”.

Identification of Potential Metabolic
Checkpoints
First we selected the immune metabolism genes that were highly
expressed in the tumor site (logFC>1.5, FDR<0.05), and the immune
metabolism genes in the training set that were negatively related to
survival (p ≤ 0.01). Through pan-cancer analysis (https://cistrome.
shinyapps.io/timer/) and the expression level analysis of collected
clinical samples, we screened out genes with higher expression
abundance in tumors. The signaling pathway was determined with
criterion (spearman r>2 or<-2, q value< 0.05) using online website
cBioPortal (https://www.cbioportal.org/). The selected genes were
used to perform GO and KEGG enrichment analyses.

Cell Culture
The different cell lines used in this study were, Human normal
lung epithelial cell line (BEAS-2B) A549, NCI-H292, and Calu-3.
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BEAS-2B cells were purchased from Procell Life Science and
Technology Co., Ltd. (Wuhan, China). A549, NCI-H292, and
Calu-3 were purchased from the cell bank of the Chinese
Academy of Sciences (Shanghai, China). The BEAS-2B cell line
was cultured in Dulbecco’s Modified Eagle’s medium (DMEM;
Gibco, Grand Island, NY, USA). The A549 cell line was cultured
in Ham’s F-12K medium (Gibco) The NCI-H292 cell line was
cultured in Roswell Park Memorial Institute-1640 medium
(RPMI-1640; Gibco), and the Calu-3 cell line was maintained
in modified eagle medium (MEM; Gibco). All media were
supplemented with 10% fetal bovine serum (FBS; Gibco) and
antibiotics (100 units/ml penicillin and 100 ug/ml streptomycin;
Gibco). All cells were incubated in a humidified atmosphere of
5% CO2 at 37°C.

Quantitative Real‐Time PCR
Total RNA was isolated from tissues and cells using TrIzol
reagent (Gibco) according to the manufacturer’s instructions.
The extracted RNA was reverse transcribed into complementary
DNA using a reverse transcription kit (Takara, Dalian, China).
Quantitative real-time PCR (qRT-PCR) was performed using the
SYBR-Green PCR kit (Roche Diagnostics, Indianapolis, IN) on a
Step One Plus Real-Time PCR system (Applied Biosystems,
Foster City, CA). Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was used as an internal control. The results were
analyzed using the 2-DDCt method. Primers were synthesized by
Sangon Biotech (Shanghai, China). All the primer sequences
were listed (Supplementary Table 1).
RESULTS

Identification and Function Enrichment
Analysis of Immune-Related Metabolic
Genes
To identify the immune-related metabolic genes, we obtained
1041 immune genes and 1613 metabolic genes. The general
research design and flow of the study was shown (Figure 1).
The correlation analysis identified 346 immune-related
metabolic genes (Figure S1). The GO analysis consisted of
three parts: BP, CC, and MF. Our results indicated that the
immune-related metabolic genes were significantly enriched in
the BP-associated organic acid biosynthetic process, carboxylic
acid biosynthetic process, and monocarboxylic acid biosynthetic
process. For the CC, the immune-related metabolic genes were
mainly enriched in the Golgi, lysosomal, and vacuolar lumens.
Furthermore, the MF analysis showed that the immune-related
metabolic genes were significantly enriched in cofactor binding,
oxidoreductase activity, acting on the CH−OH group of donors,
and carboxylic acid-binding. The immune-related metabolic
genes were found to be involved in Arachidonic acid
metabolism, PPAR signaling pathway, and Biosynthesis of
amino acids (Figures 2A, B). PPI network was established to
further dissect the potential mechanism of these genes
(Figure 2C). Top10 core genes were identified by Cytoscape
plug-in cytoHubba: these genes included, SDC2, GPC3, GPC1,
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HSPG2 , AGRN , GPC2 , GPC5 , GPC4 , GPC6 , and
VCAN (Figure 2C).

The heat map clearly distinguished the immune related
metabolic genes in tumor and normal tissues (Figure S2A). A
total of 141 DEGs were identified (|log2fold change |> 1, P<
0.05). Among these, 72 genes were up-regulated and 69 genes
were down-regulated (Figure S2B). Then, we performed GO and
KEGG enrichment analysis on 141 differential genes (Figures
S2C–F). It was observed that DEGs were mainly involved in the
fatty acid metabolic process; organic hydroxy compound
metabolic process and small molecular metabolic process.

Consistent Clustering of Immune-Related
Metabolic Genes
Consistent clustering of immune-related genes was performed to
unwind metabolic patterns of tumor cells. Tumor samples were
divided into different clusters according to the expression
patterns of immune-related gens. To determine the optimal
cluster number, the cumulative distribution function (CDF)
Frontiers in Endocrinology | www.frontiersin.org 4
was plotted and three different clusters were identified.
Moreover, heat maps were drawn to compare the expression of
immune-related metabolic genes among the various clusters
(Figures 3A–C). Furthermore, the survival status of the three
clusters was evaluated by comparing progression-free survival
(PFS) and clinicopathological parameters. Our results showed
that cluster 2 have prolonged survival in early times (Figure 3D).
Consistent with these findings, patients in the cluster 2 have
lower T, N, M, and stage as well as the status of lymph node
metastasis (Figures S3A–D). Similarly, a comparatively more
proportion of patients had a complete response to treatments in
this cluster (Figure S3E).

Immune Characteristics of the Three
Different Clusters
Furthermore, we were interested to determine immune-related
genes in these clusters. We determined those immune-related
genes that were involved in antigen‐presentation (B2M, HLA-A,
HLA-B, HLA-C, HLA-DPA1, HLA-DQA1, TAP1, TAP2),
FIGURE 1 | The general research design and flow of the study.
July 2022 | Volume 13 | Article 894754
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chemokine-related genes (CCL4, CCL5, CXCL10, CXCL13,
CXCL9), immune checkpoint genes (CD226, CD274, CD276,
CD40, CTLA4, HAVCR2, LAG3, PDCD1) and genes
responsible for the production of cytokines (GZMB, GZMH,
IFNG, IL2, PRF1, TNF) expressions. We used a box plot for
comparison and found that HLA-DPA1, HLA-DQA1, HLA-B,
CXCL13 and CD226 had a high expression within C2 cluster
(Figures 4A–D).

Moreover, we determined infiltration levels of immune cells
in these clusters. We used four reported methods (CIBERSORT,
MCP-counter, ssGSEA, and Xcell) for this purpose. Two aspects
were explored for these clusters i.e. immune effector cells
(Figures 5A–D) and immunosuppressive cells (Figures 5E–G).
Our analysis delineated that Cluster 1 had the least infiltration of
immune effector cells and immunosuppressive cells
(Figures 5A–G). This suggests that cluster1 might be the
immunologically-cold tumors. Cluster 2 and cluster 3 were
found to be enriched in the immunologically-hot tumor
immune microenvironment. Both of these clusters were
enriched in both immune effector and immunosuppressive
cells. Activated B cells, dendritic cells (DC), and monocytes
were significantly enriched in cluster 2 (Figures 5A–G). We
compared the three different clusters and reached their immune
score. The results showed that cluster 2 had higher immune and
stromal scores (Figure 5H).
Frontiers in Endocrinology | www.frontiersin.org 5
Construction of Prognostic Prediction
Models of Immune-Related Metabolic
Genes
Next, we were interested in whether these immune-related
metabolic genes could be used to predict survival. The LUAD
matrix was divided into training (70%) and test (30%) sets. We
selected 80 genes having p<0.05 and performed Unicox analysis
to compute the regression coefficient (Figures 6A, B). Moreover,
multivariate regression was performed to calculate the formula.
We identified nine genes that were used to construct a prediction
model. These nine genes were, TK1, TCN1, CAV1, ACMSD,
HS3ST2, HS3ST5, AMN, ADRA2C, and ACOXL (Figure 6C).
Patients were categorized into high and low-risk groups in
training and test sets. A survival curve was plotted according
to the clinical information of two groups of patients
(Figures 6D–F). The results showed that training and test sets
with high-risk score patients had a worse Overall Survival (OS)
rate than those of low score patients (p <0.0001) (Figures 6D–F).
The area under the ROC curves of the predictive model for
LUAD has the same performance in the first year, third year, and
fifth-year (Training set: AUC at one year: 0.83, AUC at three
years: 0.72, AUC at five years: 0.71; Test set: AUC at one year:
0.68, AUC at three years: 0.76, AUC at five years: 0.61)
(Figures 6E–G). Moreover, the prediction model was validated
using our clinical specimens. The validation results confirmed
A C

B

FIGURE 2 | The GO and KEGG pathway analysis for immune-related metabolic genes. (A, B) The GO enrichment and KEGG pathway analyses of immune-related
metabolic genes; (C) The top 10 genes were ordered by the number of nodes. BP, biological process; CC, cellular component; MF, molecular function; KEGG,
Kyoto Encyclopedia of Genes and Genomes.
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that the high-risk score group had a worse survival (p <0.0001)
(Figures 6H, I). Meanwhile, our prediction model had high
accuracy (AUC at one year: 0.74, AUC at three years: 0.83, AUC
at four years: 0.78).

Identification of Potential Metabolic
Targets
As the highly expressed genes in the tumor could be a potential
factor to promote tumor growth, therefore, we selected those
immune-related metabolic genes whose expression was high in
the tumor site (logFC > 1.5, FDR < 0.05). Five potential targets
i.e., HMMR, PFKP, RRM2, TCN1, and TK1 were obtained that
were negatively correlated with survival rate (Figure S4). The
expression of five hub genes in pan-carcinoma was shown
(Figure S5). The correlation of the four genes HMMR, PFKP,
TCN1, and TK1 with tumor-infiltrating immune cells and the
survival curve in lung cancer was shown (Figure S6).
Frontiers in Endocrinology | www.frontiersin.org 6
Furthermore, we determined the expression levels of five hub
genes in our clinical specimens. We found that the expression of
RRM2 was higher in tumor tissues (Figures 7A–E). Similarly, the
expression level of RRM2 was significantly higher in lung cancer
cell lines (A549, NCL-H292, and Calu-3) compared to normal
lung epithelial cell line (BEAS-2B) (Figure 7F). The survival
curves of RRM2 and immune cell infiltration in lung cancer
patients were determined. The overall survival of lung cancer
patients showed that low RRM2 expression had a better
prognosis (p=0.000015) (Figure 7G), and disease-free survival
also suggested that patients with low RRM2 expression had a
better prognosis (p=0.019) (Figure 7H). The relationship with
immune cells showed that RRM2 was associated with tumor
infiltration by B cells and Neutrophils (Figure 7I).

To determine the function of RRM2, GO and KEGG analyses
were performed to find correlated genes with RRM2 (Figure S7).
The RRM2-related genes were mainly enriched in catalytic
A B

C D

FIGURE 3 | Consistent clustering of immune-related metabolic genes. (A, B) Cumulative distribution function (CDF) represented an optimal number of clusters (k is
3); (C) Heat map represented immune-related metabolic genes in three clusters; (D) Survival analysis between different clusters was shown.
July 2022 | Volume 13 | Article 894754
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activities, acting on DNA as determined by GO analysis. While
KEGG pathway enrichment analysis showed that RRM2-related
genes were mainly enriched in cell cycle regulation. Moreover,
the correlation between the RRM2 gene and the CDK family of
genes was analyzed. This result showed that the RRM2 gene was
highly related to the CDK family of proteins (Figure 7J). We also
found the same results in tumor samples analyzed by qPCR,
showing that this gene was associated with CDK family of
proteins. Our results delineated that the expression levels of
RRM2, CDK2 (r=0.492, p<0.001), CDK4 (r=0.365, p<0.01),
CDK6 (r=0.406, p<0.01) and CDK8 (r=0.440, p<0.01) were
positively correlated, which means that RRM2 was significantly
correlated with cell cycle signaling (Figures 7K–N).
DISCUSSION

Our study identified five potential metabolic checkpoints of
LUAD and RRM2 was chosen for further analyses. The
expression of RRM2 was significantly higher in both lung
Frontiers in Endocrinology | www.frontiersin.org 7
cancer tissues and cell lines. In the current study, we
disseminated the possible pathways regulated by RRM2 in lung
cancer. We further showed that the cell cycle could be regulated
by RRM2.

Tumor microenvironment infiltration is closely related to
immunotherapy effectiveness. The critical role of immune-related
metabolic genes and immune cells in cancer is gradually being
unveiled. Therefore, we were interested to find immune-related
genes that play a role in immune infiltration and could produce a
better immunotherapy effect. In our study, the immune-related
genes were obtained from the website, https://www.immport.org/.
The metabolism-related genes were downloaded from work
published by Peng, X. We performed different analyses and
identified ten immune-related metabolic genes. These genes were,
SDC2, GPC3, GPC1, HSPG2, AGRN, GPC2, GPC5, GPC4, GPC6,
and VCAN. These genes play important roles in the immune-
related mechanisms of several cancers (colorectal (32), cervical
(33), liver (34), pancreatic cancer (35), etc). Immune infiltration of
tumor microenvironment in glioblastoma multiforme, breast
cancer, and lung cancer play a vital role in immunotherapy and
A B

C D

FIGURE 4 | Box plot of immune-related gene expressed among different clusters. (A–D) The expression levels of multiple immune genes were compared in three
clusters. *, P < 0.05. **, P < 0.01. ***, P < 0.001. ****, P < 0.0001.
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the increase in the degree of immune infiltration is related to better
immunotherapy effect (36–39).

To explore the specific mechanisms of these immune-related
metabolic genes, the samples were divided into three clusters. The
levels of immune cell infiltration, immune scores, and
clinicopathological information were compared. We found that
among all clusters, cluster2 had prolonged survival at the early
stages of the disease. HLA-DPA1, CXCL13, activated B cells, DC,
and monocytes infiltration were highly expressed in cluster 2.
HLA-DPA1 is involved in immune responses and antigenic
peptides presentation (40). Previous studies demonstrated that
down-regulation of HLA-DPA1 expression is related to the poor
prognosis of tumors and may be a potential prognostic biomarker
for ESCC (41–43). Therefore, higher expression of HLA-DPA1 in
cluster 2 could well represent the prolonged survival of LUAD
Frontiers in Endocrinology | www.frontiersin.org 8
patients. The CXCL13/CXCR5 signal axis plays a vital role in the
occurrence and development of several human cancers (44). The
prognosis was found better in cluster 2 compared to cluster1 and
cluster3. The pathways related to B cells play important role in
tumor immunotherapy (45, 46). Similarly, monocytes also play an
important role in antigen presentation in the microenvironment
of tumor immune infiltration (47, 48).

Furthermore, nine genes TK1, TCN1, CAV1, ACMSD,
HS3ST2, HS3ST5, AMN, ADRA2C, and ACOXL were identified
for the construction of prediction model. Our findings are
parallel with previous findings. TK1, TCN1, CAV1, and
HS3ST2 play indispensable roles in survival predictions and
pathogenesis of various cancers (49–55).

Finally, we obtained five potential metabolic checkpoints of
LUAD. These were, HMMR, PFKP, RRM2, TCN1 and TK1. By
A B

C D

E GF H

FIGURE 5 | Expression levels of immune infiltration cells. (A–D) Expression levels of immune effector cells between different clusters were shown; (E–G)
Immunosuppressive cells in different clusters were shown; (H) Immune and stromal scores in different clusters were shown.
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comparing their expression levels and their association with
immune cells in pan-cancer and lung cancer clinical samples,
we identified a critical role for RRM2 in LUAD. RRM2 is a rate-
limiting enzyme which is involved in DNA synthesis and repair.
It also plays a vital role in many critical cellular processes, such
as cell proliferation, invasiveness, migration, angiogenesis, and
aging (56). In breast cancer, RRM2 overexpression in cancer
cells promotes the formation and invasion of 3D colonies (57).
In liver cancer (58), RRM2 can inhibit hypertrophy by
stimulating GSS to synthesize GSH. In LUAD, RRM2 has
been determined to have an independent prognostic
Frontiers in Endocrinology | www.frontiersin.org 9
significance. RRM2 expression levels have significant
correlations with B cells, CD4+ T cells, and neutrophil
infiltration (59). We also determined that RRM2 was highly
related to the CDK family of proteins. As Cyclin-dependent
kinases 4 and 6 (CDK4/6) are important regulators of cell cycle
and inhibit the proliferation of regulatory T cells (60).
Therefore, RRM2 could also be involved in cell cycle
regulation. Our findings further confirmed the relationship of
RRM2 with immunity and metabolism in LUAD. Moreover,
our study provided a base and theoretical support for exploring
the immunotherapy of LUAD.
A C

B

D F H

G IE

FIGURE 6 | LASSO and hub genes of prognostic model. (A, B) Optimal values of the penalty parameter l; (C) Multivariate regression analysis of nine genes we shown; (D,
F, H) OS in the low score group was significantly higher than in the high score group; (E, G, I) Time-dependent ROC curves analysis of the prediction model.
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CONCLUSIONS

In this study, we first identified the vital role of immune-related
metabolic genes in lung adenocarcinoma’s immune and
clinicopathological aspects. We clustered three subtypes of
LUAD based on immune-related metabolic genes and these
subtypes exhibited different survival and immune status. We
identified nine genes i.e., TK1、TCN1、CAV1、ACMSD、
HS3ST2、HS3ST5、AMN、ADRA2C, and ACOXL that were
used to construct a prediction model. Finally, RRM2 was
determined as a promising metabolism checkpoint for LUAD
and explored its close relationship with the CDK family of
proteins. Our results are therefore, helpful for the study of
immunotherapy and immune-related metabolic genes in LUAD.
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