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Abstract

Background: DNA methylation has been identified to be widely associated to complex diseases. Among biological
platforms to profile DNA methylation in human, the Illumina Infinium HumanMethylation450 BeadChip (450K) has
been accepted as one of the most efficient technologies. However, challenges exist in analysis of DNA methylation
data generated by this technology due to widespread biases.

Results: Here we proposed a generalized framework for evaluating data analysis methods for Illumina 450K array. This
framework considers the following steps towards a successful analysis: importing data, quality control, within-array
normalization, correcting type bias, detecting differentially methylated probes or regions and biological interpretation.

Conclusions: We evaluated five methods using three real datasets, and proposed outperform methods for the
Illumina 450K array data analysis. Minfi and methylumi are optimal choice when analyzing small dataset. BMIQ and RCP
are proper to correcting type bias and the normalized result of them can be used to discover DMPs. R package
missMethyl is suitable for GO term enrichment analysis and biological interpretation.
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Background
DNA methylation is an important epigenetic modifica-
tion which has shown numerous associations with bio-
logical processes and complex diseases such as diabetes,
schizophrenia and cancer [1–4]. However, the methylomic
landscape in disease pathogenesis has not yet been well
characterized, especially in cancer where DNA methy-
lation can be altered dramatically. Interests of exploring
the associations between DNA methylation and complex
diseases increase in disease studies.

Illumina Infinium HumanMethylation450 (450K) Bead-
Chip array, which covers over 480K CpG sites and targets
96% of CpG islands in human genome [5], has been
widely utilized in many large studies, such as The Can-
cer Genome Atlas (TCGA) and The International Cancer
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Genome Consortium (ICGC) Project [6]. With the avail-
ability of public data resources, a number of methods for
analyzing the Illumina 450K array data became rapidly
available in the past few years.

Unlike the previous platform Illumina Infinium Human-
Methylation27 (27K) BeadChip, in which only one probe
type is utilized, the Illumina 450K BeadChip includes
two distinct probe types, Infinium I (n = 135501) and
Infinium II (n = 350076) [5]. Each CpG site of Infinium I
is targeted by two 50bp probes: one for detecting “methy-
lated” (M) intensity and one for detecting “unmethylated”
(U) intensity, whereas each CpG site of Infinium II uses
just one probe to distinguish “M” and “U” intensity
through different dye colors (green and red), then the β-
value, indicating the methylation level of one CpG site, can
be computed as β = M/(M+U+α) where α is 100 gener-
ally. M-value, M = log2(β/(1 − β)), the logit-transformed
β-value, is another quantity used in following up analysis.
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Owing to the platform design, more loci could be tested
simultaneously on a fixed array size. Bibikova et al. [5]
report a difference between Infinium I and Infinium
II that Infinium II assays demonstrate an average of
β-value upward shift for U and downward shift for M
(shown in Fig. 1). Dedeurwaerder et al. [7] further eval-
uated the Illumina 450K BeadChip and reported that the
β-values obtained from Infinium II probes had a nar-
rower dynamic range and were less reproducible than
those obtained from Infinium I leading to a type design
bias. Hence, data preprocessing and normalization is crit-
ical for analyzing the Illumina 450K array data. Although
many methods and R packages for correcting probe design
bias have been proposed [8–14], more attention should
be paid on the entire framework for analyzing Illumina
450K array data and selecting different modules on var-
ious datasets. Here we present a generalized framework
including importing data, quality control, within-array
normalization, correction of the type bias, identification
of differential methylated probes or regions and biolog-
ical interpretation, whilst the most popular modules for
each step will be introduced, facilitating users to select
appropriate module according their needs.

Methods
Figure 2 shows the diagram of the framework and the
detail of each step will be introduced below.

Importing data
There are mainly two forms of the Illumina 450K array
data: i) raw (*.idat) data which is the direct output from
Illumina iScan system and stores intensities for each

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
β − value

D
en

si
ty

Infinium Type
I
II

Fig. 1 Density curves of the β-values of Infinium I and Infinium II of a
HPV-HNC sample (GSM937820 in GSE38268). The distribution models
of β-values of the two types’ probes are different, where the Infinium
II probe’s curve shows a narrower dynamic range

Fig. 2 A generalized framework of Illumina 450K array data analysis.
There are six steps in the generalized framework leading to a
successful methylation data analysis

probe, ii) *.txt data, which is usually got after simple pre-
processing and is easier to access. Both file formats can
be handled by R packages: *.idat files can be read by
illuminaio package [15] and *.txt files can be dealt with
minfi [12], wateRmelon [11] et al. We use three datasets
for expounding our framework.

Dataset 1: Illumina 450K dataset from Dedeurwaerder
et al. (GEO accession number: GSE29290) [7]. Three sam-
ples on HCT116WT cell-lines are considered, to evaluate
the capability of methods to reduce the replicate variation.

Dataset 2: Illumina 450K dataset of fresh frozen head
and neck cancer (HNC) samples form GSE38268 [16],
where three of them are HPV+ and other three are HPV-
samples.

Dataset 3: Illumina 450K dataset of level 1 methylation
data of TCGA KIRC samples, which are *.idat files con-
taining 160 normal samples and 325 tumor samples, to
evaluate the efficiency of different modules.

Quality control
After the data imported into R, we would evaluate the
quality of data. First, probes displaying a high detected
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p-value should be filtered out (e.g. > 0.01), while such
probes have a β-value of “NA” in *.txt files. It is worth
mentioned that different strategies of assigning missing
β-value are applied in different modules. In minfi, the
β-values are assigned with “NAs” when both M and U
intensities are zero, but an additional criteria is that “NAs”
will be assigned if either M or U intensities don’t flu-
oresce above background. Second, there are 850 inbuilt
control probes on the 450K array, such as bisulfite con-
version I, bisulfite conversion II, extension, hybridization
and negative (n = 613), which can be used to evaluate the
other probes’ intensities. Samples that can’t pass this qual-
ity control are excluded in further analysis. Third, probes
on Chromosome X or Y should be filtered out to elimi-
nate the impact of sex on differential methylated analysis
in many studies. Fourth, Price ME et al. [17] reported
that there were 4.3% of Illumina 450K probes containing a
known SNP at the targeted site. Such probes should cause
problems in inter-sample analysis. Last but not the least,
cross-reactive probes on the Illumina 450K array are iden-
tified depending on [18], which is particularly problematic
because the β-value of such probes is more likely to rep-
resent a combination of multiple sites and not the level of
initially targeted CpG sites.

Within-array normalization
This step includes background correction and color
bias adjustment. Background correction methods have
been developed by Triche et al. [19] such as Noob and
Normexp, which are based on convolution models and
use out-of-band (OOB) probes intensities to measure
the background. The lumi R package provides two dif-
ferent methods for eliminating the background. The first
one is based on the negative-control probes inbuilt the
BeadChip and the second one estimates the background
from the density modes of probes intensities. The second
one would show bad performance when there are more
than two density modes for some sample. The popular
methylumi R package [20] proposed a color bias adjust-
ment based on smooth quantile or shift-and-scaling
normalization. Globally, these methods seem to improve
the data quality in some cases [7].

Correction of the type bias
The type bias is the one that is most crucial to correct as it
is the main source decreasing the data quality. There have
been several efforts to develop methodologies to correct
the probe type bias because of the differences between
Infinium I and Infinium II. Because Infinium I probes
are more stable and reproducible across different samples,
most methods reduce the bias of Infinium II rather than
Infinium I probes.

The first method is called peak-based correction (PBC)
[7], which rescale the methylation values of Infinium II to

the same modes for distribution of methylation values of
Infinium I. But this method is sensitive to the shape of
β-value density curves and is therefore less robust when
the methylation density distribution does not exhibit well-
defined peaks.

Touleimat and Tost [8] developed a method called
Subset Quantile Normalization (SQN) based on an
assumption that the β-values of CpGs form the same
biological category should have the same density distri-
bution. They found that the normalization result of using
the “relation to CpG” annotation perfectly corrected
the bias.

Subset-quantile Within Array Normalization (SWAN)
[10] was developed based on the assumption that the
β-values distribution should be the same when the probes
have the same number of CpGs. But SWAN also alters
Infinium I probe data, which increases Infinium I tech-
nical variation, and does not seem to improve the data
quality when applied to some datasets [21].

Beta Mixture Quantile normalization (BMIQ) [9]
method decomposes the density profile of Infinium I and
Infinium II probes by fitting a beta-mixture model of three
states: unmethylated (default β-value<0.25), hemimethy-
lated (default 0.25≤ β-value<0.75) and fully methylated
(default β-value≥0.75). Then it uses a quantile normaliza-
tion to fit β-values distribution of Infinium II to the corre-
sponding β-values distribution of Infinium I. This method
does not depend on unceremonious choices of biological
characteristics to be used to normalize data. Thus it seems
more suitable than other methods. However, some points
appear worse after BMIQ correction.

Another method, called Regression on Correlated
Probes (RCP) [14], uses a quantile linear regression model
of correlation between pairs of nearby Infinium I and II
probes that share the same genomic context to adjust the
methylation levels of Infinium II probes. The weakness of
RCP is that it may not fit some experimental data leading
to a result worse than raw data.

While background is important for measuring abso-
lute methylation levels for single sample/condition exper-
iments, we ignore the background here in this analysis
since it can be cancelled out when comparing two con-
ditions. As shown by other studies [22], widely used nor-
malization process, which is based on the assumption that
the majority of signals should not change across compared
conditions, usually makes mistakes when it was applied
to experiments where large portions of signals are differ-
entially expressed. Thus, with a good quality control on
the analyzed datasets, we didn’t choose to apply common
normalization strategies.

It is also important to remove non-biological variation
called batch effects existing between batches and sam-
ples. Such batch effects can influence on measurement
of global level that could be partially removed through
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between-sample normalization using principal compo-
nent analysis.

Identification of DMPs/DMRs
As we mentioned above, the main focus of many
methylation studies has been on detecting differentially
methylated probes (DMPs) or regions (DMRs) associ-
ated with a phenotype. The β-value is the default value
for methylation measurement, allowing easy biological
interpretation. Another type of value, M-value, is used to
express the degree of methylation obtained with Infinium.
Due to the heteroscedasticity of β-value, the variance of
M-value across the methylation range is approximately
constant, so the M-value has better statistical properties.
The two types of value are used in different methods.

SQN simply considers a probe as DMP if the absolute
value of the difference between β-value medians of paired
samples is higher than 0.2:
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where βN
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i corresponding β-values of paired nor-
mal and tumor samples. The 0.2 threshold represents
approximately a difference in methylation level of 20%
which can be detected by the Infinium technology with
99% confidence [5]. Then the corresponding differentially
methylated gene identities can be obtained from the list
of DMPs.

Minfi offers a comprehensive package to analyze Illu-
mina 450K array data, where candidate regions are deter-
mined for DMR analysis and locally weighted scatterplot
smoothing (LOESS) is adopted to smooth the methyla-
tion differences between groups within each determined
region. It also can find long-range alterations such as iden-
tified hypomethylated blocks [23] based on “open sea”
probes. A empirical Bayes moderated t-test is used in
limma [24] when sample sizes are less than 10, in which
case M-values should be used as they rely much more on
Gaussianity assumption [25].

Generally, DMRs are detected by applying various sta-
tistical techniques such as Fisher’s exact test [26, 27], t-test
[27], Wilcoxon rank sum test [28] or different regression
models [29–31].

Biological interpretation
There is a long list of significant CpGs to be inter-
preted after differential methylation analysis. Using the
Infinium annotation file, Illumina 450K probes are clas-
sified according to their relations to CGIs and to the
closest annotated gene. Regarding their relation to CGIs,
the probes are classified into four categories: sites located
inside a CGI, sites located in the CGI shores (0-2k bp),
sites located in the CGI shelves (2-4k bp) and sites located
in the “open sea”. As regards their relation to annotated

genes, the sites are categorized as inside the promoter,
inside the 5’-UTR region, inside the gene body and inside
the 3’-UTR region. Then the significant DMPs can be
marked with their related genes.

Performing gene set analysis is a popular way to under-
stand the affected potential gene pathways. Although gene
set analysis is well established in gene expression exper-
imental, the research in methylation data is ongoing in
different groups. In Illumina 450K array, the numbers
of CpGs associated with each gene ranges largely from
1 to 1299 [32]. Genes with larger numbers of probes
are more likely to have significant differentially methy-
lated CpGs [33]. With the ontology and knowledgebase
developing [34–40], researchers can easily annotate the
genes containing DMPs or DMRs to ontology entries,
which brings convenience for understanding the func-
tion of genes in the pathogenesis of diseases. Obviously,
a phenotype is associated with several -omics data, such
as mRNA expression and protein expression, which sug-
gests researchers should utilize integrated analysis with
multi-dimension data like TCGA project does [41, 42].

Results
Reduce the technical variation and type bias
We evaluated the different modules of correcting
methods including SQN, SWAN, Dasen, BMIQ and RCP
methods on Dataset 1, described in Table 1. The methy-
lated and unmethylated intensities are imported into R
environment and some results are displayed in following
figures. For each method, we first plotted the density
curves of β-value for three samples in Dataset 1. Then,
we computed the standard deviation across the three
replicates.

As seen, SQN, Dasen and RCP can significantly reduce
the technical variation (Fig. 3) and the same result can
be seen base on standard deviation of replicates (Fig. 4).
Because BMIQ and RCP do not change the β-values of
Infinium I probes, the standard deviation of Infinium I
probes of the two methods stays the same as the raw data.
SWAN shows the least ability of reducing the variation
among replicates.

We also plotted the density curves of β-value of
Infinium I/II probes for different methods. BMIQ, RCP
and SQN show similar performance on the sample

Table 1 Normalization methods for Illumina 450K array data

Method Object R Package Ref.

SQN MethyLumiSet wateRmelon [8, 11]

SWAN RGChannelSet minfi,wateRmelon [11, 12]

Dasen MethylSet wateRmelon [11]

BMIQ β-value, MethylSet ENmix [9, 13]

RCP MethylSet ENmix [13]
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Fig. 3 Density curves of β-value of replicates. Density curves of all probes after normalization using different methods are shown in this figure. The
separate color represents replicates of the dataset. Raw data shows that there are differences among the replicates, while SQN, Dasen and RCP
significantly reduce the technical variation

GSM815136 such that the Infinium I and Infinium II
probes have more similar distribution modes with same
local maximum values, while Dasen and SWAN underper-
formed others regarding removing the type bias (Fig. 5).

Identify DMPs/DMRs by preprocessed results of different
methods
We used the dmpFinder function in minfi R package to
evaluate the result of identifying DMPs obtained by the

five methods. We selected the probes with p-value of the
results obtained after dmpFinder less than 0.05 as DMPs.
The number of DMPs of five methods is listed in Table 2.
Then the Venn diagram of the detected probes was plot-
ted, shown in Fig. 6. As shown in Fig. 6, BMIQ and RCP
methods show larger overlap with other methods, where
the ratio of common probes is 43.41% (7370/16977 in
BMIQ) and 39.42% (7370/18696 in RCP). Moreover, the
most probes identified after BMIQ have intersections with

Fig. 4 Box plot of standard deviation across replicates. The standard deviation between replicates after normalization shows that SQN, Dasen and
RCP make the normalized β-values of replicates more similar than other two methods
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Fig. 5 Density curves of β-value of two types in sample GSM815136
for different methods. Density curves of β-values of Infinium I/II
probes are plotted with different colors. BMIQ, RCP and SQN can
correct the type bias efficiently on this sample

others and only 311 probes (311/16977 = 1.83%) are
identified uniquely. But it is also shown that there are dif-
ferences among results of different methods, which maybe
caused by the models they applying to normalization.
Then the GO term enrichment analysis were analyzed
with gometh function in missMethyl package. The GO
terms of FDR≤0.05 of five methods were got (see Table 2)
and the Venn diagram of GO terms obtained after normal-
ization is shown in Fig. 7. RCP got the highest rate of com-
mon (42/76 = 55.26%) GO terms among the five methods
and SQN got the most number (n = 199) of GO terms of
which 33.67% (67/199) identified by only this method.

Efficiency of large dataset analysis
We use Dataset3 to evaluate the performance of minfi and
meffil [43] in term of importing large data. It took 48 min
and less than 3 Gb memory to import data of 485 samples
(970 *.idat files) using meffil package on a computer with
8 Gb of RAM and 4 processors while minfi could not run
on the same computer. Minfi took two hours and ∼ 23 Gb
memory on a server to import the same dataset.

Discussion
In this study we propose a generalized framework for Illu-
mina 450K data analysis. We evaluate five methods for

Table 2 The number of obtained DMPs and GO terms by five
methods

SQN SWAN Dasen BMIQ RCP

#DMPs 19356 19667 17903 16977 18696

#GO term 199 125 145 85 76

Fig. 6 Venn diagram of DMPs obtained by five methods. After
filtering probes with p-value<0.01, we use dmpfinder in minfi to
identify DMPs with p-value<0.05. BMIQ and RCP can lead to better
results than other three methods

correcting type bias. Analysis of reducing technical repli-
cates showed that different methods optimized different
assessment criterion. The summary table of evaluation is
shown in Table 3, where the score is set to 1 if there is
significant change using the method, otherwise the score

Fig. 7 Venn diagram of GO terms obtained by five methods. There
are 42 common GO terms identified by five methods. RCP has the
highest rate of common terms (42/76 = 55.26%). SQN discovers
most terms but 33.67% of them are identified by only this method
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Table 3 Summary of evaluation of five methods

Replicate Standard Type bias DMPs GO terms Total
variation deviation

SQN 1 1 1 0.5 0.5 4

SWAN 0.5 0.5 0.5 0.5 0.5 2.5

Dasen 1 1 0.5 0.5 0.5 3.5

BMIQ 0.5 0.5 1 1 1 4

RCP 1 1 1 1 1 5

If there is significant change, score of the method is set to 1, otherwise the score is
set to 0.5

is set to 0.5. RCP gets the highest total score based on
mentioned criteria.

The SQN, Dasen and RCP methods could significantly
improve the replicated data quality, while SWAN and
BMIQ didn’t show improvement of the replicates. SWAN
and Dasen didn’t remove type bias as other methods,
which might be due to that models they applying cannot
fit the distribution of Infinium I well as other methods.

When evaluation focused on detecting DMPs, BMIQ
and RCP got more overlapped DMPs and credible GO
terms than other methods. It is should pointed out that
result may vary largely when using different datasets,
which will be validated in further work.

Illumina MethylationEPIC BeadChip [44] microarrays
have been used in some project, which contain more
probes on a single array. More efficient tools are in urgent
need of merging 450K and EPIC array data and the effi-
ciency of analysis should be considered. Minfi has been
utilized widely but it cannot handle large dataset on per-
sonal computer in our view while the newly package meffil
displayed surprising performance.

During the evaluating processing, there were conflicts
between R packages, for example, the MethylSet object
in wateRmelon and minfi are different because the one
in minfi has been updated in the newest version while
the wateRmelon still use the previous object constructor.
It is should be noticed in case of using different version
of them.

Conclusions
It is suggested that the Illumina 450K users should choose
proper strategy about importing data, background elimi-
nating, correcting dye bias, correcting the type bias and
detecting DMPs or DMRs. When analyzing small dataset,
minfi and methylumi are optimal choice to import data
and SQN, BMIQ and RCP may be proper to correcting
the Infinium I/II bias. R package missMethyl is suitable for
GO term enrichment analysis and biological interpreta-
tion. In our view, minfi is a proper R package to import
data, eliminate background and ENmix package can be
used to correct the type bias, then the normalized data
should be used in the remaining steps of the framework.
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