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Abstract: In order to improve the CO catalytic oxidation performance of a Pt/TiO2 catalyst, a series
of Pt/TiO2 catalysts were prepared via an impregnation method in this study, and various char-
acterization methods were used to explore the effect of TiO2 calcination pretreatment on the CO
catalytic oxidation performance of the catalysts. The results revealed that Pt/TiO2 (700 ◦C) prepared
by TiO2 after calcination pretreatment at 700 ◦C exhibits a superior CO oxidation activity at low
temperatures. After calcination pretreatment, the catalyst exhibited a suitable specific surface area
and pore structure, which is beneficial to the diffusion of reactants and reaction products. At the
same time, the proportion of adsorbed oxygen on the catalyst surface was increased, which promoted
the oxidation of CO. After calcination pretreatment, the adsorption capacity of the catalyst for CO
and CO2 decreased, which was beneficial for the simultaneous inhibition of the CO self-poisoning of
Pt sites. In addition, the Pt species exhibited a higher degree of dispersion and a smaller particle size,
thereby increasing the CO oxidation activity of the Pt/TiO2 (700 ◦C) catalyst.

Keywords: calcination pretreatment; Pt/TiO2; low temperature; CO oxidation; catalysis

1. Introduction

As one of the most effective methods for CO removal, CO catalytic oxidation is crucial
for several practical applications [1–3]. Catalysts are key to the CO catalytic oxidation
technology. CO catalysts mainly include precious metal catalysts [4–7] and non-precious
metal catalysts [8–10]. Non-precious metal catalysts exhibit a good low-temperature activ-
ity, abundant resources, and cost-effectiveness, albeit with poor stability [11]. Although
precious metal resources are scarce and expensive, they exhibit advantages of high CO
oxidation performance and good stability. The further improvement in the low-temperature
activity of precious metal catalysts, enhancement of catalyst stability, and reduction in the
amount of precious metal are imperative to promoting practical applications of precious
metal catalysts. Since the study on Pt-catalyzed CO oxidation by Langmuir [12], several
researchers have conducted research on Pt catalysts [13–18].

Several studies have reported that TiO2-supported Pt catalysts exhibit high activity
for CO oxidation [19,20]. Pt particle size [21,22], Pt dispersion [23], catalyst preparation
method [24,25], type of catalyst carrier [26,27], use of doping additives [28,29], and catalyst
pretreatment [30,31] mainly affect the CO oxidation performance of Pt catalysts. Bi [32]
has prepared an N-doped N-Pt/TiO2 catalyst by flame spray pyrolysis, and investigated
its CO oxidation performance. Pt-N bonds are formed on the catalyst surface, which
change the ratio of oxygen species on the catalyst surface and the chemical state of Ti,
which in turn improves the thermal stability of the catalyst. Jiang [33] has employed flame
spray pyrolysis to introduce Au into the Pt/TiO2 catalyst to prepare a double precious
metal catalyst of Au-Pt/TiO2. Au and Pt exist as alloys. The synergistic effect between
Au and Pt reduces the agglomeration of noble metals and inhibits CO poisoning. The
CO oxidation performance of the dual noble metal catalyst is 20% greater than that of
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the Pt/TiO2 catalyst. Mohamed [34] has compared the CO oxidation performance of
a Pt/TiO2 catalyst prepared by impregnation and precipitation. He reported that the
preparation method affects catalytic performance and that the Pt/TiO2 catalyst prepared
by precipitation exhibits better low-temperature activity. Choi [35] has prepared a Pt/TiO2
catalyst by the aerogel method and reported that the catalyst exhibits a higher specific
surface area. After calcination at 500 ◦C, the ratio of anatase type TiO2 and rutile type TiO2
are 90.2% and 9.8%, respectively. The catalyst exhibits a good low-temperature activity,
with an activation energy of only 13.4 kcal·mol−1.

The modification method used in the above-mentioned research is relatively cumber-
some. In order to explore a simple, environmentally friendly and efficient modification
method, a series of Pt/TiO2 catalysts were prepared by impregnation, and their CO cat-
alytic oxidation performance was investigated, as well as the effect of TiO2 calcination
pretreatment on the performance of the Pt/TiO2 catalyst.

2. Experiments
2.1. TiO2 Pretreatment

TiO2 (China National Pharmaceutical Group Corporation, Beijing, China) was roasted
for 4 h in a muffle furnace (Tianjin Zhonghuan Furnace Corp, Tianjin, China) at 600 ◦C,
650 ◦C, 700 ◦C, 750 ◦C, and 800 ◦C.

2.2. Catalyst Preparation

Pt/TiO2 catalysts were prepared by impregnation and the mass fraction of Pt was 0.5%.
Specific steps were as follows: First, TiO2 was added to an aqueous solution of H2PtCl6
(China National Pharmaceutical Group Corporation, Beijing, China), and the resulting
suspension was ultrasonically stirred at 50 ◦C for 3 h in a water bath. After impregnation,
the suspension was dried at 110 ◦C in a blast drying oven (Tianjin Zhonghuan Furnace Corp,
Tianjin, China) and subsequently treated at 450 ◦C for 3 h, affording a Pt/TiO2 catalyst. The
catalysts prepared by TiO2 subjected to calcination at different temperatures are expressed
as Pt/TiO2 (600 ◦C), Pt/TiO2 (650 ◦C), Pt/TiO2 (700 ◦C), Pt/TiO2 (750 ◦C), and Pt/TiO2
(800 ◦C). The mass fraction of Pt in all catalysts was 0.5%. In order to distinguish different
catalysts, the catalysts without carrier calcination pretreatment are named Pt/TiO2, and
the catalysts obtained by carrier calcination pretreatment at different temperatures are
collectively referred to as Pt/TiO2 (M◦C).

2.3. Catalyst Characterization

The surface areas of the catalysts were determined by the BET specific surface area test
method using a Micromeritics Gemini V instrument (Norcross, GA, USA). XRD patterns of
the catalysts were recorded on a Bruker D8 Advance instrument (Karlsruhe, Germany) op-
erated at 40 kV and 40 mA using nickel-filtered Cu Kα radiation (λ = 0.15406 nm). Catalyst
morphology was observed by a Crossbeam 350 SEM instrument (Oberkochen, Germany)
operating at 5 kV, and the samples were coated with gold for 30 s before measurement.
Surface chemical states of the Pt/TiO2 catalysts were investigated by XPS (ESCALAB 250Xi,
Waltham, MA, United Kingdom) using an Al Kα X-ray source (1486.7 eV) at 15 kV and
25 W, with the binding energy calibrated by C1s at 284.8 eV. CO chemisorption experiments
were conducted as follows: First, 100 mg of a sample (40–60 mesh) was reduced under 10%
H2 for 1 h, followed by cooling to 40 ◦C and purging with argon for 15 min. Subsequently,
a pulse adsorption test using a 10% CO-He mixture was conducted. To investigate the
adsorption performance of the catalyst for CO, the CO-TPD test was conducted using a
BELCAT-B instrument (Osaka, Japan). The test method is as follows: First, 100 mg of a
sample (40–60 mesh) was pretreated for 30 min under He at 300 ◦C. After cooling to 25 ◦C,
CO gas was injected at a gas volume of 50 mL/min for 60 min. Then, it was purged with
He at 25 ◦C for 30 min, and finally heated to 700 ◦C at a heating rate of 5 ◦C/min. The
desorbed gas component was detected by a mass spectrometer.



Molecules 2022, 27, 3875 3 of 10

2.4. Catalytic Testing

The catalytic test was conducted in a continuous-flow fixed-bed quartz reactor using
1.8760 g of the catalyst at a total gas flow rate of 90,000 cm3/h, a simulated flue gas of
10,000 mg/m3 CO, 16% O2 and balanced by N2. An MRU infrared flue gas analyzer (MGA6
Plus, MRU, Obereisesheim, Germany) was used to monitor the CO concentration at the
outlet. The CO removal efficiency was calculated by the following equation:

η =
[COin]− [COout]

[COin]
× 100% (1)

where [COin] is the inlet CO content of the catalyst and [COout] is the outlet CO content of
the catalyst.

In addition, the sulfur and water resistance of the catalyst was evaluated using the
above device by the addition of 15% water vapor and 0.005% SO2 to the simulated flue gas
at 190 ◦C.

3. Results and Discussion
3.1. Catalytic Performance

Different Pt/TiO2 catalysts were investigated for their CO oxidation performance.
Figure 1a shows the results. With the increase in temperature, the CO conversion for
all catalysts for CO increase. After the calcination and pretreatment of TiO2, the CO
oxidation performance of the Pt/TiO2 catalyst is greater than that of the Pt/TiO2 catalyst
without pretreatment. With the increase in the calcination pretreatment temperature, the
CO oxidation performance of the Pt/TiO2 catalyst exhibits an increase first and then a
decrease; the temperature of the complete conversion first decreases, then increases with
the increase in the calcination temperature. With the calcination pretreatment temperature
reaching 700 ◦C, the highest CO oxidation performance is observed. When the temperature
reaches 100 ◦C, the removal efficiency of CO by Pt/TiO2 (700 ◦C) can reach 100%, while
the removal efficiency of CO by Pt/TiO2 is less than 10%. After calcination pretreatment at
700 ◦C, the complete conversion temperature of CO is reduced by 40 ◦C.
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Figure 1. (a) Activity of the catalytic oxidation of CO. (b) Activity of the catalytic oxidation of CO in
the presence of SO2 and water vapor.

When sintering flue gas, chemical plant exhaust gas and other actual flue gas often
contain SO2 and H2O. Therefore, the sulfur and water resistance properties of the catalyst
are very important. It is of great significance for the practical application of the catalyst
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to investigate the effect of the calcination pretreatment on the performance of the catalyst.
Figure 1b shows the sulfur and water resistance experiment of Pt/TiO2 and Pt/TiO2 (700 ◦C)
catalysts. By continuous testing at 190 ◦C for 18 h, the CO removal efficiency of Pt/TiO2
(700 ◦C) was maintained at 100%, and CO was not detected at the outlet. However, after
12 h of continuous testing, the CO removal efficiency of Pt/TiO2 dropped to about 99.6%.
The results revealed that the Pt/TiO2 (700 ◦C) catalyst exhibits good stability under the
experimental conditions. In order to explore the reasons for the effect of support calcination
pretreatment on the catalyst activity and stability, a series of characterization analyses were
carried out on the catalyst.

3.2. Catalyst Characterization
3.2.1. BET

To investigate the effect of calcination pretreatment on Pt/TiO2 and Pt/TiO2 (700 ◦C),
their physical structure characteristics were examined. Figure 2a is the N2 adsorption and
desorption isotherm of Pt/TiO2 and Pt/TiO2 (700 ◦C) catalysts. Both catalysts showed
type IV adsorption and desorption curves, and a H3 lag loop appeared under the relative
pressure (P/P0) from 0.8 to 1.0 and 0.9 to 1.0, respectively, indicating that both catalysts had
mesoporous structures. Comparing the two curves in Figure 2b, it is found that the pore
size of catalyst Pt/TiO2 is mostly distributed around 20 nm, while the pore size of catalyst
Pt/TiO2 (700 ◦C) is mostly distributed around 50 nm. Table 1 is the physical structure
characteristics data, and Pt/TiO2-SH and Pt/TiO2 (700 ◦C)-SH represent the samples of
Pt/TiO2 and Pt/TiO2 (700 ◦C) after the sulfur and water resistance experiment, respectively.
The BET surface area and pore volume of Pt/TiO2 (700 ◦C) exhibit a decreasing trend;
however, the pore size increases significantly. A larger pore size facilitates diffusion of
reactants and reaction products. The results show that the specific surface area, pore volume
and pore size of the catalyst exhibit a downward trend after the sulfur and water resistance
test, as shown at the end of Table 1 (Pt/TiO2-SH and Pt/TiO2 (700 ◦C)-SH). The reason for
this result may be the accumulation of sulfate on the catalyst surface.
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Figure 2. (a) N2 adsorption–desorption isotherms; (b) Pore-size distributions of catalysts.

Table 1. Physical structure characteristics data.

Catalyst BET Surface Area
m2·g−1

Pore Volume
cm3·g−1

Pore Size
nm

Pt/TiO2 78.78 0.363 17.0
Pt/TiO2 (700 ◦C) 15.76 0.155 42.9

Pt/TiO2-SH 76.50 0.354 15.1
Pt/TiO2 (700 ◦C)-SH 15.21 0.151 41.9
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3.2.2. XRD

To investigate the effect of calcination pretreatment on the crystal form of Pt/TiO2,
XRD analysis was conducted. Figure 3 shows the XRD patterns of catalysts recorded at a 2θ
range of 20–90◦. Pt/TiO2 and Pt/TiO2 (700 ◦C) exhibit typical anatase TiO2 diffraction peaks
at 2θ = 25.3◦, 37.0◦, 37.5◦, 37.8◦, 48◦, 53.9◦, 55◦, 62.7◦, 68.8◦, 70.5◦, 75.1◦, and 76.1◦ (JCPDS
No.21-1272). The results revealed that after the calcination pretreatment temperature
reaches 700 ◦C, the crystal phase of the catalyst did not change. Comparing the XRD
patterns of the two catalysts, it is found that the crystallinity of the Pt/TiO2 (700 ◦C) catalyst
is significantly improved. The improvement of catalyst crystallinity will reduce the content
of amorphous substances in the pores, promoting the diffusion of reactants and reaction
products, and is beneficial to the improvement of catalyst activity. A characteristic peak of
Pt is absent in the XRD test result, indicating that Pt is highly dispersed in TiO2.
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Figure 3. XRD patterns of catalysts.

3.2.3. SEM

SEM was employed to investigate the effect of calcination pretreatment on the surface
structure and morphology of the catalysts; Figure 4 shows the results. Pt/TiO2-SH and
Pt/TiO2 (700 ◦C)-SH represent Pt/TiO2 and Pt/TiO2 (700 ◦C) after the sulfur and water
resistance test, respectively. The SEM image (a) shows that the particles on the Pt/TiO2
surface vary in size. However, the SEM image (b) shows that the particles on the surface
of Pt/TiO2 (700 ◦C) are fine and uniform. The comparison of the SEM images (a) and (b)
revealed that after calcination at 700 ◦C, the surface roughness of TiO2 particles is reduced,
and the particle size and pore distribution are uniform. Such a surface may be beneficial for
the effective loading of Pt. The SEM images of Pt/TiO2 (700 ◦C) and Pt/TiO2 (700 ◦C)-SH
revealed that Pt/TiO2 (700 ◦C) changes significantly before and after the sulfur and water
resistance test. The Pt/TiO2 (700 ◦C)-SH surface is covered by flocs, and the pores are
blocked, inferring that after the sulfur and water resistance test of Pt/TiO2 (700 ◦C), sulfate
is formed on the surface, which covers the catalyst surface.
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Figure 4. SEM images of (a) Pt/TiO2, (b) Pt/TiO2 (700 ◦C), (c) Pt/TiO2-SH and (d) Pt/TiO2 (700 ◦C)-
SH catalysts.

3.2.4. XPS

The chemical state of the elements on the catalysts surface was analyzed by XPS.
Figure 5 shows the XPS profiles, and the surface element compositions are shown in
Table 2. Looking at Figure 5a,b, Pt on the surface of the two catalysts is present in PtO and
the surfaces of both catalysts contain two oxygen elements; the peaks around 530 eV and
531.6 eV are assigned to lattice oxygen (Olatt) and adsorbed oxygen (Oads), respectively [36].
Table 2 shows that the proportion of Oads on the surface of Pt/TiO2 (700 ◦C) is significantly
higher than that of Pt/TiO2, which will be beneficial to the improvement of the CO oxidation
activity of Pt/TiO2 (700◦C). In addition, Figure 5c shows that S element will accumulate
on the surface of the catalyst after sulfur and water resistance experiments, and it exists
in the form of SO3

2− and SO4
2−. This result indicated that under the condition of SO2

and H2O, sulfate is formed on the catalyst surface. This result is consistent with those
reported by Taira [37]. SO2 and H2O can form TiOSO4 on the TiO2 surface. However,
from the viewpoint of catalytic efficiency, the formation of sulfate does not affect the CO
oxidation activity of the Pt/TiO2 (700 ◦C) catalyst, probably because SO2 inhibits the
catalytic performance of CO, H2O can promote the oxidation of CO and the promotion
effect of H2O is greater than the inhibition effect of SO2 [38]. By comparing the proportion
of SO3

2− on the surface of the two catalysts, it is found that the proportion of SO3
2− on the

surface of Pt/TiO2 (700 ◦C)-SH is significantly higher than that of Pt/TiO2-SH, while SO3
2−

is more unstable and easier to decompose, which will be beneficial to the regeneration of
Pt/TiO2 (700 ◦C)-SH.
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Figure 5. XPS profiles for catalysts.

Table 2. Surface element compositions of catalysts.

Catalyst Oads
Oads+Olatt

SO2−
3

SO2−
3 +SO2−

4

Pt/TiO2 0.206 /
Pt/TiO2 (700 ◦C) 0.295 /

Pt/TiO2-SH / 0.369
Pt/TiO2 (700 ◦C)-SH / 0.669

3.2.5. CO Chemisorption Experiments

The dispersion and particle size of precious metals affect catalyst performance. To
explore the effect of the pre-calcination of the carrier on the catalyst performance, CO
chemisorption tests were conducted on the catalyst. The adsorption amount of CO on
the catalyst is obtained by CO pulse adsorption and then converted into the number of
adsorbed CO atoms (Nco). According to the content of Pt in the catalyst, the number of Pt
atoms in the catalyst (NPt) can be obtained, and the dispersion of Pt can be obtained by
Nco/NPt. As can be seen in Table 3, the dispersions of Pt species are 52.44% and 60.27%
on the Pt/TiO2 and Pt/TiO2 (700 ◦C) catalysts, respectively. Furthermore, the Pt particle
size of Pt/TiO2 is 18.01 nm, in comparison with 15.67 nm observed for Pt/TiO2 (700 ◦C).
Calcination pretreatment of the carrier can improve the dispersion of precious metals and
reduce the particle size of Pt, thereby improving the CO performance of the catalyst.
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Table 3. Platinum dispersion, platinum particle size, and platinum surface area of catalysts deter-
mined by CO chemisorption.

Catalyst Platinum Dispersion
%

Platinum Particle Size
nm

Platinum Surface Area
m2·g−1

Pt/TiO2 52.44 18.01 0.26
Pt/TiO2 (700 ◦C) 60.27 15.67 0.92

3.2.6. CO-TPD

To compare the adsorption and desorption performance of the two catalysts for CO, a
CO-TPD test was conducted, and the desorption gas was examined by mass spectrometry.
Desorption curves of CO and CO2 in the two catalysts were obtained. Figure 6a,b shows
the test results. Although the CO adsorption capacity of the two catalysts is extremely low,
careful comparison of the desorption peaks of CO and CO2 revealed that the desorption of
CO and CO2 in the Pt/TiO2 (700 ◦C) catalyst is less than that of the Pt/TiO2 catalyst. Due
to the low adsorption capacity of CO on the two catalysts, the noise interference of the TPD
curve is serious. The most obvious peak in the figure can be analyzed, in which it is difficult
to observe the CO desorption peak on the Pt/TiO2 (700 ◦C) catalyst, but a more obvious
peak is observed on the Pt/TiO2 catalyst at about 600 ◦C. In addition, the desorption peak
of CO2 on the Pt/TiO2 (700 ◦C) catalyst is weak, and the Pt/TiO2 catalyst has more obvious
peaks at about 400 ◦C and 600 ◦C. This result implies that a low amount of CO is absorbed
on the Pt/TiO2 (700 ◦C) catalyst, which inhibits the adsorption of CO by Pt, alleviates the
self-poisoning phenomenon of the Pt catalyst, and promotes the low-temperature catalytic
effect of Pt.
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Figure 6. CO-TPD test results of two catalysts: (a) CO test results; (b) CO2 test results.

4. Conclusions

In this study, a simple, environmentally friendly and efficient method for catalyst
modification was explored. This study revealed that the calcination pretreatment of the
carrier helps to optimize the specific surface area and pore structure of the carrier, which is
beneficial to the diffusion of reactants and reactants. At the same time, the proportion of
adsorbed oxygen on the catalyst surface increased, promoting the oxidation of CO. After
the carrier was pretreated by calcination, the adsorption capacity of the catalyst for CO
and CO2 was reduced, facilitating the diffusion of CO and desorption of CO2, reducing
the occupation of active sites, and promoting the reaction. Reducing the CO adsorption
capacity effectively suppressed the CO self-poisoning phenomenon of Pt and improved
the low-temperature activity of the catalyst. In addition, the pretreatment of the calcined
carrier improved the dispersion of Pt species and reduced the Pt particle size. As a result,
the CO oxidation activity of the catalyst was improved, and the complete conversion of CO
was realized at 100 ◦C, 40 ◦C less than that of the unpretreated sample.
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