
RESEARCH ARTICLE

Quantification of carious pathogens in the

interdental microbiota of young caries-free

adults

Denis Bourgeois1,2☯*, Alexandra David1☯, Camille Inquimbert1, Paul Tramini3,

Nicolas Molinari4, Florence Carrouel1,5

1 Laboratory "Systemic Health Care" EA4129, University Lyon 1, Lyon, France, 2 Department of Prevention

and Public Health, Faculty of Dentistry, University Lyon 1, Lyon, France, 3 Department of Dental Public

Health, University of Montpellier, Montpellier, France, 4 Service DIM, CHU de Montpellier, UMR 5149 IMAG,

University of Montpellier, Montpellier, France, 5 Department Basic and Clinical Biological Sciences, Faculty

of Dentistry, University Lyon 1, Lyon, France

☯ These authors contributed equally to this work.

* denis.bourgeois@univ-lyon1.fr

Abstract

Background

The majority of caries lesions in adults occur on the proximal tooth surfaces of the posterior

teeth. A comprehensive study of the composition of the oral microbiota is fundamental for a

better understanding of the etiology of interdental caries.

Methods

Twenty-five caries-free subjects (20–35 years old) were enrolled in the study. The interden-

tal biofilm of four interdental sites were collected. The real-time polymerase chain reaction

(PCR) methodology were used to quantify (i) the following bacteria: Streptococcus spp.,

Streptococcus mutans, Lactobacillus spp., Enterococcus spp., and Enterococcus faecalis;

(ii) the fungus Candida albicans; and (iii) total bacteria.

Results

Streptococcus spp. was the most abundant species, followed by Lactobacillus spp. and

Enterococcus spp. Streptococcus spp. and Lactobacillus spp. were detected at all tested

sites and Enterococcus spp. at 99% of sites. S. mutans was detected at only 28% of the

tested sites and C. albicans was detected at 11% of sites. E. faecalis was never detected.

In 54.5% of the biofilm inhabited by C. albicans, S. mutans was present. Moreover, 28% of

the ID sites co-expressed S. mutans and Lactobacillus spp. The studied pathogens were

organized into two correlated groups of species. Strikingly, the fungus C. albicans and the

bacteria Enterococcus spp. cluster together, whereas Streptococcus spp., S. mutans and

Lactobacillus spp. form one distinct cluster.
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Conclusion

The interdental biofilm of young caries-free adults is comprised of pathogens that are able to

induce interproximal caries. That several of these pathogens are implicated in heart disease

or other systemic diseases is an argument for the disruption of interdental biofilms using

daily oral hygiene.

Introduction

The 2010 Global Burden of Disease Study found that oral conditions affected 3.9 billion people

worldwide and that the estimation of untreated caries of permanent teeth was 2.4 billion [1, 2].

Dental caries is a multifactorial, chronic bacterial disease that may result in cavity formation in

the enamel, dentine and cementum [3].

The incidence of untreated caries predominates below the age of 35 and decreases with

increasing age, although it remains a significant problem in the upper age categories [4]. The

majority of caries lesions in adolescents and adults occur on the proximal tooth surfaces of the

posterior teeth [5, 6, 7].

Many distinct habitats may be identified on individual teeth, with each habitat containing a

unique biofilm community [8]. Tooth habitats favorable for harboring pathogenic biofilm

include the smooth enamel surfaces immediately gingival to the proximal contacts and in the

gingival third of the facial and lingual surfaces of the clinical crown [9]. These areas are pro-

tected physically and are relatively free from the effects of mastication, tongue movement, and

salivary flow [9]. Local gingival changes in this area will lead to a protected surface for biofilm

accumulation [10]. The relationship between gingivitis and caries on the proximal surface is

narrow [11].

More importantly, the microbial structure varies with ageing. In addition, only a few taxa

are present across the entire population, indicating that a core oral microbiome should be

defined based on age and oral niche [12]. The types and numbers of organisms composing the

proximal surface biofilm community vary [13]. The mesial surface of a molar may be carious

and have a biofilm dominated by large populations of Streptococcus mutans and lactobacilli,

whereas the distal surface may lack these organisms and be caries-free [13]. The intra- and

inter-individual progression of proximal caries fluctuates, indicating different cariogenic con-

ditions [14].

The literature on interdental (ID) supragingival microbial profiles applied to caries lesions

is extremely limited. Currently, no studies have addressed the ID biofilm of caries-free adults.

It remains unclear which microorganisms positively or negatively impact patients with regards

to clinical considerations [15, 16].

The goal of this study is to describe the interproximal microbiota in caries-free young

adults. Thus, a quantitative detection method using real-time polymerase chain reaction

(PCR) was employed to quantify 6 major cariogenic pathogens, including (i) the bacteria:

Streptococcus spp. (Sspp), Streptococcus mutans (S. mutans, Sm), Lactobacillus spp. (Lspp),

Enterococcus spp. (Espp), and Enterococcus faecalis (E. faecalis, Ef); and (ii) the fungus Candida
albicans (C. albicans, Ca).

The results of this research can be used to considerably improve the dental condition of

adolescents and young adults. Standard dental therapy does not yet include any microbiolog-

ical based approach into its armamentarium. The results can be used to make decisions with

respect to molecular analyses for new policies covering the provision of services instituting
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new procedures (e.g., micro-invasive treatment of proximal caries lesions), practices and inter-

ventions (e.g., non-invasive professional treatment) or to provide advice for prevention (e.g.,

an interdental brush (IDB)) related to dental health care delivery.

Materials and methods

The workflow of this research is detailed in Fig 1.

Subject population

Twenty-five Caucasian subjects diagnosed as caries-free were recruited between January and

April 2015 from a pool of first-time volunteers who were referred to the Department of Public

Health of the Faculty of Oral Medicine at the University of Lyon (UCBL), France. Written

informed consent was obtained from all enrolled individuals in accordance with the Declara-

tion of Helsinki. The study protocol was reviewed and approved by the Local Ethics Commit-

tee and by the National Commission of Informatics and Liberties, France.

The inclusion criteria were (i) 20–35 years old (male or female), (ii) good general health,

not pregnant or breastfeeding and on contraceptive therapy, (iii) good oral hygiene, (iv) good

diet (Healthy Eating Index score greater than 80), (iv) no health conditions that required anti-

biotic prophylaxis before interproximal probing, (v) no oral diseases (such as dental caries,

periodontal disease, periapical disease, oral mucosal disease, or severe halitosis), (vi) tooth

brushing at least twice per day, (vii) no experience with interdental cleaning—interdental

brushing or dental flossing, (viii) no intake of systemic antimicrobials during the previous 6

months, (ix) no use of chlorhexidine or over-the-counter mouthwash, (x) no implants or

orthodontic appliances, (xi) no previous periodontal illness or treatment, (xii) the presence of

at least 24 natural teeth, (xiii) the presence of 4 premolar-molar pairs, (xiv) non-smokers, and

(xv) a willingness to return 3 weeks after the clinical investigation for microbiological tests.

The clinical inclusion criteria for each premolar-molar interdental site were (i) accessibility

of the interdental space for the 4 sites (15–16, 25–26, 35–36, and 45–46, according to the FDI’s

two-digit notation system [17]) by the interdental brush in each subject, (ii) no interproximal

caries or dental or prosthetic restorations, (iii) no interdental diastema, (iv) no clinical signs of

inflammation, such as redness, swelling, or bleeding on probing (BOP) after 30 s, (v) no pocket

depth (PD) or PD� 3 mm or clinical attachment loss (CAL) > 3 mm, and (iv) the subjects

were judged to be free of gingivitis or periodontitis.

The exclusion criteria were (i) teeth missing due to periodontal reasons, (ii) having any

other concomitant systemic disorder, (iii) having diseases affecting the immune system, (iv)

receiving medication, such as anti-platelet or anti-coagulant agents, (v) having a professional

prophylaxis 4 weeks prior to the baseline examination, (vi) having a history of periodontal dis-

ease or treatment, and (vii) subjects undergoing a course of dental or orthodontic treatment.

Fig 1. Workflow of the experiment.

https://doi.org/10.1371/journal.pone.0185804.g001
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Classification of subjects as caries-free

The dental health status of individuals was determined by measuring the Decayed, Missing,

and Filling Teeth (DMFT) index. This index is recognized in epidemiology for assessing dental

caries prevalence and indicates the necessary treatments. Moreover, the DMFT index was

recorded to measure the severity of each subject’s dental caries according to the criteria from

the World Health Organization 4th-edition publication of "Oral Health Surveys, Basic

Method" [18].

Clinical examination

Standardized clinical monitoring was performed three weeks before microbiological monitor-

ing. The subjects were submitted to a medical/dental anamnesis, and information regarding

subject age, gender and smoking status was obtained. A trained and calibrated professional

dentist performed the clinical examination. Clinical assessments of the interdental spaces were

performed using an IAP Curaprox colorimetric probe (Curaden, Kriens, Switzerland), and the

diameters of all the interdental spaces of 4 teeth were registered (premolar-molar). At the end

of the examination visit, the participants were instructed to brush their teeth 3 hours before

the sampling visit and not to drink, eat or practice oral hygiene during this period.

Interdental sample collection

For all subjects, the same four interdental sites (15–16, 25–26, 35–36, and 45–46) were assessed

(total of 100 sites). The appropriate CPS prime interdental brushes (Curaden, Kriens, Switzer-

land) were selected based on the clinical assessment of the interdental spaces [19]. Each previ-

ously selected tooth was isolated with sterile cotton rolls and the interdental biofilm was

removed with a sterile, calibrated interdental brush. For each sample, the IDBs were placed in

1.5 mL sterile microcentrifuge tubes and stored at 4˚C until the DNA was extracted one hour

later.

Microbiological analysis

Total deoxyribonucleic acid (DNA) extraction. Total DNA was isolated from the inter-

dental brushes using the QIAcube1 HT Plasticware and Cador1 Pathogen 96 QIAcube1 HT

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s guidelines. The elution vol-

ume used in this study was 150 μL. DNA quality and quantities were measured using an ultra-

violet spectrophotometer. The DNA sample was considered pure if the A260/A280 ratio was

in the range of 1.8–2 and the A260/A230 ratio was in the range of 2–2.2.

Quantitative real-time PCR assays. To quantify the total bacterial load (TB) and that of 6

pathogens (Streptococcus spp., S. mutans, Lactobacillus spp., Enterococcus spp., E. faecalis, and

C. albicans) present in the biofilm interdental samples, qPCR was undertaken using universal

primers for the 16S rRNA genes and species-specific primer sets. Each sample was analyzed in

triplicate.

The Ca strain (DSM No. 6659), Espp strain (Enterococcus faecalis DSMNo. 24916), Ef strain

(DSMNo. 24916), Lspp strain (Lactobacillus casei CIP No. 102237), S. mutans strain (DSMNo.

20523), and Sspp strain (S. mitis DSM No. 12643) were obtained from DSMZ (Germany), the

CIP Collection of the Institut Pasteur or from the BCMM/LMG Bacteria Collection and pro-

vided by Institut Clinident SAS (Aix en Provence, France).

The pathogenic strains were cultivated on the appropriate selective media. The total num-

ber of cells (number of colony forming units) was enumerated three times using a Neubauer

chamber. Serial dilutions ranging from 10xE+2 to 10xE+12 cells were utilized, and each of
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these dilutions was enumerated in duplicate. The DNA from each of these dilutions was

extracted. A standard curve for each pathogen was generated as a plot between the crossing

point (cycle number) and the initial cell count. The TB standard curve was made from Escheri-
chia coli as described by Ott and colleagues [20]. The limit of quantification (LOQ) of the

method for each pathogen is summarized in Table 1.

Simplex quantitative real-time PCR assays were performed in a 10 μL reaction composed of

1× SYBR1 Premix Ex TaqTM Tli RNaseH Plus (TaKaRa, Shiga, Japan), 2 μL of the extracted

DNA and 1 μM of each primer. The bacterial primers used are derived from previously pub-

lished ribosomal 16S sequences and have been adapted to the real-time PCR conditions

(Table 1). Candida albicans primers used in this study are derived from ribosomal 18S

sequence. These PCR primers were manufactured by Metabion International AG (Planegg,

Germany). For each pathogen, a positive and a negative control with sterile distilled water

were included throughout the procedures.

The assays were performed on the Rotor-Gene1 Q thermal cycling system (Qiagen, Hilden,

Germany) with the following program: 95˚C for 30 s, followed by 40 cycles of 10 s at 95˚C, 10 s

at the appropriate annealing temperature (Table 1), and 35 s at 72˚C. For the total bacterial

load and that of all species, a final melting curve analysis (70˚C to 95˚C in 1˚C steps at 5 s

increments) was performed. Fluorescence signals were measured every cycle at the end of the

extension step and continuously during the melting curve analysis. The resulting data were

analyzed using Rotor-Gene1 Q Series software (Qiagen, Hilden, Germany).

Statistical analysis

The statistical analysis consisted of three main steps: producing descriptive summaries of the

data, modeling the data using a mixed (linear) model and assessing the correlations between

bacterial abundances. Prior to these steps, we transformed the original count data to handle

missing data points; that is, the measurements that fell under the quantification threshold

(limit of quantification, LOQ) of the quantitative real-time PCR device. The missing values for

a given species were replaced by half of the corresponding quantification thresholds given in

Table 1. We performed simulations to ensure that this simple strategy provided a reasonable

estimation of the mean and standard deviation of the original count distribution. To test for

potential effects of sex, age, interdental space and the location of each site, we used a mixed

Table 1. Species-specific and ubiquitous real-time PCR primers for 6 pathogens, the annealing temperature, and the limit of quantification.

Target Primer pairs (5’-3’) References Annealing temp (˚C) LOQ

(E+02)

TB CCATGAAGTCGGAATCGCTAGT
GCTTGACGGGCGTGTG

[21] 66 200

Ca ACTTCTGTAAGAGTGCTGGTTC
TGTCGTAATCAAACTCGGTAGC

[22] 54 4

Espp TACTGACAAACCATTCATGATG
AACTTCGTCACCAACGCGAAC

[23] 55 5

Ef CCGAGTGCTTGCACTCAATTGG
CTCTTATGCCATGCGGCATAAAC

[24] 54 5

Lspp TGGAAACAGRTGCTAATACCG
GTCCATTGTGGAAGATTCCC

[25] 62 10

S. mutans GCCTACAGCTCAGAGATGCTATTCT
GCCATACACCACTCATGAATTGA

[26] 66 8

Streptococcus spp. AGAGTTTGATCCTGGCTCAG GTACCGTCACAGTATGAACTTTCC [23] 66 10

LOQ: Limit of quantification; TB: Total bacterial count.

https://doi.org/10.1371/journal.pone.0185804.t001
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linear model for the count abundance of each species at a measured site. This model includes

two categorical variables as fixed effects (sex and mouth location), two numerical variables as

fixed effects (age and interdental space) and one categorical variable as a random effect (sub-

ject). This random effect was introduced for a subject to model the correlation between the

four sites of a given subject. Each coefficient in the regression was tested against the null

hypothesis, which indicated that the coefficient is zero using a likelihood ratio test, and we

reported that p-values less than 0.05 were evidence against the null hypothesis. To perform the

correlation analysis, we used the residuals of the model described above to avoid over-estimat-

ing the inter-site correlation (sites from the same patient are positively correlated, and we

observed that fixed effects can also induce a correlation among sites). The trees associated to

the correlation plot were obtained by hierarchical clustering with complete linkage.

All statistical analyses and associated plots were performed using the R environment (R

Core Team, 2015), specifically the lme4 package [27], to estimate the mixed model.

Results

Age, sex, and clinical characteristics of the study group

The sample group was composed of 15 males and 10 females 20 to 35 years of age with a mean

body mass index of 22.7 (Table 2). Clinically, less than 10% of sites presented BOP after 30 s

and/or overt gingival redness. No PD or PD� 3 mm or CAL> 3 mm were observed. The sub-

jects were characterized by a DMFT index of zero. The mean number of teeth was 28.9 ± 1.2.

Missing teeth were due to absence of the third molars (97%) and orthodontic extractions (3%).

A total of 60% of interdental spaces had a diameter less than 0.7 mm.

Individual pathogen count

The count for the total of bacteria by subject is presented in Fig 2A and S1 Table. The propor-

tion of the 6-evaluated species in the samples is described in Fig 2B and the frequency in

Table 3. Variations between the subjects and the sites in the carriage of certain bacteria were

observed. Subject 21 had high levels of C. albicans, whereas certain other subjects carried S.

Table 2. Age, sex, and characteristics of the full mouth of the study group. The values are the

mean ± standard deviation, and the numbers of subjects are indicated.

Subjects

Age (years) 26.8 ± 4.6

Sex

Male 15

Female 15 10

Body mass index 15 22.7 ± 1.8

Mouth

Teeth 28.9 ± 1.2

Interdental space diameter (%)

0.6 mm 5

0.7 mm 55

0.8 mm 25

0.9 mm 8

1.1 mm 7

Bleeding on probing (%) 0.16 ± 0.08

Plaque index 0.24 ± 0.52

https://doi.org/10.1371/journal.pone.0185804.t002
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mutans, including subjects 2, 8, 9, 16, 23 and 24. Streptococcus spp. and Lactobacillus spp. were

detected (number of bacteria > LOQ) at all tested sites and Enterococcus spp. at 99% of sites

while S. mutans was detected at only 28% of the tested sites. E. faecalis was never detected. In

11% of sites, C. albicans was detected. Among them, at 3 sites, C. albicans represented more

than 80% of the bacteria tested, whereas Streptococcus spp. was only between 11% and 22%

(Fig 2B). In 54.5% of interdental biofilms (6 from the 11 ID sites expressing C. albicans) inhab-

ited by C. albicans, S. mutans was present. Moreover, 28% of the ID sites co-expressed S.

mutans and Lactobacillus spp. Among them, 71.5% revealed a higher quantity of S. mutans
than Lactobacillus spp.

Fig 2. Abundance of pathogens among the subjects. A. Counts of total bacteria among the subjects. The first bar

displays the average proportion of total bacteria in the population. The other bars display the average proportion of

each pathogen in one site. Each subject corresponds to a group of four stacked bars (one for each measured site). B.

Relative abundance of pathogens among the subjects. Percentage of pathogen = Counts of the pathogen / Counts of

the 6 pathogens. The first bar displays the average proportion of each pathogen in the population. The other bars

display the average proportion of each pathogen in one site. Each subject corresponds to a group of four stacked bars

(one for each measured site). Avg: Average.

https://doi.org/10.1371/journal.pone.0185804.g002
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Total genome count and pathogen count

Fig 3A illustrates the abundance of the 6 evaluated pathogens in the collected samples. One

interdental space (ID space) carried on average approximately 1xE10 bacteria. The pathogens

tested presented various levels of expression. Streptococcus spp. was the most abundant species

(3.2xE06 bacteria in one ID space), followed by Lactobacillus spp. (1.1xE05 bacteria in one ID

space) and Enterococcus spp. (2.2xE04 bacteria in one ID space). S. mutans represented an

average of 2.0xE05 bacteria in one ID space for all sites regardless of detection (Table 3). How-

ever, only in 11 of the 25 subjects tested was S. mutans detected (Table 3) with levels ranging

from 3.4xE03 to 3.4xE06 bacteria in one ID space. E. faecalis was not detected. C. albicans was

detected only in 11 sites (Table 3) with amounts varying from 9xE03 to 1.8xE07 bacteria in

one ID space (Fig 3B).

Table 3. Distribution of the pathogens according to sites and subjects. "Positive sites" correspond to the number of sites expressing one pathogenic

species or the total bacteria (TB). "Positive subjects" indicates the number of subjects expressing one pathogenic species or the total bacteria. n: total number

of sites or subjects tested; Sspp: Streptococcus spp.; Sm: Streptococcus mutans; Lspp: Lactobacillus spp.; Espp: Enterococcus spp.; Ef: Enterococcus faeca-

lis; Ca: Candida albicans.

Variable n Sspp Sm Lspp Espp Ef Ca

All Positive sites 100 100 28 100 99 0 11

Positive subjects 25 25 11 25 25 0 7

Age (years)

20–25 Positive sites 44 44 10 44 43 0 1

Positive subjects 11 11 3 11 11 0 1

25–30 Positive sites 24 24 7 24 24 0 3

Positive subjects 6 6 3 6 6 0 3

30–35 Positive sites 32 32 11 32 32 0 7

Positive subjects 8 8 5 8 8 0 3

Sex

Male Positive sites 60 60 11 60 59 0 6

Positive subjects 15 15 4 15 15 0 3

Female Positive sites 40 40 17 40 40 0 5

Positive subjects 10 10 7 10 10 0 4

Arcade

Upper Positive sites 50 50 13 50 50 0 7

Positive subjects 25 25 11 25 25 0 5

Lower Positive sites 50 50 15 50 49 0 4

Positive subjects 25 25 13 25 25 0 4

IDB size

0.6 mm Positive sites 5 5 1 5 5 0 0

Positive subjects 3 3 1 3 3 0 0

0.7 mm Positive sites 55 55 11 55 54 0 7

Positive subjects 20 20 6 20 20 0 6

0.8 mm Positive sites 25 25 9 25 25 0 1

Positive subjects 17 17 7 17 17 0 1

0.9 mm Positive sites 8 8 3 8 8 0 2

Positive subjects 5 5 2 5 5 0 1

1.1 mm Positive sites 7 7 4 7 7 0 1

Positive subjects 4 4 4 4 4 0 1

https://doi.org/10.1371/journal.pone.0185804.t003

Interdental microbiota of young caries-free adults

PLOS ONE | https://doi.org/10.1371/journal.pone.0185804 October 10, 2017 8 / 19

https://doi.org/10.1371/journal.pone.0185804.t003
https://doi.org/10.1371/journal.pone.0185804


Impact of age and sex on the genome count

The comparison of the mean value of each pathogen according to sex and age is shown in Fig

4 and in Table 4. There was a strong increase for C. albicans (more than 200 times), for Entero-
coccus spp. (5.8 times) and a significant decrease for S. mutans (3.5 times) between the subjects

aged from 20 to 25 years and those aged 30 to 35 years (p<0.05, T-test). The other pathogens

tested did not appear to be affected by age. No significant differences were observed by sex.

Impact of arcade location and interdental space diameter

The comparison of the mean value of each pathogen according to arcade location and the

interdental space diameter is shown in Fig 5 and in Table 4. The TB and the quantity of patho-

gens were not significantly affected according to arcade location. The genome counts of Strep-
tococcus spp., S. mutans, Lactobacillus spp., and Enterococcus spp. increased with the diameter

of the interdental space except for the diameter of 0.9 mm, where the quantity was lower than

for the diameter of 0.8 mm. In parallel, the number of the fungi C. albicans increased signifi-

cantly for diameters ranging from 0.6 to 0.9 mm and decreased for the diameter of 1.1 mm.

Pathogen correlations

The dendrogram (Fig 6) underscores the correlations between our 5-pathogenic species and

the 100 measured ID sites. Even after the removal of the fixed effects related to interdental

space and age, and the subtraction of the inter-site correlations, the matrix still reveals a strong

correlation structure, which appears as two groups (or clusters) of correlated species. The fun-

gus C. albicans and the bacteria Enterococcus spp. cluster together, whereas Streptococcus spp.,

S. mutans and Lactobacillus spp. form one distinct cluster.

Discussion

To the best of our knowledge, this is the first report regarding the absolute quantification of

cariogenic pathogens detected in interdental biofilms from caries-free young adults. An under-

standing of the process associated with the initiation and progression of interproximal cario-

genic diseases could be of great help in establishing effective ways to prevent this disease. In

terms of oral health, the interdental space represents a very specific location. Anatomically, it

is hardly accessible to brushing. Physiologically, many bacterial species are present, including

virulent ones [28]. It is not only the location where periodontal diseases such as gingivitis and

periodontitis are initiated but also the location of the initiation of interproximal caries.

Oral streptococci are major constituents of dental plaque [29]. They initiate the coloniza-

tion process and represent more than 80% of the early biofilm constituents [30]. Their high

Fig 3. Abundance of bacterial species among the interdental sites. A. Box plots representing, for each

pathogen, the first, median, and third quartiles, from bottom to top. The first box on the left corresponds to the

total bacteria (TB). TB: total bacterial load. B. Count of C. albicans according to sites.

https://doi.org/10.1371/journal.pone.0185804.g003
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abundance and their high prevalence (100% of ID biofilms tested were positive) suggest that

they can act as a factor in the formation of oral biofilm [31].

The gender, the age and the arcade location do not impact the colonization of the ID bio-

film by Streptococcus spp. The genus Streptococcus contains several species, including in partic-

ular but not exclusively Streptococcus mutans, Streptococcus oralis, Streptococcus sanguinis,
Streptococcus mitis, Streptococcus gordonii, and Streptococcus sobrinus. During the carious pro-

cess, these different species may play various roles [32].

Although not considered an early colonizer, the best-studied oral streptococci is the oppor-

tunistic pathogen S. mutans [33, 34]. Its prevalence in human caries cases ranges from 70 to

100% [33]. S. mutans has been linked to crown caries in children and adolescents [35, 36] and

to root caries in elderly patients [37]. S. mutans was found extensively in caries-active subjects

[35, 36, 38]. Its role in caries development is well established [39]. Its metabolic activity but not

Fig 4. Quantification of the pathogens according to age and sex. Total counts from each pathogen were

averaged across sites in each subgroup. Error bars represent standard deviations. Comparisons: * p<0.05, by using

SUDAAN 7.0 (procedures DESCRIPT and REGRESS) to account for clustering (multiple sites within the subjects).

https://doi.org/10.1371/journal.pone.0185804.g004
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its concentration impacts its pathogenicity [40]. However, due to the complex interspecies

interactions, there is also evidence to suggest that other species of oral streptococci may have

different roles in the caries process [41].

The results demonstrate that only 28% of subjects carried S. mutans. A decrease of 3.5 times

is observed between the aged subjects from 20 to 25 years and those aged from 30 to 35 years.

Therefore, the older the caries-free subjects are, the lower the quantity of S. mutans detected in

the ID biofilm. However, the frequency of subjects carrying S. mutans increased between the

20 to 25-year-old (27.2%) and 30 to 35-year-old (62.5%) subject groups. S. mutans could be

responsible for the future carious interproximal lesions observed in adults on the distal surface

of premolars [42]. Otherwise, Dani and colleagues [43] have demonstrated that the coloniza-

tion of S. mutans was increased in chronic periodontitis subjects both in saliva and sub-gingi-

val plaque samples [43]. Our previous study determined that periodontally healthy young

adults carried periodontopathogenic bacteria in their ID biofilm [28]. Thus, interacting with

these bacteria, S. mutans could also play a crucial role in future periodontal diseases. A change

in the subject dental risk—from cariogenic to periodontopathogenic—could occur with age.

This hypothesis is supported by previous results. The prevalence of periodontal diseases signif-

icantly increases in subjects older than 35 years [44]. Moreover, the microbial shift observed

according to age in the supragingival biofilm and in saliva from individuals with healthy oral

conditions may contribute to the initiation and prevalence of a specific oral disease according

to age [12].

Lactobacillus spp. appear to be associated with dental carious lesions, like cariogenic bacte-

ria, especially in the progression of caries of dentin [36, 45]. As these bacteria are unable to

bind to hard, smooth surfaces, they are found in retentive zones such as pits and fissures or

deep cavities. Lactobacillus spp. shows a high tolerance to low pH media [46].

Our study reveals that Lactobacillus spp. was present in all the caries-free subjects. Previous

studies established a strong correlation between the Lactobacillus spp. counts in the oral cavity

and dental caries [46]. The higher the DMFT index was, the higher the number of children

Table 4. Average abundance of the 6 pathogens in various subgroups. The column labelled “TB” indicates the mean abundance of the total bacteria,

whereas the other columns indicate the mean abundance of each pathogen species. Data are expressed as the mean ± standard deviation. n: number of

sites; TB: total bacterial load.

Variable n TB Sspp Sm Lspp Espp Ef Ca

All 100 1.7xE10 ± 1.9xE10 3.2xE06 ± 4.2xE06 2.0xE05 ± 5.7xE05 1.1xE05 ± 1.4xE05 2.2xE4 ± 6.5xE04 0.0 3.6xE05 ± 2.2xE06

Age (years)

20–25 44 1.1xE10 ± 1.1xE10 3.1xE06 ± 4.9xE06 3.0xE05 ± 7.6xE05 1.0xE05 ± 1.5xE05 1.0xE04 ± 1.4xE04 0.0 5.2xE03 ± 3.5xE04

25–30 24 1.5xE10 ± 1.7xE10 3.3xE06 ± 4.0xE06 1.8xE05 ±4.2xE05 1.4xE05 ± 1.9xE05 4.2xE03 ± 9.1xE03 0.0 2.2xE04 ± 9.1xE04

30–35 32 2.5xE10 ± 2.4xE10 3.2xE06 ± 3.8xE06 8.4xE04 ± 2.8xE05 9.7xE04 ± 6.5xE04 5.8xE04 ± 1.1xE05 0.0 1.1xE06 ± 3.8xE06

Sex

Male 60 1.5xE10 ± 2.1xE10 2.9xE06 ± 3.5xE06 2.0xE05 ± 6.1xE05 8.9xE04 ± 1.3xE05 2.2xE04 ± 7.2xE04 0.0 5.9xE05 ± 2.8xE06

Female 40 1.9xE10 ± 1.5xE10 3.5xE06 ± 5.3xE06 2.1xE05 ± 5.1xE05 1.4xE05 ± 1.5xE05 2.1xE04 ± 5.4xE05 0.0 1.7xE04 ± 7.8xE04

Arcade

Upper 50 1.8xE10 ± 2.3xE10 3.5xE06 ± 5.1xE06 1.9xE05 ± 5.0xE05 1.0xE05 ± 1.1xE05 3.3xE04 ± 8.9xE04 0.0 3.8xE05 ± 2.6xE06

Lower 50 1.5xE10 ± 1.4xE10 2.8xE06 ± 3.2xE06 2.2xE05 ± 6.4xE05 1.2xE05 ± 1.6xE05 1.1xE04 ± 1.7xE04 0.0 3.5xE05 ± 1.8xE06

IDB size

0.6 mm 5 9.8xE09 ± 6.4xE09 1.2xE06 ± 1.1xE06 2.1xE04 ± 4.6xE04 8.9xE04 ± 3.0xE04 3.0xE03 ± 1.7xE03 0.0 0.0

0.7 mm 55 1.3xE10 ± 1.1xE10 2.1xE06 ± 2.6xE06 1.1xE05 ± 3.7xE05 9.4xE04 ± 1.3xE05 7.9xE03 ± 1.4xE04 0.0 2.5xE04 ± 1.0xE05

0.8 mm 25 1.9xE10 ± 1.9xE10 4.3xE06 ± 4.2xE06 3.3xE05 ± 8.3xE05 1.1xE05 ± 1.6xE05 3.8xE04 ± 1.1xE05 0.0 4.6xE05 ± 2.3xE06

0.9 mm 8 3.3xE10 ± 4.2xE10 2.3xE06 ± 1.6xE06 2.2xE05 ± 5.3xE05 1.1xE05 ± 6.2xE04 2.8xE04 ± 5.7xE04 0.0 2.9xE06 ± 6.4xE06

1.1 mm 7 2.6xE10 ± 2.2xE10 1.1xE07 ± 9.0xE06 5.5xE05 ± 8.7xE05 2.4xE05 ± 1.7xE05 7.8xE04 ± 1.1xE05 0.0 1.7xE04 ± 4.4xE04

https://doi.org/10.1371/journal.pone.0185804.t004
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harboring a high Lactobacillus count [47]. In some cases, they detected Lactobacillus spp. in the

plaque of some caries-free children but at very low levels [48]. So, the fact that Lactobacillus spp.

was detected in 100% of interdental biofilm of young caries-free subjects can be explained by (i)

the higher sensitivity of the quantitative PCR compared to the culture bacteria methods [49, 50]

and (ii) the age of the subjects, who are older than in other studies that focused on children.

Lactobacillus spp. represented 1.1xE05 bacteria in one ID space from young caries-free

adults. Previously, some studies suggested a correlation between the Lactobacillus spp. count

and caries activity, especially in children [50, 51]. Arino and colleagues [52] noticed that sub-

jects with a Lactobacillus spp. level in the saliva higher than 1xE04 CFU/mL were vulnerable to

caries. The absence of carious lesions in young adults with a high level of Lactobacillus spp.

could be due to their potential suppressive effect on cariogenic microorganisms. From a review

of the literature, various studies have shown that Lactobacillus spp. inhibits the growth of S.

mutans both in vitro and in vivo [53–55]. However, contrasting findings have also been

Fig 5. Quantification of the pathogens according to location and interdental spaces diameter. Total

counts of each pathogen were averaged across sites in each subgroup. Error bars represent standard

deviations. Comparisons: * p<0.05, by using SUDAAN 7.0 (procedures DESCRIPT and REGRESS) to account

for clustering (multiple sites within the subjects) Mx: maxillary; Md: mandibulary.

https://doi.org/10.1371/journal.pone.0185804.g005
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reported [56]. These variations in Lactobacillus colony count in different studies can be attrib-

uted to the fact that not all strains of the Lactobacillus family have an inhibitory effect. The Lac-
tobacillus spp. exerts its anticariogenic activity in various ways [55, 57]. Moreover, the absence

of signs of periodontal disease in the studied subjects could be due to the capacity of Lactoba-
cillus spp. to inhibit periodontopathogens, such as Porphyromonas gingivalis [58].

Previous studies showed that the mutans group of Streptococci and the Lactobacillus could

have a role in the induction of root surface caries [47, 59]. Interestingly, in young caries-free

adults, 28% of the tested sites co-express S. mutans and Lactobacillus spp., and among them,

71.5% revealed a higher quantity of S. mutans than Lactobacillus spp. Moreover, these two-bac-

terial species cluster together. So, these two bacteria could be predictive markers for interproxi-

mal caries.

Another cluster of pathogens is composed of Enterococcus spp. and C. albicans. Enterococci

may cause a variety of oral infections. Surprisingly, there is little data concerning their oral

incidence and prevalence [60]. In our cohort, 99% of caries-free young adults carried Entero-
coccus spp that is higher than previously described by Sedgley and colleagues (20%) [61].

Komiyama and colleagues [62] detected Enterococci in the saliva of 14% of young adults

whose periodontal and cariogenic status were not determined. Two main reasons could

explain this difference. First, our study analyzed the interdental biofilm, while all other studies

focused on the saliva, the lingual biofilm, or the supragingival biofilm. Second, we quantified

bacterial amounts by real-time PCR and not by bacterial culture.

The quantity of Enterococcus spp. is lower in 30 to 35-year-old subjects than in 20 to

30-year-old subjects. This age-related difference was previously described in the saliva of sub-

jects whose oral status was not determined [62].

To the best of our knowledge, this is the first report of arcade location variations in the oral

carriage of Enterococcus spp. Gender does not impact the colonization of the interdental

Fig 6. Correlation plot of the abundances of the bacterial species, corrected for age, interdental space

and individual-specific effects. The pink, white, and blue squares indicate positive, zero, and negative

correlations, respectively.

https://doi.org/10.1371/journal.pone.0185804.g006
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biofilm by Enterococcus spp. Conversely, Komiyama and colleagues [62] described that females

are higher carriers than males.

Among the genus Enterococcus, E. faecalis is the most detected in the oral cavity [62],

although it is not a common of the healthy oral flora [60, 63]. E. faecalis strains can cause seri-

ous nosocomial infections and are implicated in dental diseases as caries, periodontitis, end-

odontic infections, and periimplantitis [63–67].

In our study, E. faecalis was not detected, similar to previous reports that observed that the

prevalence of this bacterium was lower in healthy individuals (0–20%) [68, 69] than in patients

with dental diseases (up to 68%) [64, 70]. This confirms that E. faecalis is not a constituent of

the oral microbiota. Further investigations are needed to determine which species of enterococ-
cus are present in the interdental biofilm from caries-free adults.

Despite the fact that the key pathogens for dental caries are bacteria, previous studies have

described C. albicans as greatly contributing to caries pathogenesis, particularly in children,

adolescents and young adults [71, 72]. This opportunistic fungus is a common constituent of

the oral biofilm [73] and can colonize surfaces of the oral cavity, such as the palate, cheek, ton-

gue, and the hard surfaces of the teeth. As a consequence of this oral surface colonization, this

fungus is also present in saliva [74].

Previous studies have demonstrated that the abundance of this yeast is a sign of high caries

risk in children [75, 76]. In adults, our results showed that 28% of the subjects were carrying C.

albicans in their interdental biofilm. This result is consistent with previous studies on saliva or

supragingival biofilm [77, 78], in which oral carriage rates of Candida ranged from 5 to 75%,

respectively.

Fungal colonization by C. albicans is more abundant in the ID biofilm of males than of

females but is not more frequent. Moalic and colleagues [71] described contradictory results.

In their study, the fungal colonization of the supragingival biofilm was more frequent in males

than in females but was not more abundant. To explain our results, several hypotheses involv-

ing factors not measured in this study are conceivable: (i) the salivary flow could be decreased

in females leading to a decrease in colonization [79]; (ii) low levels of pH of the male oral cavity

could favor the adhesion and the proliferation of Candida yeast [79]; and (iii) the blood group

H antigen functions as a receptor for C. albicans [80].

No significant differences were noted in the incidence of C. albicans according to age. How-

ever, the frequency of C. albicans by site was higher with age. These results complement those of

Zaremba and colleagues [81], who observed that the frequency of Candida spp. was higher with

age in a population aged 56 to 92 years. Moreover, we demonstrated that the mean number of C.

albicans increases with age. In 54% of ID biofilms inhabited by C. albicans, S. mutans is present,

which supports the symbiotic role of the two species [82, 83]. Numerous studies are investigating

the possible role of C. albicans as a carious risk marker. However, this role seems to be called into

question. Recent studies in vitro have suggested that C. albicans prevents caries [84, 85].

Finally, several of the studied oral pathogens are responsible for systemic diseases. C. albicans
can form potentially lethal fungal masses in the heart, kidney, and brain [86, 87]. Enterococcus
spp. and S. mutans are known to be associated with bacteremia and infective endocarditis [88,

89]. Therefore, as previously demonstrated, 34.8% of young periodontally healthy subjects with

ID biofilm bled [90]. The presence of these pathogens in the ID biofilm of young adults repre-

sents a danger and must be prevented.

Conclusions

The ID biofilm of young caries-free subjects is composed of pathogens—Streptococcus spp., S.

mutans, Lactobacillus spp., Enterococcus spp. and C. albicans—that are able to induce
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interproximal caries but that are also able to act in the periodontal process. Moreover, the

potential involvement of these pathogens in systemic diseases is a strong argument in favor of

taking into consideration the need to disrupt the ID biofilm in oral prophylaxis.
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