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It has long been regarded that the primary function of fungal peroxisomes is limited to
the β-oxidation of fatty acids, as mutants lacking peroxisomal function fail to grow in
minimal medium containing fatty acids as the sole carbon source. However, studies in
filamentous fungi have revealed that peroxisomes have diverse functional repertoires.
This review describes the essential roles of peroxisomes in the growth and survival
processes of filamentous fungi. One such survival mechanism involves the Woronin body,
a Pezizomycotina-specific organelle that plugs the septal pore upon hyphal lysis to prevent
excessive cytoplasmic loss. A number of reports have demonstrated that Woronin bodies
are derived from peroxisomes. Specifically, the Woronin body protein Hex1 is targeted
to peroxisomes by peroxisomal targeting sequence 1 (PTS1) and forms a self-assembled
structure that buds from peroxisomes to form the Woronin body. Peroxisomal deficiency
reduces the ability of filamentous fungi to prevent excessive cytoplasmic loss upon
hyphal lysis, indicating that peroxisomes contribute to the survival of these multicellular
organisms. Peroxisomes were also recently found to play a vital role in the biosynthesis
of biotin, which is an essential cofactor for various carboxylation and decarboxylation
reactions. In biotin-prototrophic fungi, peroxisome-deficient mutants exhibit growth
defects when grown on glucose as a carbon source due to biotin auxotrophy. The biotin
biosynthetic enzyme BioF (7-keto-8-aminopelargonic acid synthase) contains a PTS1 motif
that is required for both peroxisomal targeting and biotin biosynthesis. In plants, the
BioF protein contains a conserved PTS1 motif and is also localized in peroxisomes.
These findings indicate that the involvement of peroxisomes in biotin biosynthesis is
evolutionarily conserved between fungi and plants, and that peroxisomes play a key role
in fungal growth.
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INTRODUCTION
Peroxisomes are ubiquitous organelles in eukaryotic cells and
typically contain enzymes involved in the β-oxidation of fatty
acids and detoxification of reactive oxygen species. Additionally,
peroxisomes are known to have various physiological functions
based on their roles in diverse metabolic activities. For exam-
ple, mammalian peroxisomes participate in the lipid biosyn-
thesis such as ether phospholipids, and in the oxidation of
amino acids and polyamines (Wanders and Waterham, 2006). In
plants, peroxisomes are involved in the glyoxylate cycle (Mano
and Nishimura, 2005), photorespiration (Reumann and Weber,
2006), male-female gametophyte recognition (Boisson-Dernier
et al., 2008) and biosynthesis of the hormones jasmonic acid and
auxin (Weber, 2002; Woodward and Bartel, 2005). Peroxisomes
also play important roles in higher eukaryotes, with defects
in peroxisome biogenesis resulting in severe human disease,
such as Zellweger syndrome, neonatal adrenoleukodystrophy, and
Refsums disease (Waterham and Ebberink, 2012). In plants, loss
of peroxisomal function causes embryo lethality, suggesting that
peroxisomes have an essential role in growth and development
(Hu et al., 2002; Schumann et al., 2003; Sparkes et al., 2003;
Tzafrir et al., 2004; Fan et al., 2005).

The primary role of fungal peroxisomes is the β-oxidation of
fatty acids, as fungal mutants lacking peroxisomes fail to grow
in minimal medium containing fatty acids as the sole carbon
source (Erdmann et al., 1989; Hynes et al., 2008). Peroxisomes are
also required for methanol metabolism in methylotrophic yeasts,
including Pichia pastoris (van der Klei et al., 2006). In filamentous
fungi, peroxisomes are also involved in secondary metabolism
including the biosynthesis of penicillin, AK (Alternaria kikuchi-
ana) toxin, and paxilline (Saikia and Scott, 2009; Imazaki et al.,
2010; Bartoszewska et al., 2011), plant pathogenicity (Kimura
et al., 2001; Asakura et al., 2006), and sexual development
(Bonnet et al., 2006; Peraza-Reyes et al., 2008). While fungal per-
oxisomes are known to proliferate massively on oleate and acetate,
inducing substrates for this organelle (van der Klei and Veenhuis,
2006), it is apparent that many peroxisomes constitutively exist
in the cell of filamentous fungi under the normal growth condi-
tion e.g., on glucose (Tanabe et al., 2011). The delayed growth
and aberrant organelle morphologies observed in peroxisome-
deficient mutants (Bonnet et al., 2006; Idnurm et al., 2007; Hynes
et al., 2008) suggest that peroxisomes have fundamental roles for
the growth of filamentous fungi. However, the molecular mecha-
nisms underlying these severe growth effects remain unknown.
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In this review, evidence for the roles of peroxisomes in fun-
gal growth, particularly the involvement of the Woronin body,
a peroxisome-derived organelle with wound-healing function,
and the recently identified function of peroxisomes in vitamin
biosynthesis are presented.

THE WORONIN BODY, AN ORGANELLE SPECIFIC TO
PEZIZOMYCOTINA SPECIES, DIFFERENTIATES FROM
PEROXISOMES
Species of Pezizomycotina (filamentous ascomycetes) grow via
elongation of the hyphal tip to form straight primary hyphae
with branches. The hyphae are divided into distinct cells by the
formation of septa, and thus filamentous fungi are characterized
by multicellularity. The septum is proposed to have several pos-
sible functions, including increasing the mechanical integrity of
hyphae and division of mycelium into sections that undergo dis-
tinct developmental processes. However, septa do not completely
separate adjacent cells in the hyphae due to the presence of a sep-
tal pore, which allows the passage of cytoplasm and organelles
between adjacent cells (Markham, 1994; Freitag et al., 2004; Lew,
2005; Tey et al., 2005; Ng et al., 2009). This intercellular commu-
nication resembles that found in higher eukaryotes, such as gap
junctions in animal cells and plasmodesmata in plant cells, and
suggests that filamentous fungi possess a cell-to-cell channel that
modulates responses to environmental changes and development
processes necessary for multicellularity.

Cytoplasmic continuity between adjacent cells through the
septal pore is associated with catastrophic risk of cytoplasmic loss
by adjacent cells due to hyphal lysis. This risk was clearly demon-
strated by the exposure of the filamentous fungus Aspergillus

oryzae grown on agar medium to hypotonic shock, which caused
most of the hyphal tips to burst and lose the cytoplasmic
constituents (Figure 1A) (Maruyama et al., 2005). However, as
evidenced by differential interference contrast (DIC) and fluo-
rescence microscopy, ∼80% of the immediately adjacent cells
retained their cytoplasmic constituents (Figure 1B) (Maruyama
et al., 2005), allowing these cells to initiate regrowth by creat-
ing a new hyphal tip (Maruyama et al., 2006; Maruyama and
Kitamoto, 2007). This process represents a type of defense system
that aims to promote the survival of these multicellular organisms
by preventing the excessive loss of cytoplasm upon hyphal lysis.

The Woronin body is a unique organelle present in
Pezizomycotina species that plugs the septal pore upon hyphal
lysis and prevents excessive cytoplasmic loss from the cell adja-
cent to the lysed cell (Figure 2A) (Markham and Collinge, 1987).
This organelle has two morphologically distinct subclasses; it
is generally observed by transmission electron microscopy as
a spherical electron-dense structure in the vicinity of the sep-
tum (Figure 2B), although a limited number of species, such
as Neurospora crassa, form hexagonal crystalline Woronin bod-
ies that are occasionally visible by light microscopy (Markham,
1994).

Jedd and Chua (2000) first identified Hex1 as a major pro-
tein of the Woronin body in N. crassa. Genes encoding the Hex1
protein are conserved in Pezizomycotina species (Jedd and Chua,
2000; Asiegbu et al., 2004; Curach et al., 2004; Soundararajan
et al., 2004; Maruyama et al., 2005; Beck and Ebel, 2013). Self-
assembly of Hex1 provides the Woronin body with a mechanically
solid core that provides resistance to the protoplasmic streaming
pressure arising from hyphal lysis (Jedd and Chua, 2000; Yuan

FIGURE 1 | Hyphal tip bursting upon hypotonic shock in the filamentous

fungus A. oryzae. (A) Time-lapse observation of hyphal tip bursting upon
hypotonic shock. Hyphal tips at the edge of a colony grown on agar medium
were observed by DIC microscopy before and after flooding hyphae with
water. Bar: 50 μm. (B) Excessive loss of cytoplasmic constituents is

prevented upon hyphal tip bursting induced by hypotonic shock. The
cytoplasm was labeled by EGFP. An arrowhead and arrow indicate a burst
hyphal tip and the adjacent septum, respectively. Note that the cell (2nd)
adjacent to the lysed cell (1st) retains its cytoplasmic constituents, as
determined by DIC and fluorescence microcopy. Bar: 10 μm.
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FIGURE 2 | Morphology and function of the Woronin body. (A) Schematic
model of Woronin body function. (B) Transmission electron microscopic
observation of Woronin bodies (arrows) in A. oryzae (Maruyama et al., 2005).
Bar: 500 nm. (C) Confocal images of Woronin bodies (red, arrows) and septa

(green, asterisks) before (left) and after (right) hyphal tip bursting induced by
hypotonic shock. Woronin bodies and septa were fluorescently labeled by
expressing DsRed2–AoHex1 and RNase T1–EGFP fusion proteins,
respectively (Maruyama et al., 2005). Bar: 2 μm.

et al., 2003). Phosphorylation of Hex1 has a role in the forma-
tion of the multimeric core of the Woronin body (Tenney et al.,
2000; Juvvadi et al., 2007). Deletion of the hex1 gene results in the
disappearance of Woronin bodies and is associated with severe
cytoplasmic bleeding upon hyphal lysis (Jedd and Chua, 2000;
Tenney et al., 2000; Maruyama et al., 2005). In the case of A.
oryzae, hex1 deletion (�hex1) significantly reduces the ability of
this strain to prevent excessive cytoplasmic loss (Maruyama et al.,
2005, 2010; Escaño et al., 2009). Using fluorescence microscopy,
Woronin bodies were demonstrated to plug the septal pore adja-
cent to a lysed cell upon hyphal lysis in the A. oryzae wild-type
strain (Figure 2C) (Maruyama et al., 2005). Recently, Bleichrodt
et al. (2012) reported that the Woronin body reversibly closes the
septal pore during normal growth of A. oryzae, a function that
contrasts the behavior of this organelle conventionally observed
during hyphal lysis. In addition, although wild-type A. oryzae has
heterogeneous distribution of hyphae and gene expression activ-
ity, the absence of Woronin bodies results in uniform activity
distribution of different cells (Bleichrodt et al., 2012). Collectively,
Woronin bodies impede cytoplasmic continuity between adja-
cent cells during normal growth and help maintain hyphal

heterogeneity in mycelia. This function of Woronin bodies may
represent the most primitive way to regulate cell-to-cell channels
in multicellularity by a simple plugging behavior similar to that
upon hyphal lysis. Additionally, the roles of Woronin bodies in
conidiation (asexual spore formation), survival under nitrogen
starvation and efficient plant pathogenesis were reported (Yuan
et al., 2003; Soundararajan et al., 2004).

A relationship between peroxisomes and the Woronin body
is suggested from the fact that Hex1 contains peroxisomal tar-
geting signal sequence 1 (PTS1) at the C-terminus (Jedd and
Chua, 2000). Time-lapse imaging demonstrated that Woronin
bodies bud from peroxisomes in N. crassa (Tey et al., 2005) and
that Woronin body biogenesis requires the presence of perox-
ins that mediate peroxisomal protein import (Ramos-Pamplona
and Naqvi, 2006; Managadze et al., 2007; Liu et al., 2008).
The peripheral membrane peroxisomal protein Pex11 is impli-
cated in peroxisomal proliferation and division (Erdmann and
Blobel, 1995; Marshall et al., 1995), and in the absence of
Pex11, filamentous fungi only contain few enlarged peroxisomes
(Figure 3A, EGFP-PTS1) (Hynes et al., 2008; Escaño et al., 2009;
Opaliński et al., 2012). It was also demonstrated that ability
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FIGURE 3 | Differentiation of the Woronin body from peroxisomes.

(A) Fluorescence microscopic analysis of wild-type and �pex11 strains of
A. oryzae expressing EGFP-PTS1 and mDsRed-AoHex1 fusion proteins for
visualization of peroxisomes and the major Woronin body protein, respectively

(Escaño et al., 2009). Asterisks denote septa and arrows indicate Woronin
bodies (red) independent of peroxisomes (green). Arrowheads represent
assembly of Hex1 attached to the matrix side of the peroxisome. Bars: 5 μm.
(B) Schematic model of Woronin body differentiation from peroxisomes.

of Pex11-deficient strain of A. oryzae to prevent the excessive
loss of cytoplasm is reduced by ∼30% compared to wild type
(Escaño et al., 2009), indicating that Pex11 is involved in Woronin
body function. Under fluorescence microscopy, Woronin bodies
are typically observed as small dots independent of peroxisomes
(Figure 3A, mDsRed-AoHex1). In the absence of Pex11, how-
ever, the Woronin body protein Hex1 forms a structure that
attaches to the matrix side of the peroxisomal membrane, but
the mature Woronin body fails to differentiate from peroxisomes
(Figure 3A) (Escaño et al., 2009). The Pezizomycotina-specific
protein WSC (Woronin body sorting complex) recruits the Hex1
assembly to the matrix side of the peroxisomal membrane and
facilitates the budding of the Woronin body (Liu et al., 2008). It
has been suggested that Pex11 elongates the peroxisomal mem-
brane to facilitate the division of peroxisomes by dynamin-related
proteins (Koch et al., 2003, 2004; Schrader, 2006). Heterologous
expression of Hex1 in the yeast Saccharomyces cerevisiae sug-
gested that dynamin-related proteins participate in the budding
of Woronin bodies from peroxisomes (Würtz et al., 2008). ApsB,
a component of the microtubule-organizing center (MTOC), has

been shown to interact with Hex1 and to localize to peroxi-
somes via peroxisomal targeting signal sequence 2 (PTS2) (Zekert
et al., 2010). Hex1 physically associates with the essential matrix
import peroxin Pex26 and promotes the enrichment of Pex26 in
the membranes of differentiated peroxisomes (Liu et al., 2011).
After Woronin bodies differentiate from peroxisomes, evidence
suggests that the Pezizomycotina-specific protein Leashin (LAH)
tethers the Woronin bodies to the vicinity of the septum (Ng et al.,
2009). A schematic model of Woronin body differentiation from
peroxisomes is presented in Figure 3B. Although a number of
proteins functionally/spatially related to the Woronin body have
been identified (Engh et al., 2007; Fleissner and Glass, 2007; Kim
et al., 2009; Maruyama et al., 2010; Lai et al., 2012; Yu et al., 2012),
the molecular mechanism for Woronin body biogenesis remains
to be completely resolved.

INVOLVEMENT OF PEROXISOMES IN BIOTIN BIOSYNTHESIS
IN FUNGI
Biotin is an essential cofactor involved in a number of car-
boxylation and decarboxylation reactions (Knowles, 1989). In
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FIGURE 4 | Biotin biosynthetic pathway and biotin auxotrophy in

peroxisome-deficient strains. (A) The final four reactions of the biotin
biosynthetic pathway and involved enzymes from fungi and plants (in
parentheses). (B) Growth impairment of strains defective in peroxisomal

targeting signal receptors (�pex5 and �pex7 ) grown on minimal medium
containing glucose as the sole carbon source. Growth of the wild-type,
�pex5, and �pex7 strains and the complemented strains (indicated to the
right) on medium with and without biotin.

eukaryotes, plants and numerous fungal species are capable of
synthesizing biotin. The studies of plants and fungi have revealed
that the final four reactions in the biosynthetic process, which
convert pimeloyl-CoA to biotin, are conserved (Figure 4A) (Streit
and Entcheva, 2003). In plants, the enzymes BioF, Bio1, Bio3,
and Bio2 mediate the final four steps of biotin biosynthesis. It
was previously reported that BioF, a 7-keto-8-aminopelargonic
acid (KAPA) synthase catalyzing the conversion of pimeloyl-CoA
to KAPA, is localized to the cytoplasm (Pinon et al., 2005). The
final three reactions converting KAPA to biotin occur in mito-
chondria. The BIO3 and BIO1 genes are unidirectionally aligned
and expressed as a chimeric transcript, resulting in the produc-
tion of Bio3-Bio1 as a bifunctional protein catalyzing desthiobi-
otin (DTB) synthase and 7, 8-diaminopelargonic acid (DAPA)
synthase reactions (Muralla et al., 2008). Bio3-Bio1 contains a
mitochondrial targeting sequence (MTS) and localizes in mito-
chondria (Muralla et al., 2008; Cobessi et al., 2012). The Bio2
protein, a biotin synthase catalyzing the conversion of DTB to
biotin, also contains a MTS and must be mitochondrially local-
ized for biotin prototrophy (Baldet et al., 1997; Picciocchi et al.,
2001; Arnal et al., 2006). It was therefore suggested that plant
biotin biosynthesis occurs in both the cytoplasm and mitochon-
dria (Rébeillé et al., 2007).

In Aspergillus species, mutants of the pex5 and pex7 genes are
defective in protein import into the peroxisomal matrix due to
the lack of PTS1 and PTS2 receptors, respectively (Hynes et al.,
2008; Tanabe et al., 2011). These mutants fail to grow in mini-
mal medium containing oleic acid as the sole carbon source due
to defective peroxisomal β-oxidation; however, unlike the corre-
sponding yeast mutants, the mutants of Aspergillus species also
exhibit growth defects when grown on glucose (Hynes et al., 2008;
Tanabe et al., 2011). Surprisingly, the growth defects are restored

by the addition of biotin (Figure 4B). In fungi, biotin is synthe-
sized through the sequential activities of three Bio proteins: BioF,
a KAPA synthase; BioD/A, a chimeric protein composed of DTB
and DAPA synthases; and BioB, a biotin synthase (Figure 4A)
(Magliano et al., 2011a,b; Tanabe et al., 2011). The BioD/A pro-
tein localizes in mitochondria, suggesting that this is where KAPA
is converted to biotin (Tanabe et al., 2011). Protein sequence anal-
ysis of fungal BioF proteins revealed that the C-terminal PTS1
sequences are conserved in ascomycete and basidiomycete species
(Figure 5A). Consistent with these findings, BioF protein localizes
in the peroxisomes via PTS1 (Figure 5B), and the peroxisomal
targeting of this KAPA synthase is required for biotin biosyn-
thesis (Magliano et al., 2011a; Tanabe et al., 2011). Yeast species
appear to have lost the gene encoding BioF, as evidenced by their
biotin auxotrophy, although several species have reacquired biotin
prototrophy by horizontal gene transfer and gene duplication
followed by neofunctionalization (Hall and Dietrich, 2007).

A new model for biotin biosynthesis in fungi is proposed
in Figure 6. In this biotin biosynthesis pathway, the produc-
tion of pimeloyl-CoA may involve proteins containing PTS1 and
PTS2 (Tanabe et al., 2011), while peroxisomal β-oxidation is also
involved (Magliano et al., 2011a). Ohsugi et al. (1988) reported
that pimelic acid, a putative pimeloyl-CoA precursor, were pro-
duced from long chain fatty acids such as oleic acid in yeasts,
which may support a relevance of β-oxidation to supplying a pre-
cursor substrate for biotin biosynthesis. In peroxisomes, KAPA is
first synthesized from pimeloyl-CoA by BioF protein and is then
likely transported from peroxisomes to mitochondria, where it
serves as a substrate for the final series of biosynthesis reactions
that convert KAPA to biotin by the action of the BioD/A and BioB
proteins. Thus, functionally coupling between peroxisomes and
mitochondria appears to be required for biotin biosynthesis.
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FIGURE 5 | Phylogenetic relationship and peroxisomal localization of

fungal BioF proteins. (A) Phylogenetic analysis of fungal BioF proteins.
The amino acid residues of the C-terminal peroxisomal targeting signals
(PTS1) are indicated by open boxes. The full-length amino acid sequences
of the fungal BioF proteins were aligned using the Clustal W program
(version 2.1), and then the phylogenetic tree was constructed. The
Genbank accession numbers for the sequences used in the analysis are as
follows: Aspergillus oryzae, XP_001817022.1; Aspergillus flavus,
XP_002383037.1; Aspergillus fumigatus, XP_747713.1; Aspergillus nidulans,

ACR44939.1; Aspergillus niger, XP_001396737.1; Penicillium chrysogenum,
XP_002563821.1; Podospora anserina, XP_001903515.1; Yarrowia lipolytica,
XP_504066.1; Sclerotinia sclerotiorum, XP_001590700.1; Ustilago maydis,
XP_757344.1; Cryptococcus neoformans, XP_566616.1; Coprinopsis
cinerea, XP_001836705.2; and Schizophyllum commune, XP_003028193.1.
(B) Peroxisomal localization of fungal BioF protein. Note that BioF
(BioF-mDsRed-PTS1) co-localizes with peroxisomes (EGFP-PTS1), but
disperses in the absence of PTS1 (BioF-mDsRed-�PTS1) (Tanabe et al.,
2011). Bars: 5 μm.

CONSERVED PEROXISOMAL LOCALIZATION OF BIOF
PROTEIN AND ITS POSSIBLE RELEVANCE TO FUNGAL
GROWTH/DEVELOPMENTAL PROCESSES
As described above, plant BioF protein functions as a KAPA
synthase and was shown to be cytosolic by GFP fusion at the
C-terminus (Pinon et al., 2005). Phylogenetic analysis revealed
that BioF proteins from various plant species possess PTS1 at
the C-terminus (Figure 7A) (Tanabe et al., 2011; Maruyama
et al., 2012), suggesting that the peroxisomal localization of BioF

proteins is conserved throughout the plant kingdom. An N-
terminal GFP-BioF fusion protein co-localizes with peroxisomes,
and deletion of PTS1 causes cytosolic localization, suggesting
that BioF is localized to peroxisomes via the PTS1 sequence
(Figure 7B) (Tanabe et al., 2011).

Plant biotin-auxotrophic mutants exhibit embryo lethality,
indicating that biotin biosynthesis is vital for plant growth and
development (Schneider et al., 1989; Shellhammer and Meinke,
1990; Patton et al., 1998; Tzafrir et al., 2004; Arnal et al.,
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2006). Embryo development also requires peroxisomal functions
(Hu et al., 2002; Schumann et al., 2003; Sparkes et al., 2003;
Tzafrir et al., 2004; Fan et al., 2005). Tanabe et al. (2011) sug-
gested that fungi and plants use an evolutionarily conserved
pathway for biotin biosynthesis that involves both peroxisomes

FIGURE 6 | Model of subcellular compartmentalization of the biotin

biosynthetic pathway in eukaryotes.

and mitochondria. These findings suggest that biotin biosyn-
thesis might be one of the reasons why peroxisomal deficiency
results in embryo lethality. The Aspergillus peroxisome-deficient
strains showing biotin auxotrophy exhibit abnormal polar growth
(Tanabe et al., 2011), and impairment of sexual development
by peroxisomal malfunction was reported in filamentous fungi
(Bonnet et al., 2006). These similarities in the fungal and plant
phenotypes indicate that growth and developmental defects due
to peroxisomal deficiency may be partially or entirely attributed
to biotin auxotrophy. More extensive studies will provide insight
into the importance of biotin biosynthesis and peroxisomal func-
tion during growth and development of fungi and plants.

CONCLUSION
The primary function of fungal peroxisomes was long thought
to be limited to the β-oxidation of fatty acids. During the two
past decades, an increasing number of studies have unmasked
the functional diversity of fungal peroxisomes (Pieuchot and
Jedd, 2012), including the very recent findings that peroxi-
somes contain siderophore biosynthetic enzymes and are involved
in iron acquisition (Gründlinger et al., 2013), and that sev-
eral glycolysis enzymes possess cryptic PTS1 motifs that are
activated by alternative splicing and stop codon read-through

FIGURE 7 | Phylogenetic relationship and peroxisomal localization of

plant BioF proteins. (A) Phylogenetic analysis of plant BioF proteins
(Maruyama et al., 2012). The amino acid residues of C-terminal peroxisomal
targeting signals (PTS1) are indicated by open boxes. The full-length amino
acid sequences of the plant BioF proteins were aligned using the method
described in Figure 5. The Genbank accession numbers for the sequences
used in the analysis are as follows: Arabidopsis thaliana, NP_974731.1;
Arabidopsis lyrata, XP_002871105.1; Oryza sativa-1, BAD87813.1; Oryza
sativa-2, NP_001065381.1; Hordeum vulgare, BAK03504.1; Brachypodium
distachyon, XP_003574335.1; Sorgham bicolor, XP_002467492.1; Zea
mays-1, ACG35792.1; Zea mays-2, ACG35881.1; Selaginella moellendorffii-1,

XP_002969752.1; Selaginella moellendorffii-2, XP_002981364.1;
Physcomitrella patens, XP_001769874.1; Picea sitchensis, ABR18106.1; Vinis
vinifera, XP_002268950.1; Medicago truncatula, XP_003598166.1; Glycine
max-1, XP_003527547.1; and Glycine max-2, XP_003522881.1. The amino
acid sequence of the BioF protein of Marchantia polymorpha was confirmed
by PCR amplification and cDNA sequencing based on information obtained
from the Marchantia expression sequence tag database (Maruyama et al.,
2012). (B) Peroxisomal localization of plant BioF protein. Note that BioF
(EGFP-BioF-PTS1) co-localizes with the peroxisomes (PTS2-mRFP1), but
disperses in the absence of PTS1 (EGFP-BioF-�PTS1) (Tanabe et al., 2011).
Bars: 5 μm.
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(Freitag et al., 2012). The present review has described the
findings that demonstrate the fundamental involvement of
fungal peroxisomes in the regulation of multicellular growth
and the biosynthesis of the essential vitamin biotin. Further
investigations, including proteomic/metabolomic approaches
and genomic bioinformatics, will lead to a comprehensive

understanding of the newly emerged functions of fungal
peroxisomes.
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Opaliński, £., Bartoszewska, M.,
Fekken, S., Liu, H., de Boer,
R., van der Klei, I., et al.
(2012). De novo peroxisome
biogenesis in Penicillium chryso-
genum is not dependent on
the Pex11 family members or
Pex16. PLoS ONE 7:e35490. doi:
10.1371/journal.pone.0035490

Patton, D. A., Schetter, A. L.,
Franzmann, L. H., Nelson, K.,
Ward, E. R., and Meinke, D.
W. (1998). An embryo-defective

mutant of Arabidopsis disrupted
in the final step of biotin synthesis.
Plant Physiol. 116, 935–946. doi:
10.1104/pp.116.3.935

Peraza-Reyes, L., Zickler, D., and
Berteaux-Lecellier, V. (2008). The
peroxisome RING-finger complex
is required for meiocyte formation
in the fungus Podospora anse-
rina. Traffic 9, 1998–2009. doi:
10.1111/j.1600-0854.2008.00812.x

Picciocchi, A., Douce, R., and Alban,
C. (2001). Biochemical character-
ization of the Arabidopsis biotin
synthase reaction. The importance
of mitochondria in biotin synthesis.
Plant Physiol. 127, 1224–1233. doi:
10.1104/pp.010346

Pieuchot, L., and Jedd, G. (2012).
Peroxisome assembly and
functional diversity in eukary-
otic microorganisms. Annu.
Rev. Microbiol. 66, 237–263.
doi: 10.1146/annurev-micro-
092611-150126

Pinon, V., Ravanel, S., Douce, R.,
and Alban, C. (2005). Biotin syn-
thesis in plants. The first com-
mitted step of the pathway is
catalyzed by a cytosolic 7-keto-
8-aminopelargonic acid synthase.
Plant Physiol. 139, 1666–1676. doi:
10.1104/pp.105.070144

Ramos-Pamplona, M., and Naqvi,
N. I. (2006). Host invasion dur-
ing rice-blast disease requires
carnitine-dependent transport
of peroxisomal acetyl-CoA.
Mol. Microbiol. 61, 61–75. doi:
10.1111/j.1365-2958.2006.05194.x

Rébeillé, F., Alban, C., Bourguignon, J.,
Ravanel, S., and Douce, R. (2007).
The role of plant mitochondria
in the biosynthesis of coenzymes.
Photosynth. Res. 92, 149–162. doi:
10.1007/s11120-007-9167-z

Reumann, S., and Weber, A. P. (2006).
Plant peroxisomes respire in the
light: some gaps of the photores-
piratory C2 cycle have become
filled–others remain. Biochim.
Biophys. Acta 1763, 1496–1510. doi:
10.1016/j.bbamcr.2006.09.008

Saikia, S., and Scott, B. (2009).
Functional analysis and subcellular
localization of two geranylger-
anyl diphosphate synthases from
Penicillium paxilli. Mol. Genet.
Genomics 282, 257–271. doi:
10.1007/s00438-009-0463-5

Schneider, T., Dinkins, R., Robinson,
K., Shellhammer, J., and Meinke,
D. W. (1989). An embryo-
lethal mutant of Arabidopsis
thaliana is a biotin auxotroph.
Dev. Biol. 131, 161–167. doi:
10.1016/S0012-1606(89)80047-8

Schrader, M. (2006). Shared com-
ponents of mitochondrial and

peroxisomal division. Biochim.
Biophys. Acta 1763, 531–541. doi:
10.1016/j.bbamcr.2006.01.004

Schumann, U., Wanner, G., Veenhuis,
M., Schmid, M., and Gietl, C.
(2003). AthPEX10, a nuclear
gene essential for peroxisome and
storage organelle formation dur-
ing Arabidopsis embryogenesis.
Proc. Natl. Acad. Sci. U.S.A. 100,
9626–9631. doi: 10.1073/pnas.
1633697100

Shellhammer, J., and Meinke, D. W.
(1990). Arrested embryos from
the bio1 auxotroph of Arabidopsis
contain reduced levels of biotin.
Plant Physiol. 93, 1162–1167. doi:
10.1104/pp.93.3.1162

Soundararajan, S., Jedd, G., Li, X.,
Ramos-Pamploña, M., Chua, N. H.,
and Naqvi, N. I. (2004). Woronin
body function in Magnaporthe
grisea is essential for efficient patho-
genesis and for survival during
nitrogen starvation stress. Plant Cell
6, 1564–1574.

Sparkes, I. A., Brandizzi, F., Slocombe,
S. P., El-Shami, M., Hawes,
C., and Baker, A. (2003). An
Arabidopsis pex10 null mutant
is embryo lethal, implicating
peroxisomes in an essential role
during plant embryogenesis. Plant
Physiol. 133, 1809–1819. doi:
10.1104/pp.103.031252

Streit, W. R., and Entcheva, P. (2003).
Biotin in microbes, the genes
involved in its biosynthesis, its bio-
chemical role and perspectives for
biotechnological production. Appl.
Microbiol. Biotechnol. 61, 21–31.

Tanabe, Y., Maruyama, J., Yamaoka, S.,
Yahagi, D., Matsuo, I., Tsutsumi,
N., et al. (2011). Peroxisomes are
involved in biotin biosynthesis in
Aspergillus and Arabidopsis. J. Biol.
Chem. 286, 30455–30461. doi:
10.1074/jbc.M111.247338

Tenney, K., Hunt, I., Sweigard, J.,
Pounder, J. I., McClain, C.,
Bowman, E. J., et al. (2000).
Hex-1, a gene unique to filamen-
tous fungi, encodes the major
protein of the Woronin body and
functions as a plug for septal pores.
Fungal Genet. Biol. 31, 205–217.
doi: 10.1006/fgbi.2000.1230

Tey, W. K., North, A. J., Reyes, J.
L., Lu, Y. F., and Jedd, G. (2005).
Polarized gene expression deter-
mines Woronin body formation
at the leading edge of the fun-
gal colony. Mol. Biol. Cell 16,
2651–2659. doi: 10.1091/mbc.E04-
10-0937

Tzafrir, I., Pena-Muralla, R.,
Dickerman, A., Berg, M.,
Rogers, R., Hutchens, S., et al.
(2004). Identification of genes

www.frontiersin.org July 2013 | Volume 4 | Article 177 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Physiology/archive


Maruyama and Kitamoto Expanding functions of fungal peroxisomes

required for embryo devel-
opment in Arabidopsis. Plant
Physiol. 135, 1206–1220. doi:
10.1104/pp.104.045179

van der Klei, I. J., and Veenhuis,
M. (2006). Yeast and filamen-
tous fungi as model organisms
in microbody research. Biochim.
Biophys. Acta 1763, 1364–1373. doi:
10.1016/j.bbamcr.2006.09.014

van der Klei, I. J., Yurimoto, H.,
Sakai, Y., and Veenhuis, M.
(2006). The significance of per-
oxisomes in methanol metabolism
in methylotrophic yeast. Biochim.
Biophys. Acta 1763, 1453–1462. doi:
10.1016/j.bbamcr.2006.07.016

Waterham, H. R., and Ebberink, M.
S. (2012). Genetics and molec-
ular basis of human peroxisome
biogenesis disorders. Biochim.
Biophys. Acta 1822, 1430–1441. doi:
10.1016/j.bbadis.2012.04.006

Wanders, R. J., and Waterham,
H. R. (2006). Biochemistry of

mammalian peroxisomes revisited.
Annu. Rev. Biochem. 75, 295–332.
doi: 10.1146/annurev.biochem.74.
082803.133329

Weber, H. (2002). Fatty acid-derived
signals in plants. Trends Plant Sci.
7, 217–224. doi: 10.1016/S1360-
1385(02)02250-1

Woodward, A. W., and Bartel, B.
(2005). Auxin: regulation, action,
and interaction. Ann. Bot. 95,
707–735. doi: 10.1093/aob/mci083

Würtz, C., Schliebs, W., Erdmann,
R., and Rottensteiner, H. (2008).
Dynamin-like protein-dependent
formation of Woronin bod-
ies in Saccharomyces cerevisiae
upon heterologous expres-
sion of a single protein.
FEBS J. 275, 2932–2941. doi:
10.1111/j.1742-4658.2008.06430.x

Yu, Y., Jiang, D., Xie, J., Cheng, J., Li,
G., Yi, X., et al. (2012). Ss-Sl2, a
novel cell wall protein with PAN
modules, is essential for sclerotial

development and cellular integrity
of Sclerotinia sclerotiorum. PLoS
ONE 7:e34962. doi: 10.1371/jour-
nal.pone.0034962

Yuan, P., Jedd, G., Kumaran, D.,
Swaminathan, S., Shio, H., Hewitt,
D., et al. (2003). A HEX-1 crys-
tal lattice required for Woronin
body function in Neurospora crassa.
Nat. Struct. Biol. 4, 264–270. doi:
10.1038/nsb910

Zekert, N., Veith, D., and Fischer, R.
(2010). Interaction of the Aspergillus
nidulans microtubule-organizing
center (MTOC) component ApsB
with gamma-tubulin and evidence
for a role of a subclass of peroxi-
somes in the formation of septal
MTOCs. Eukaryot. Cell 9, 795–805.
doi: 10.1128/EC.00058-10

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships

that could be construed as a potential
conflict of interest.

Received: 27 May 2013; paper pend-
ing published: 11 June 2013; accepted:
23 June 2013; published online: 17 July
2013.
Citation: Maruyama J and Kitamoto
K (2013) Expanding functional reper-
toires of fungal peroxisomes: contribu-
tion to growth and survival processes.
Front. Physiol. 4:177. doi: 10.3389/fphys.
2013.00177
This article was submitted to Frontiers
in Integrative Physiology, a specialty of
Frontiers in Physiology.
Copyright © 2013 Maruyama and
Kitamoto. This is an open-access arti-
cle distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and subject to any copyright notices
concerning any third-party graphics etc.

Frontiers in Physiology | Integrative Physiology July 2013 | Volume 4 | Article 177 | 10

http://dx.doi.org/10.3389/fphys.2013.00177
http://dx.doi.org/10.3389/fphys.2013.00177
http://dx.doi.org/10.3389/fphys.2013.00177
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology/archive

	Expanding functional repertoires of fungal peroxisomes: contribution to growth and survival processes
	Introduction
	The Woronin Body, An Organelle Specific to Pezizomycotina Species, Differentiates from Peroxisomes
	Involvement of Peroxisomes in Biotin Biosynthesis in Fungi
	Conserved Peroxisomal Localization of Biof Protein and its Possible Relevance to Fungal Growth/Developmental Processes
	Conclusion
	Acknowledgments
	References


