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Some bacteria and archaea possess an immune system, based
on the CRISPR-Cas mechanism, that confers adaptive immunity
against viruses. In such species, individual prokaryotes main-
tain cassettes of viral DNA elements called spacers as a mem-
ory of past infections. Typically, the cassettes contain several
dozen expressed spacers. Given that bacteria can have very large
genomes and since having more spacers should confer a bet-
ter memory, it is puzzling that so little genetic space would be
devoted by prokaryotes to their adaptive immune systems. Here,
assuming that CRISPR functions as a long-term memory-based
defense against a diverse landscape of viral species, we identify
a fundamental tradeoff between the amount of immune mem-
ory and effectiveness of response to a given threat. This tradeoff
implies an optimal size for the prokaryotic immune repertoire in
the observational range.
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A ll living things from bacteria to the whale are under con-
stant threat from viruses. To defend against these threats,

many organisms have developed innate mechanisms that make
it harder for infections to occur (e.g., by impeding entry of
viruses through the cell membrane) or that respond univer-
sally to the presence of infections (e.g., through inflammatory
responses) (1). While such innate defenses are very important,
they likely cannot be as effective as defenses that specifically
target particular infections. The challenge for developing spe-
cific responses is that they require a mechanism for learning
to identify each incident virus and a mechanism for remem-
bering the defended targets. Vertebrates implement such a
learning-and-memory approach in their adaptive immune sys-
tem, which produces novel antibodies through random genomic
recombination, selects effective immune elements when they
bind to invaders, and then maintains a memory pool to guard
against future invasions. Recently, we have learned that some
bacteria and archaea also enjoy adaptive immunity (2)—they
maintain cassettes of spacers (snippets of DNA from previously
encountered phages) and use these spacers via the CRISPR-Cas
mechanism to identify and clear recurring infections by similar
viruses.

The CRISPR-Cas mechanism for immunity has three stages
(2, 3). Following a first encounter with a virus, after a suc-
cessful defense through another mechanism or if the virus is
ineffective for some reason (4), some of the Cas proteins recruit
pieces of viral DNA and integrate these spacers into an array
separated by palindromic repeated sequences in one of several
CRISPR loci (5) of the bacterial genome. Each array defines a
CRISPR cassette, and together, the cassettes carry a memory
of past infections. In a second stage, CRISPR loci are tran-
scribed as single operons through a mechanism that depends
on the CRISPR type of the locus; the RNA strand is then
cleaved into small interfering crRNAs (CRISPR RNAs) which
form complexes with other Cas proteins (6). Finally, invad-
ing sequences are recognized by base-pairing with the CRISPR
RNA. A successful match triggers cleavage of the viral genetic
material.

In laboratory experiments that expose naive bacteria, which
start without spacers, to carefully controlled environments,
CRISPR cassettes are often small, consisting of a few spac-
ers acquired during interactions with phages. Wild-type bacteria
have larger cassettes which contain a few dozen to at most a few
hundred spacers (2, 7–9). Metagenomic analysis of the human
gut microbiome has revealed CRISPR cassettes with an average
size of 12 spacers (10). A broader analysis of all sequenced bac-
teria and archeae found cassette lengths clustered in the 20 to 40
range (9). Similarly, a study of 124 strains of Streptococcus ther-
mophilus revealed an average cassette size of 33 (11). RNA-seq
screening of nine prokaryote species (12–14) showed significant
RNA expression of dozens of spacers in each of several differ-
ent CRISPR arrays in each species. There is a general decline in
expression level of spacers with distance from the leader end of
an array, but while promoter-proximal spacers are preferentially
expressed, the decline away from the leader end is gradual, the
expression pattern is sporadic, there can be internal promoters
leading to enhanced expression of distal spacers, and sometimes
there is even additional transcription in the reverse sense. Taking
these patterns and the report of the common presence of multi-
ple CRISPR arrays in a single genome (5) into account, typical
prokaryotes enjoying CRISPR-based immunity show significant
expression of a few dozen to a few hundred spacers.

These findings lead to a puzzle. Why do bacteria maintain
such small memories in their adaptive immune systems given that
they have probably been exposed over generations to thousands
of species of phage (15)? Certainly, the size of the genome is
not a constraint, since bacterial genome sizes lie in the range
of millions of base pairs. Perhaps the organization of CRISPR
immunity should be understood in terms of the dynamics of
the coevolutionary chase in an extended encounter between an
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evolving phage and its prokaryote host. In this framework, the
authors of refs. 6, 8, and 16–19 find that 1) recently acquired
spacers are most useful since the attacking phage is under selec-
tion for mutation of the viral protospacers targeted by CRISPR,
2) CRISPR is not useful if phages evolve too quickly and may
even be lost if this immune mechanism incurs a fitness cost
(6, 17, 19), and 3) prokaryotes need only carry five to seven
spacers to optimally deploy a CRISPR-based defense against a
coevolving phage (8, 16). Because of finding 3, given a cost for
having more spacers either in fitness or due to the specific mech-
anisms of CRISPR-based immunity, prokaryotes should only
carry about a half-dozen spacers (8, 16). Since typical prokary-
otes express a few dozen to a few hundred spacers (5, 12–14),
we need an alternative theoretical explanation for the size of
CRISPR arrays.

A clue may be offered in the fact that older spacers often cor-
respond to evolutionarily conserved regions in the genomes of
persistent viruses (3, 11, 20–22). In fact, even if an older spacer
is not a perfect match to a new invader, it may efficiently prime
the acquisition of new immunity (23–30). These considerations
suggest that CRISPR may be most useful as a long-term memory
of a diverse viral landscape, for protection against reinfection by
the original strains surviving in separate niches and for priming
immunity against related strains, as opposed to being a mech-
anism for short-term learning of coevolving threats. With this
assumption, we find that given limited resources for Cas com-
plex formation (31), a deep memory imposes an opportunity cost
by reducing the chance for the spacer specific to an invader to be
activated in time to cleave an invading virus before it reproduces.
Thus, there is a tradeoff between effectiveness of the defense and
the depth of memory.

We analyze this tradeoff quantitatively and demonstrate that
it predicts an optimal size for the total immune repertoire
of a bacterium. This optimum is controlled by the number
of Cas complexes that are available for cleaving viruses and
by the diversity of the phage landscape. In the limit that the
viral landscape is very diverse, the size of the immune reper-
toire is largely constrained by the number of Cas proteins
that the bacterium can produce while carrying on its other
functions (31). Using the biologically relevant range for Cas
protein concentration in a bacterium, we show that the opti-
mal number of expressed spacers should typically lie in the
range of 10 to 100 spacers, consistent with genomic observations
(7, 8, 9–14).

Results
CRISPR as a Probabilistic Memory of Phage. We consider a model of
infection where bacteria encounter j =1, . . . ,K types of phage,
each with probability fj . For simplicity, all types of phage are
taken to be equally infectious and to have similar growth rates,
conditions that are easily relaxed. In the CRISPR mechanism for
adaptive immunity, bacteria incorporate snippets of phage DNA
(spacers) into a CRISPR cassette. Upon later infection, the bac-
teria recruit CRISPR-Cas complexes with spacers that match the
invading phage to cleave the viral DNA (Fig. 1).

Suppose that the CRISPR cassettes contains L spacers in total
and that an individual bacterium maintains a population of Np

Cas protein complexes that can be recruited to cleave invaders.
The spacer configuration can be characterized in terms of a vec-
tor s= {s1 · · · sK} with entries counting the number of spacers
specific to each phage type. The total cassette size is the sum of
sj , i.e.,

∑
j sj =L, and quantifies the amount of immune memory

stored by an individual bacterium. We describe the phage config-
uration in a given infection event as a vector v of length K with
entries indicating presence (1) or absence (0) of each viral type.
Finally, we define the configuration of complexes d= {d1 · · · dK}
as a vector with entries counting the number complexes specific
to each phage during the CRISPR response. The total number

Fig. 1. CRISPR immunity in bacteria. A bacterium (bordered rectangle) with
CRISPR machinery encounters a diverse set of phages (colors). The CRISPR-
Cas locus is transcribed and then processed to bind Cas proteins (gray ovals)
with distinct spacers (colors), thus producing CRISPR-Cas complexes. The
complex with a spacer that is specific to the injected phage DNA (same color)
can degrade the viral material and protect the bacterium from infection.

of complexes is the sum of dj , i.e.,
∑

j dj =Np . In terms of these
variables, the probability of surviving a phage infection using the
CRISPR-Cas defense mechanism is

Psurvival =1−

(∑
v

pV (v)
∑

s1+s2+···=L

pS (s |L)

×
∑

d1+d2+···=Np

[1−α(v, d)]q(d | s)

. [1]

Here pV (v) is the probability of encountering the phage con-
figuration v, pS (s |L) is the probability of having a cassette
configuration s of length L, α(v, d) is the probability of detect-
ing all of the viral types present in v given the configuration
d of complexes, and q(d | s) is the probability of producing the
CRISPR-Cas configuration d given the set of spacers s and Np

Cas protein complexes.
Even if the number of phage types exceeds the number of

complexes (K �Np), bacteria can survive because we assume
that a typical infection only involves a few viral types (or even
just one). In this scenario, an infecting phage will attack a part
of a large bacterial population. With cassettes sampling spacers
randomly, at least some attacked individuals are likely to con-
tain spacers specific to the phage and will thus survive. Innate
mechanisms will also lead to survival of some bacteria with-
out specific spacers, although we do not explicitly model this
contribution to immunity. The surviving bacteria, and individ-
uals which were not attacked, will replicate and maintain the
population. In this context, when the next infection arrives,
the cassettes in the bacterial population will again be effec-
tively randomly drawn relative to the new infection. That is,
although the cassettes will be enriched to reflect the previous
infection, most of the spacers will still be randomly distributed
so that cassettes in different individual bacteria will be largely
uncorrelated. Over repeated encounters, the cycles of enrich-
ment will lead to cassettes reflecting the distribution of phages.
This scenario would be challenged if phages are very diverse
(K >>Np), new infections occur rapidly (faster than bacterial
replication times of 1/2 to 1 h), and infections carry large viral
loads (relative to the colony size). In this case the bacterial
population will not have time to equilibrate between attacks
and may need other defense mechanisms besides CRISPR
to survive.

The form of the detection probability function α(v, d) depends
on the specific mechanism used by the CRISPR machinery to
bind and degrade a phage. However, a critical number of spe-
cific complexes, dc , is required for the CRISPR machinery to
achieve targeting at the speeds measured in experiments (32).
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This critical number depends implicitly on cell size, diffusion
constants, timescales of phage infection and target recognition,
and dissociation/association constants between spacers and pro-
tospacer sequences. Below this critical value, detection is less
likely, and above the critical value the detection probability
increases. We consider two functional forms for the probabil-
ity that a particular phage type can be detected with d specific
complexes: 1) a hard constraint α(d)= θ(d − dc), where θ(x ) is
step function and is 0 if x < 0 and 1 if x > 0, and 2) a soft con-
straint α(d)= dh

dh+dh
c

. In both cases, dc is an efficacy parameter
that depends on biochemical rates and determines the threshold
on d below which detection is rare and above which detection
is common. The first functional form (step function) describes
switch-like behavior where complexes bind to phage DNA if they
exceed a certain concentration d > dc . The second form mimics
a Hill-like response, where the chance of binding increases grad-
ually with the number of complexes. Here we allow the binding
of Cas complexes with phage DNA binding to be cooperative.
As the cooperativity h increases, the binding behavior becomes
increasingly switch-like.

In our framework, we are assuming that spacer incorpora-
tion happens when the infecting phage is defective or if some
other mechanism of immunity comes into play. We are then
considering the subsequent probability of surviving phages due
to CRISPR-Cas machinery when the spacer is already present.
The probability of survival will increase when other forms of
immunity (e.g., innate immunity and quorum-sensing effects)
are also included. Importantly, CRISPR is not the first line
of defense, and other antiphage mechanisms can precede or
complement the CRISPR system (33). The net effect of these
additional mechanisms can be modeled by including a nonzero
baseline in the detection probability function α. Thus, our
model describes the further survival advantage conferred by hav-
ing CRISPR as a long-term memory of the phage landscape.
Because of this, a bacterial population need not be in danger
of extinction even if the CRISPR contribution to survival is
relatively small.

There Is an Optimal Amount of Memory. In realistic settings we
can make simplifying assumptions about the general model in
Eq. 1. For example, we can assume that successful infections
of a bacterium by different phages occur with low probabil-
ity and are independent. Of course, a given bacterium can be
infected by multiple phages over its lifetime. Since the probabil-
ity that a bacterium simultaneously encounters multiple phages
is small, we assume that encounters are sequential (i.e., the viral
configuration vector v has a single nonzero entry).

Second, we assume that a bacterium’s lineage encounters
many and diverse phage types over multiple generations, i.e.,
K � 1. Because phages mutate readily, there is subtlety about
what defines a type. We use a functional definition—a type of
phage is defined by its specific recognition by a given spacer.
Sometimes, after a bacterium becomes immune to a phage, sin-
gle point mutations in the virus can produces escapers that evade
recognition. By our definition these escapers are effectively a
new type of virus that the bacterial population must deal with
sequentially in future infections (34–37).

Third, we assume that spacers are uniformly sampled from
the phage distribution over time. In other words, we are assum-
ing that prokaryotes pick up spacers from phages as they are
encountered. So, if they encounter diverse viruses, they will
have diverse arrays, and the phage distribution will be naturally
reflected in the distribution of spacers. Incorporating such a dis-
tribution is straightforward, by assuming that the probability pi
that a spacer is incorporated is a function of the viral type i .
However, this distribution is not known experimentally. There-
fore, we make a minimal assumption that all phage types are

equally likely and occur with probability 1/K . This is a conserva-
tive assumption because bacterial immune memory confers the
least advantage when faced with an unbiased (i.e., a minimally
informative) phage environment. In effect, we focus on the long-
term statistical features of immunity and not the the short-time
coevolutionary arms race between bacterium and phage.

Finally, we assume that phage encounters from which spacers
are acquired occur randomly. Thus, each spacer in the CRISPR
cassette has a probability 1/K of being specific for a given phage.
Since the cassette size is much smaller than the number of viral
types (L�K ), it also follows that the cassette will typically have
one or no spacers that can target a particular phage type—in
other words, si =0, 1 (but see below for an analysis allowing
multiple spacers from each phage).

In general, it is likely that the distribution of spacers is more
uniform than the distribution of phages. Mechanistically, once a
prokaryote has a spacer that works well for a given phage by tar-
geting an evolutionarily conserved region in its genome, there
will be less occasion in the long term to acquire many addi-
tional spacers from the same virus since the existing defenses
work, although in the short term, CRISPR targeting may pro-
duce defective phages that encourage incorporation of additional
spacers. (See SI Appendix for discussion of priming and the
effects of multiple specific spacers.) On longer timescales, spac-
ers from novel viruses are likely to be incorporated, leading to
a distribution of spacers that is more uniform than the distri-
bution of viruses. From a strategic standpoint, once there is a
sufficiently effective defense against common threats, it is more
statistically effective to devote the remaining resources preferen-
tially to rare threats. Indeed, although phenomena like priming
can lead to acquisition of multiple spacers against a given virus
(23–30), several studies have shown that having just a few spacers
from a given phage type is largely sufficient to neutralize reinfec-
tions (6, 8, 16–19). This means that the distribution of spacers
should be more uniform than the distribution of pathogens—i.e.,
more weight should be given to rare infections than warranted by
their frequency, again suggesting that a uniform distribution of
spacers will be a reasonable approximation. Similar observations
were made concerning the vertebrate adaptive immune system
in refs. 38 and 39. RNA-seq screening in laboratory conditions
has shown variable expression of spacers in CRISPR cassettes,
typically accompanied by a gradual decline from the leader end,
although there can be internal promoters leading to enhanced
expression of distal spacers (12–14). We will approximate these
sporadic expression patterns as a constant average across spac-
ers whose expression is high enough to mount a defense against
phages.

We derive an expression for the probability to survive a phage
infection, given the cassette size L, the number of Cas complexes
Np , and the diversity of the phage population K (Materials and
Methods and Eq. 3). Across a wide range of parameters and for
various choices of detection probability functions α(v, d), we find
that there is an optimal amount of memory, consisting of a few
tens of spacers in the CRISPR cassette, to maximize survival
probability (Fig. 2 and Fig. S1). The optimum occurs because
there is a tradeoff between the amount of stored memory in
CRISPR cassettes and the efficacy with which a bacterium can
utilize its limited resources (i.e., Cas proteins) to turn memory
into a functional response. If the CRISPR cassette is too small,
bacteria do not remember past phage encounters well enough to
defend against future infections. On the other hand, if the cas-
sette is too large, Cas complexes bind too infrequently to the
correct spacer to provide effective immunity against a particular
invading virus. The optimal amount of immune memory (cas-
sette size) should lie in between these two extremes, with details
that depend on the phage diversity, the number of Cas com-
plexes, and the detection probability function α(v, d) (Fig. 2 and
Materials and Methods).
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Fig. 2. There is an optimal amount of immune memory. The heat map
shows the probability of surviving a phage infection, Psurvival, as a func-
tion of the cassette size and phage diversity with Np = 700 Cas complexes.
Psurvival can be interpreted as the fractional population size that will per-
sist after sequential phage attacks if CRISPR is the only defense mechanism.
The detection probability function is a step function α(d) = θ(d− dc) with
threshold dc = 8, implying that detection of a phage requires at least dc

complexes bound to the corresponding spacers. For any number of phage
types, there is an optimal cassette size. See Fig. S1 for different choices of
Np, dc, and functional forms for α.

Optimal Memory Depends on Phage Diversity. How does the opti-
mal amount of CRISPR memory depend on the diversity of viral
threats? If there are relatively few types of phage, an optimal
strategy for a bacterium would be to maintain an effective mem-
ory for most threats and to match the viral variants with a cassette
whose size grows with viral diversity. This matching strategy will
eventually fail as the diversity of the phage population increases
if the number of Cas proteins (Np) is limited. We examined this
tradeoff by measuring the optimal cassette size as we varied the
viral diversity (K ) while keeping the CRISPR machinery (Np and
the detection probability α(v, d)) fixed.

To characterize viral diversity, we defined a parameter κ=
K/Np as the ratio of the number of phage types (K ) and the
number of Cas complexes (Np). When phage diversity is low
(κ≤ 1), the optimal amount of memory (number of spacers in
a cell) increases sublinearly with viral heterogeneity (Fig. 3),
approximately as a power law. When the detection probabil-
ity α(v, d) is nearly switch-like, the optimal cassette size scales
approximately as L∼

√
K (Fig. 3 A and B; analytic derivation

for dc =1 in SI Appendix). This implies that when viral diversity
is low, the amount of memory should increase with the diversity,
but it is actually beneficial not to retain a memory of all prior
phage encounters. Forgetting some encounters will allow the
bacterium to mount a stronger response against future threats
by engaging a larger number of Cas complexes for the threats
that are remembered. This sublinearity in the optimal amount
of memory becomes stronger as the number of phage-specific
CRISPR-Cas complexes necessary for an effective response, dc ,
increases.

When phage diversity is high (κ> 1), the optimal amount of
memory depends on the CRISPR mechanism via the response
threshold dc but is independent of viral heterogeneity so long
as dc ≥ 2 (Fig. 3; see SI Appendix for discussion of the special
case dc =1). In nature, phages are expected to be very diverse
(K �Np). Thus, our model predicts that the cassette size of a
bacterium is determined by the expression level of Cas complexes
Np and the detection threshold dc of the particular CRISPR
mechanism that is used by the species.

Memory Increases with Detection Efficacy. Detection efficacy
depends on two key parameters: 1) the detection threshold dc
and 2) the number of available Cas proteins Np . In Fig. 4,
we show that the optimal cassette size for defending against a
diverse phage population (κ=K/Np� 1) decays as a power
law of the detection threshold ∼ (dc/Np)

−β with an exponent
β' 1 (Materials and Methods). This decay occurs because the
trasncribed spacers compete to form complexes with Cas pro-
teins; thus, having more distinct spacers effectively decreases the
average number of complexes that would be specific to each
infection. Thus, the smaller the cassette size, the more likely
that the dc specific complexes required for an effective CRISPR
response will be produced. The optimal cassette size is a com-
promise between this drive toward having less memory and the
drive to have a defense that spans the pathogenic landscape.
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Fig. 3. Optimal amount of immune memory depends on the viral diversity. The panels show the optimal cassette size (L) relative to the number of
Cas complexes (Np) parameterized as λ= L/Np, as a function of the viral diversity (K) relative to the number of complexes parameterized as κ= K/Np.
We examine CRISPR machineries with different detection probability functions: (A) switch-like detection probability with a step function α(d) = θ(d− dc)
and a smoother model α(d) = dh/(dh + dh

c ) with (B) h = 10 leading to nearly switch-like detection probability and (C) h = 2 leading to a softer transi-
tion between low and high detection probability. Here dc is an effective threshold on the number of complexes (d) required for detecting phages with
high probability.
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Fig. 4. Optimal amount of immune memory depends on the detection threshold. The figure shows the optimal cassette size relative to the number of Cas
proteins, λ= L/Np, as a function of the threshold to detect a phage, also relative to the number of Cas proteins, dc/Np. We consider different functional
forms of the detection probability: (A) step function with a sharp detection threshold α(d) = θ(d− dc) and (B and C) Hill functions, α(d) = dh/(dh + dh

c ),
with h = 10 in B and h = 3 in C. Phage types are taken to be 1,000-fold more numerous than the number of complexes (κ= K/Np = 1,000). (Insets) Optimal
cassette size scales as L = C(dc/Np)−β over a realistic range of values for the number of complexes and phage detection thresholds in a single bacterial cell.
Best fits are shown in each case with (A) β= 0.9 and C∼ 1, (B) β= 1 and C' 0.7, and (C) β= 1 and C' 0.8.

If the detection probability depends sharply on the number of
bound complexes with a threshold dc (Fig. 4A), to a first approx-
imation, fewer than dc complexes bound to a specific spacer
are useless, as detection remains unlikely, and larger than this
number is a waste, as it would not improve detection. In this
case, if the expression of the Cas protein was a determinis-
tic process, it would be optimal to have a cassette with Np/dc
spacers, each of which could be expressed and bind to exactly
dc complexes, predicting that L=(dc/Np)

−1. However, since
gene expression is intrinsically stochastic, there would some-
times be more than dc bound complexes for a given spacer
and sometimes less. This stochastic spreading, arising partly
due to finite size effects, weakens the dependence of the opti-
mal cassette size on the threshold dc , causing the exponent β
and coefficient C to be slightly <1 in the optimal cassette size
scaling L∼C (dc/Np)

−β (Fig. 4, Insets); see Materials and Meth-
ods for a more detailed derivation. If the detection threshold
is soft, the CRISPR mechanism effectiveness is less depen-
dent on having at least dc complexes, specific to a phage. In
addition, having a slightly higher number of complexes than
the detection threshold can increase the detection probabil-
ity. These effects combine to produce a scaling between the
optimal cassette size and the detection efficacy, L∼ (dc/Np)

−1

(Fig. 4 B and C).
In summary, our model predicts that a more effective CRISPR

mechanism (i.e., having lower detection threshold dc or a larger
number of complexes Np) should be associated with a greater
amount of immune memory.

Our model also provides an estimate for typical number of
spacers per cell in bacterial populations countering a diverse
set of pathogens (regime of K �Np). Assume that the typ-
ical number of Cas complexes is Np ∼ 1,000, comparable to
the copy number of other proteins in a bacterial cell (40,
41), and that rapid detection of an infecting phage requires
a modest number of activated CRISPR-Cas complexes, with
a detection threshold in range of dc ∼ 10 to 100 (32). Our
model then predicts that the optimal immune repertoire should
lie in the range of L∼ 10 to 100, consistent with empirical
observations (2, 7–11).

Optimal Memory with Multiple Specific Spacers. CRISPR cassettes
can contain more than one spacer specific to a given virus. This
can happen, for example, due to priming, where the presence
of some spacers that at least partially match an invading phage
can lead to acquisition of additional spacers (23–30), increasing
the effectiveness of the CRISPR-Cas system against recurrent

or high-abundance viruses. On the other hand, having just a few
spacers from a given phage type seems largely sufficient to neu-
tralize reinfections (6, 8, 16–19), even from coevolving viruses.
Furthermore, experimentally, wild-type CRISPR cassettes are
known to target diverse phages rather than mostly having spacers
targeting a few threats.

Thus, we generalize our model to allow 1< s < smax spacers to
be acquired from each phage type (details in SI Appendix). Fol-
lowing refs. 6, 8, and 16–19, the parameter smax is expected to be
a small number of the order of a handful. In this case, the opti-
mal number of spacers remains similar to the result described
above when there was at most one spacer for each phage (SI
Appendix, Figs. S3 and S4). For completeness, we also tested
the effects of allowing smax to be unbounded. In this case, when
phage species diversity is high as expected (15), the results are
again unchanged. This is because having many spacers from one
phage type comes at the cost of not detecting some other phage
type when the number of complexes is limited by Np . If phage
diversity is sufficiently low, having many spacers for each virus
does not exclude any unique phage type from being well repre-
sented; hence, the immune repertoire size in this scenario is not
constrained.

Discussion
A bacterium’s ability to neutralize phage attacks depends on the
number of spacers stored in its CRISPR cassettes. In laboratory
experiments, where viral diversity is limited, a few new acquired
spacers per bacterium are enough to stabilize a bacterial popu-
lation. A S. thermophilus population defending against continual
phage attack acquired at most four new spacers over ∼ 80 gen-
erations, with over 50% of the population having only one new
spacer (42). A different experimental design where individual
bacteria with different spacers were mixed found that an overall
spacer diversity of ≥ 20 across the starting bacterial innoculum
was enough to stabilize the population (43).

In natural populations, where viral diversity is high (15), spacer
repertoires are significantly larger. CRISPR cassettes in the
human gut microbiome contained 12 spacers on average (10),
while a much broader analysis over all sequenced bacteria and
archeae found cassette lengths in the 20 to 40 range (9). In
agreement with this global analysis, 124 strains of S. thermophilus
revealed an average cassette size of 33 (11). Meanwhile, RNA
screening of diverse prokaryotes (12–14) showed expression of
several dozen spacers residing in the multiple CRISPR cassettes
present in most species enjoying this immune mechanism (5).
All told, there is expression of a few dozen to a few hundred
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spacers, but this is still just a fraction of the size of a typical
bacterial genome.

One explanation for these observations may be that a bac-
terium in the wild encounters only a small set of phages (e.g.,
due to spatial constraints in habitats). Alternatively, it may be
that the repertoires result from a functional tradeoff in the bac-
terial immune system. Our theory examines both how these
considerations—phage diversity and tradeoffs in the CRISPR
mechanism—affect the optimal amount of immune memory that
a bacterium should store.

We identified two qualitatively distinct regimes for the statis-
tics of optimal CRISPR immune memory. When phage diversity
(K ) is much lower than the number of available Cas proteins
(Np), the CRISPR cassette length L should increase sublin-
early in K/Np , approximately as the square root (Fig. 3). This
is reminiscent of a previously identified optimal surveillance
strategy of square-root biased sampling to catch rare harmful
events while minimizing the wasteful resources spent on profiling
innocents (38, 44).

When phage diversity is high (K �Np), the number of avail-
able Cas proteins Np limits effective use of memory to mount
an immune response. In this regime, the optimal cassette size
increases linearly with Np , L∼Np/dc . Here dc quantifies the
average number of Cas complexes specific to a given phage that
is necessary to mount an effective defense. Why would the num-
ber of Cas proteins be limited in the first place? Perhaps there
is in general a physiological cost to maintaining high levels of
any protein within a cell. High sustained expression of the Cas
system in particular may lead to autoimmune-like phenotypes,
where a bacterium’s lifespan is reduced because of the acqui-
sition of spacers from its own genome (45). This may explain
why, in some bacteria, the expression of Cas proteins is con-
trolled by a quorum-sensing pathway that is triggered when the
density of bacteria is high, making them more susceptible to
infections (46–48).

To understand the tradeoffs that apply to CRISPR immune
repertoires in the wild, we require a better understanding of
both bacterial physiology and phage diversity in local environ-
ments. Quantifying phage diversity from metagenomic data is
challenging, but there is evidence that phage species are very
diverse (15). In particular, phage genomes are constantly chang-
ing as they undergo error-prone replications due to suboptimal
use of hijacked bacterial replication machinery. Additionally,
phages can swap pieces of DNA with their hosts as they are
assembled and packaged inside an infected bacterium, lead-
ing to drastic changes in their gene synteny. These large-scale
genomic changes challenge genome assembly and alignment
techniques in quantifying phage diversity in a given commu-
nity. At the same time, the expression levels of Cas proteins
are not yet well quantified across broad bacterial families. How-
ever, these are topics of current research, and we can expect
they will be addressed by ongoing advances in metagenomics
and in high-throughput expression measurements in bacterial
communities.

A causal test of our theory can also be conducted as follows.
Create a library of cells where Cas expression is linked to differ-
ent barcoded promotors (see, e.g., ref. 49) that allow expression
level to vary from near knockout to several hundred copies. At
the same time, integrate a known cassette with around 10 spacers
in the genome (or on a plasmid). Create another plasmid library
(mock viruses) where each plasmid has 1 spacer each, while the
full population has all of the 10 spacers in near-equal numbers.
These plasmids are designed such that if the cells’ CRISPR sys-
tem does not interfere, the cells are more likely to die (50). Then,
the frequency of different survivor cells can be quantified via bar-
code sequencing after they are infected with the plasmid library.
Every cell has the necessary spacers to clear any of the mock
viruses, but according to our theory, the number of available

Cas proteins will constrain effectiveness and thus the survival
probability. An extension of this experiment could integrate cas-
settes of varying sizes and measure the optimal cassette size as a
function of Cas expression level.

Several authors (6, 8, 16–19) have used detailed dynamical
models to explore the possibility that CRISPR immunity is pri-
marily useful as a short-term memory for defending against
coevolving phages. In this context it may be enough to have just
two spacers from an attacking phage to largely prevent escapers
(18), although if phages mutate too quickly, the CRISPR mecha-
nism seems unable to mount an adequate defense (6, 19). When
phages mutate sufficiently slowly for CRISPR to be effective,
only the most recently acquired spacers will be useful because
the cocirculating phages will be under selection to mutate the
regions of the genome targeted by the already acquired spacers
(6, 8, 16–19). In view of this, ref. 16 restricted the CRISPR reper-
toire to consist of eight or fewer spacers, while ref. 8 assumed an
exponential decay in expression of leader-distant spacers; both
found that a repertoire of five to seven spacers is sufficient to
optimize immunity. However, actual CRISPR repertoires con-
sist of many more spacers (2, 7–9) distributed across multiple
cassettes (5), with many dozens of spacers translated into RNA
in a sporadic manner across each cassette despite a gradual decay
in expression from the leader end (12–14). Thus, we pursued
the alternative hypothesis that the primary role of CRISPR is
to retain a long-term memory of previous invasions to guard
against the diverse landscape of phage species (15). With this
assumption, we arrived at an optimal size for the spacer reper-
toire in the measured range. The authors of ref. 5 similarly
describe a dichotomy between long-term memory/slow learning
and short-term memory/fast learning and suggest that CRISPR
arrays with different spacer acquisition rates may partly play
these different roles. If this is the case, it may be that the con-
siderations of refs. 8 and 16 apply to some types of CRISPR
arrays which deal with coevolving phages in conditions of low
diversity, while our analysis applies to other arrays which main-
tain long-term memory useful in diverse viral landscapes with
recurring infections.

If the CRISPR contribution to survival is too small, one
could ask whether it is worth the effort to have this mecha-
nism. Indeed, the authors of ref. 19 use a dynamic coevolution
model to suggest that if phages evolve too quickly, CRISPR
mechanisms should be eliminated if they have a cost. There is
also some evidence that CRISPR may only be maintained in
certain regimes of viral vs. bacterial density (51). From a theo-
retical perspective, the authors of ref. 52 describe scenarios in
which CRISPR is not worth the cost. Our approach could be
adapted in future work to analyze this question of when CRISPR
is useful by including cost-benefit tradeoffs and interaction with
ecological variables.

We do not know the diversity of the phage landscape faced
by bacteria, but in a given environment a bacterium will only
face a local pool of threats, and many of these might actually
be targeting other species. After discounting for these factors, if
there are ∼500 relevant phage types to defend against, CRISPR
increases the probability of survival by 10% with a cassette of
optimal size (Fig. 2), similar to the survival advantage found in
refs. 8 and 16 for CRISPR defense against a single coevolving
phage. Defending against ∼1,600 phage types, CRISPR with an
optimal sized cassette confers a 3% advantage (Fig. 2). A p%
difference in survival probability corresponds to a difference of
approximately p% in the selection coefficient of a subtype with
the better cassette during an evolutionary process. The standard
replicator equations show that a subtype with a 1% selection ben-
efit starting at 1% relative frequency will grow to make up 80%
of the population within 600 generations, i.e., during just 10 to
12 d of Escherichia coli evolution (generation time of about 25
to 30 min). Indeed, selection strengths of just 1% are counted as
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strong selection effects in population genetics. In fact, a subtype
with a 3% selection benefit (the 1,600-phage scenario in Fig. 2)
starting at 1% of the population will comprise 99% of the pop-
ulation within 600 generations. Thus, the increases in survival
probability illustrated in Fig. 2 are likely to have substantial long-
term effects on the population dynamics of bacteria equipped
with CRISPR cassettes of the optimal size.

Vertebrates also possess an adaptive immune system that
learns from past infections to defend against future threats.
It has been suggested that pathogen detection in vertebrates
is optimized by biasing the immune repertoire toward sensing
rare infections with a higher chance than warranted by their
frequency (38). This sort of optimization is unlikely to be rel-
evant to individual bacteria given the small cassette size and
high cost of CRISPR proteins. However, it is known that across
a bacterial population spacer abundances are highly variable
but distributed in a stereotypic way (53). It is possible that
this stereotyped distribution represents an optimally adaptive
immune strategy for the population as a whole. To study this
question, our framework could be extended to analyze opti-
mal strategies for distributed adaptive immunity in microbial
communities.

For both vertebrates and bacteria, a major challenge is to char-
acterize dynamics of the immune system as it chases a diverse
pathogenic population that is itself evolving to evade detection
by its hosts. This out-of-equilibrium process can last over an
extended evolutionary period (54). Earlier work has attempted
to account for such coevolutionary dynamics between prokary-
otes with CRISPR and a few (typically one) species of phage
(6, 8, 16–19). Here we pursued an alternative approach—we
aimed to understand the statistical logic of a CRISPR-based
immune system. In neuroscience, there is a similar distinction
between computational models that address the dynamics of a
neural network (e.g., the trajectory of neural population activ-
ity) and theoretical models that address the computational logic
or goals of the same network (e.g., maximizing mutual infor-
mation with the sensory input). Studying dynamics, as much as
it can be insightful, requires a deeper experimental knowledge
of the system, including the active components, how they inter-
act, and the parameters of the dynamics, most of which are
not well constrained by experiments. In the case of CRISPR-
based immune systems, we still lack experimental data on the
long-term coevolutionary parameters. Thus, it is important for
the field to develop complementary modeling approaches which
ask what the goal of the dynamics should be in order to pro-
vide effective immunity in the presence of general statistical
and resource constraints. Thus, our approach aims to predict
steady states of CRISPR immune system dynamics in a diverse
environment. Evolution may be driven to select dynamics that
achieve these steady states because this is what is useful for
immunity, subject to tradeoffs and feedbacks associated with
other system goals. Recently, a probability theory perspective of
this kind has been applied to the logic of the adaptive immune
repertoire of vertebrates (38, 39), but to our knowledge such
an approach has not be applied to the study of CRISPR-based
adaptive immunity.

Materials and Methods
Probability of Successful Immune Response. Applying the assumptions
described in Results, the complete model (Eq. 1) reduces to,

Psurvival = 1−
(

p0 +
∑

d

p1(1−α(d)) q(d)

)
[2]

where p0 and p1 are the probabilities for a bacterium to have zero or one
spacer specific to the infecting phage, respectively; d is the number of spe-
cific complexes; q(d) is the probability of producing d complexes; and α(d)
is the probability that a cassette producing d specific complexes recognizes
the phage. We assume that it is unlikely for a bacterium to carry more than
one spacer against a given phage (p1≈ 1− p0) and take infections to be
random events drawn from a pool of K distinct viruses. Hence, the proba-
bility that none of the spacers in a cassette of size L recognizes an invading
phage is p0 = (1− 1/K)L≈ e−L/K . The survival probability is

Psurvival =

(
1− e−λ

κ

)
×

1−
∑

d<Np

(1−α(d))q(d)

, [3]

where κ= K/Np and λ= L/Np denote a normalized viral diversity and
immune capacity, respectively. We assume that transcription events occur
independently and are equally likely. Thus, q(d) in Eq. 3 is given by a bino-
mial density describing the probability of having d complexes specific to a
given phage, given Np Cas proteins and an equal probability of selecting
any one of the L spacers to produce each complex. A successful detection
typically requires activation of multiple complexes with a minimum (critical)
number, dc. Accordingly, we choose the detection probability function α(d)
to be a threshold function that saturates to 1 at d≥ dc (SI Appendix).

Optimal Cassette Size. The optimal cassette size relative to the number
of Cas proteins, λ= L/Np, can be evaluated by optimizing the survival
probability ∂

∂λ Psurvival|λ* = 0. In the biologically realistic regime, where
the number of complexes is both large Np� 1 and large compared to
the cassette size Np/L� 1, the binomial probability density for the num-
ber of specific complexes d in Eq. 3 can be approximated by a Gaus-

sian N
(
λ−1,λ−1(1− λ−1

Np
)
)
'N

(
λ−1,λ−1

)
, up to quantities of order

O(1/
√

Np). In this limit, the optimization criterion gives

0 = 1−λ*
dc∑

d=0

N
(

1

λ*
,

1

λ*

)(
3

2λ*
−

d2− (λ*)−2

2

)
, [4]

where we assumed a diverse pool of viruses κ� 1 and a sharp recognition
function α(d) = θ(d− dc). Approximating the sum in Eq. 3 with an inte-
gral with strict boundaries [0, dc], we arrive at an equation for the optimal
cassette size λ*,

1=
−e− 1

2λ* + (1 + dcλ*)e− (1−dcλ* )2

2λ*

2
√

2πλ*

+
1

2

(
Erf
[

1
√

2λ*

]
+ Erf

[
dcλ*− 1
√

2λ*

])
.

[5]

In the limit that the cassette size is much smaller than the number of
available complexes L/Np =λ� 1, with dcλ finite, the optimal repertoire

size scales inversely with the activation threshold L* = (1/2)
(

dc
Np

)−1
in the

Gaussian approximation of this section.
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