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Abstract 

Osteoarthritis (OA) is a common chronic articular degenerative disease, and characterized by articular cartilage deg‑
radation, synovial inflammation/immunity, and subchondral bone lesion, etc. The disease affects 2–6% of the popu‑
lation around the world, and its prevalence rises with age and exceeds 40% in people over 70. Recently, increasing 
interest has been devoted to the treatment or prevention of OA by herbal medicines. In this paper, the herbal com‑
pounds with anti-OA activities were reviewed, and the cheminformatics tools were used to predict their drug-likeness 
properties and pharmacokinetic parameters. A total of 43 herbal compounds were analyzed, which mainly target the 
damaged joints (e.g. cartilage, subchondral bone, and synovium, etc.) and circulatory system to improve the patho‑
genesis of OA. Through cheminformatics analysis, over half of these compounds have good drug-likeness properties, 
and the pharmacokinetic behavior of these components still needs to be further optimized, which is conducive to the 
enhancement in their drug-likeness properties. Most of the compounds can be an alternative and valuable source for 
anti-OA drug discovery, which may be worthy of further investigation and development.
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Background
Osteoarthritis (OA) is a common chronic articular 
degenerative disease, and characterized by articular car-
tilage degradation, synovial inflammation/immunity, and 
subchondral bone lesion, etc. [1, 2] The disease affects 
2–6% of the population around the world, and its preva-
lence rises with age and exceeds 40% in people over 70 
[1]. Treatment for OA can be divided into non-surgical 
(e.g. acetaminophen, nonsteroidal anti-inflammatory 
drugs, and hyaluronic acid, etc.) and surgical (e.g. osteot-
omy, unicompartmental knee arthroplasty, and total knee 
arthroplasty) management [1]. However, these current 

treatments are also accompanied by a series of compli-
cations, such as pain, infection, blood problem, and so 
on [1]. Thus, it can be seen that exploring more safe and 
effective treatments for OA still need to be carried out on 
an ongoing basis.

The smooth progress of drug research and develop-
ment needs the support of the corresponding pathologi-
cal models. The commonly used methods of mimicking 
OA include surgical (e.g. Hulth technique, joint immobi-
lization, and destabilization of the medial meniscus, etc.) 
and non-surgical (e.g. monosodium iodoacetate, papain, 
and collagenase, etc.) induction [3–8]. The model animals 
(e.g. mouse, rat, and rabbit, etc.) and human biological 
samples (e.g. cartilage, peripheral blood mononuclear 
cell, and fibroblast-like synoviocytes, etc.) are selected as 
the research object to evaluate the anti-OA mechanism 
of the drug.
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In recent years, increasing interest has been devoted to 
the treatment or prevention of OA by herbal medicines. 
OA is a kind of “deficiency syndrome” in traditional Chi-
nese medicine theory [9]. A variety of traditional Chi-
nese medicines with tonifying deficiency effects show 
the potentials to treat OA [10, 11]. Additionally, herbal 
compounds with cartilage-protective, anti-inflammatory 
or antioxidant effects have also been widely used in the 
treatment of OA [12–14]. Therefore, the herbal com-
pounds with anti-OA activities were reviewed in this 
paper, and the cheminformatics tools were used to pre-
dict their drug-likeness properties and pharmacokinetic 
parameters, so as to provide the references for their fol-
low-up researches and developments.

The anti‑OA activities of bioactive components 
from herbal medicines
Information on the treatment of OA by bioactive com-
ponents from herbal medicines was collected by using 
Google Scholar (http://schol​ar.googl​e.com) and Pub-
Med (https​://www.ncbi.nlm.nih.gov/pubmed). From 
herbal medicines, 43 bioactive components with anti-OA 
activities have been isolated, including 11 terpenoids, 

10 flavonoids, 7 alkaloids, 6 phenols, 3 quinones, 2 cou-
marins, 2 lignans, 1 steroids, and 1 furans (Additional 
file 1: Figure S1). The networks of OA pathogenesis and 
compound targets were constructed by Cytoscape soft-
ware (version 3.8.0). OA is mainly characterized by joint 
degeneration, meanwhile accompanied by the changes of 
the related indicators in circulatory system (Fig. 1). Multi-
ple pathological processes are involved in the pathogene-
sis of OA, such as inflammation, apoptosis, and oxidative 
stress, etc. (Figure 1). These bioactive components (such 
as resveratrol, curcumin, and isofraxidin, etc.) mainly tar-
get the damaged joints (e.g. cartilage, subchondral bone, 
and synovium, etc.) and circulatory system to improve 
the pathogenesis of OA, which mainly exert anti-inflam-
matory, anti-apoptotic, and anti-oxidative stress effects 
through interleukin (IL), nuclear factor-κB (NF-κB), and 
matrix metalloproteinase (MMP) pathways (Figs.  2 and 
3). The effective doses of these compounds for the experi-
ment are shown in Table 1.

The effects of bioactive components on cartilage in OA
Cartilage is pivotal to the normal function of synovial 
joints. Cartilage covers and protects the ends of long 

Fig. 1  The main pathogenesis and lesion sites of OA. Blue circular node: pathogenesis; red diamond node: cartilage damage; green diamond node: 
subchondral bone damage; blue diamond node: synovial injury; pink diamond node: circulatory system changes; purple diamond node: muscle 
weakness and inflammation

http://scholar.google.com
https://www.ncbi.nlm.nih.gov
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bones permitting friction-free locomotion and move-
ment at the joints. A dysfunction in the cartilage is one 
of the important inducing factors and pathological fea-
tures of OA [14]. Cartilage consists of chondrocytes that 
generate a large of collagenous extracellular matrix, pro-
teoglycans, and elastin fibers. Histological analysis shows 
that various components can repair the damage of chon-
drocytes in OA, including resveratrol [14], curcumin 
[15], icariin [16], berberine [17], sinomenine [18], tetra-
methylpyrazine [19], halofuginone [20], quercetin [21], 
psoralen [22], and magnoflorine [23].

The inflammatory mediators lead to articular carti-
lage damage and the clinical manifestations of OA [24]. 
Resveratrol attenuates inflammation through NF-κB, 
toll-like receptor 4 (TLR4)/tumor necrosis factor recep-
tor–associated factor 6 (TRAF6), and Wnt/β-catenin 
signaling pathways [12, 24–26]. Curcumin reduces the 

expression of pro-inflammatory mediators via inhibiting 
the activation of NLR pyrin domain containing 3 inflam-
masome and NF-κB [15, 27, 28]. Cryptotanshinone [29] 
and cinnamophilin [30] inhibit IL-1β-induced cartilage 
inflammation through suppressing NF-κB and mitogen-
activated protein kinase (MAPK) activation. Genipo-
side may have anti-inflammatory potential on OA, and 
p38 MAPK signaling is a crucial pathway for this effect 
[31]. Harpagoside exerts anti‐inflammatory effect via 
suppressing c‐fos/activator protein‐1 activity in OA 
chondrocytes [32]. Isofraxidin targets the TLR4/mye-
loid differentiation protein-2 axis and NF-κB signaling 
pathway to prevent OA inflammation [33, 34]. Shikonin 
inhibits chondrocyte inflammation by the regulation of 
the phosphatidylinositol-3-kinase (PI3K)/Akt signaling 
pathway in OA rats [35]. Anti-inflammatory effects of 
licochalcone A are associated with NF-κB and nuclear 

Fig. 2  The overview of targets and effects of bioactive components with anti-OA activities. Green circular node: herbal compound; yellow circular 
node: target; red rectangle node: antiinflammatory effect; green rectangle node: antiapoptosis; blue rectangle node: antioxidation; pink rectangle 
node: anticatabolic effect; purple rectangle node: antiangiogenesis; orange rectangle node: antiosteoclastogenesis; yellow rectangle node: 
anti-endoplasmic reticulum stress
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Fig. 3  The overview of anti-OA activities of a resveratrol, b curcumin, c isofraxidin, d berberine, e emodin, and f icariin. Yellow circular node: 
target; red rectangle node: antiinflammatory effect; green rectangle node: antiapoptosis; blue rectangle node: antioxidation; pink rectangle 
node: anticatabolic effect; purple rectangle node: antiangiogenesis; orange rectangle node: antiosteoclastogenesis; yellow rectangle node: 
anti-endoplasmic reticulum stress
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Table 1  The effective doses for the experiment on anti-OA activities of the herbal compounds

No. Herbal compounds In vivo in Vitro

1 2,3,5,4′-Tetrahydroxystilbene-2-O-
β-d-glucoside

10–50 mg/kg (rat) [60] 10–400 μg/ml (chondrocyte) [60]

2 Acetylshikonin 5 mg/kg (rat) [86] 3 μM (chondrocyte) [86]

3 Anemonin 2 mg/kg (mouse) [49] 10 μM (chondrocyte) [49]

10 μM (cartilage explant) [49]

4 Arasaponin R1 125 mg/l (chondrocyte) [41]

5 Artesunate 25–300 mg/kg (rat) [57, 100]

6 Astragaloside IV 25–500 mmol/l (chondrocyte) [52, 81, 90]

50 µg/ml (chondrocyte) [73]

7 Berberine 10–50 mg/kg (rat) [17] 20–100 μM (OA synovial fibroblasts) [17]

10––200 μM/50 μl (rat) [67, 68] 25–100 μM (chondrocyte) [67–69]

7–28 μg/kg (rat) [69] 25–100 μM (cartilage explant) [68]

8 Butein 20 mg/kg (mouse) [46] 10–50 μM (chondrocyte) [46]

9 Celastrol 1 mg/kg (rat) [84] 0.1–1 μM (chondrocyte) [54]

10 Cinnamophilin 5–30 μM (SW1353 cell) [30]

11 Compound K 0.01–10 μM (MC3T3-E1 cell) [37]

12 Coptisine 2.5-10 μg/ml (chondrocyte) [44]

13 Crocin 5–100 μM/0.3 ml (rabbit) [43] 50–100 μM (chondrocyte) [43]

30 mg/kg (rat) [110]

14 Cryptotanshinone 10 mg/kg (mouse) [29] 5–20 μM (chondrocyte) [29]

15 Curcumin 50 μM (mouse) [15] 10 μM (THP-1 cell) [15]

50–100 mg/kg (mouse) [27, 65, 66] 50–100 μM (chondrocyte) [27, 28]

200 mg/kg (rat) [96] 40 μM (synoviocyte) [97]

16 Emodin 5–25 μM/50 µl (rat) [39] 5–30 µg/ml (chondrocyte) [38, 39]

17 Ferulic acid 40 μM (chondrocyte) [55]

18 Gastrodin 100 μg/kg (rat) [51] 10–50 μM (chondrocyte) [51]

19 Geniposide 40 mg/kg (rabbit) [31] 80 μg/ml (chondrocyte) [31]

20 Genistein 0.3–0.5 mg/kg (rabbit) [58]

21 Ginsenoside Rb1 80 μM/0.3 ml (rat) [76] 20–80 μM (SW1353 cell) [76]

300 μM/200 μl (rat) [87]

22 Ginsenoside Rg5 10–15 mg/kg (rat) [74]

23 Halofuginone 0.2–2.5 mg/kg (mouse) [20, 82, 91]

24 Harpagoside 300 μg/ml (chondrocyte) [32]

25 Honokiol 2.5–10 μM (chondrocyte) [50]

26 Icariin 10–40 ng/ml (rat) [9] 20 μM (SW1353 cell) [16, 79]

20 μM (rat) [16] 12.5 mg/l (chondrocyte) [41]

1–6 g/kg (rabbit) [40] 12 μg/ml (SW1353 cell) [92]

10–25 mg/kg (mouse) [78, 108] 0.5–1 μM (OA fibroblast-like synoviocyte) [95]

27 Isofraxidin 20 mg/kg (mouse) [34] 1–50 μM (chondrocyte) [33, 34]

28 Kaempferol 25–100 µM (chondrocyte) [47]

29 Licochalcone A 5–20 µM (chondrocyte) [36]

30 Magnoflorine 50 ng/2 μl (pig) [23] 25 μg/ml (MC3T3-E1 cell) [23]

31 Naringin 100 mg/kg (mouse) [42] 5 µM (chondrocyte) [42]

5–10 mg/kg (rat) [106]

32 Paeonol 20 mg/kg (rat) [56] 50 µM (chondrocyte) [56]

0.2–0.8 mg/kg (rabbit) [71]

33 Piperine 10–100 μg/ml (chondrocyte) [45]

34 Psoralen 1 mg/kg (rat) [22] 10 µM (chondrocyte) [22]

10 µM (synoviocyte) [22]

10−6 mol/l (chondrocyte) [75]
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factor (erythroid-derived 2)-like 2 signaling pathways 
[36]. Compound K, an IkBα kinase inhibitor, may alleviate 
inflammatory response in cartilage [37]. Emodin amelio-
rates OA cartilage inflammation by inhibiting NF-κB and 
Wnt/β-catenin signaling [38, 39]. NF-κB signaling path-
way is also involved in the treatment of cartilage inflam-
mation by icariin [40, 41], arasaponin R1 [41], berberine 
[17], tetramethylpyrazine [13], naringin [42], crocin [43], 
coptisine [44]; piperine [45], butein [46]; kaempferol 
[47], tectorigenin [48], anemonin [49], honokiol [50], and 
gastrodin [51]. In addition, some molecules have been 
reported to reduce the expression of inflammatory fac-
tors in OA cartilage, but the related pathways still need to 
be further explored, such as astragaloside IV [52], puer-
arin [53], celastrol [54], ferulic acid [55], paeonol [56], 
artesunate [57], genistein [58], theaflavin-3,3′-digallate 
[59], and 2, 3, 5,4′-tetrahydroxystilbene-2-O-β-d-
glucoside [60].

In the progressive stage of OA, apoptosis destroys 
chondrocyte homeostasis [61]. Resveratrol inhibits chon-
drocyte apoptosis in OA through a variety of signaling 
pathways, including nitric oxide (NO) [61], NF-κB [26], 
sirtuin 1 [62, 63], Wnt/β‑catenin [62], bal-2/bax [64], 
TLR4 [12], and PI3K/Akt signaling pathways [12]. Cur-
cumin reverses apoptosis of chondrocytes via modulating 
the balance of antiapoptotic and proapoptotic proteins 
[15]. This is related to janus kinase 2/signal transducer 
and activator of transcription 3 [65], extracellular 
signaling-regulated kinase (ERK) 1/2, and Akt/mam-
malian target of rapamycin (mTOR) pathways [66]. Ber-
berine prevents NO-induced chondrocyte apoptosis via 

AMP‐activated protein kinase (AMPK) and p38 MAPK 
signaling [67, 68], and promotes cell survival through 
activating Akt signaling in OA model [69]. Tetrameth-
ylpyrazine inhibits the chondrocytes apoptosis through 
suppressing the production of reactive oxygen species 
(ROS) [70] and inactivating NF-κB signaling pathway 
[13]. Paeonol alleviates chondrocyte apoptosis by regu-
lating the levels of ROS, bcl-2, and bax [56, 71]. Some 
components (icariin [9], sinomenine [72], astragaloside 
IV [73], quercetin [21], shikonin [35], tectorigenin [48], 
gastrodin [51], and ginsenoside Rg5 [74]) also exert anti-
apoptotic effects on chondrocytes through various mech-
anisms. The promoting effects of puerarin [53], psoralen 
[75], magnoflorine [23], and emodin [38] on proliferation 
may be also beneficial to reverse cartilage apoptosis.

The extracellular matrix of articular cartilage is mainly 
composed of type II collagen and aggrecan. Catabolic 
reactions take place in the OA cartilage, in which col-
lagen and aggrecan are degraded [63]. MMPs are a 
family of zinc containing, calcium-dependent neutral 
proteases which can initiate the cleavage of type II col-
lagen and aggrecan [76]. In OA chondrocytes, resvera-
trol may reverse the decrease in the levels of type II 
collagen, aggrecan, and glycosaminoglycan by regulating 
silent information regulator 2 type 1, hypoxia-inducible 
factor-2α, and MMPs expression [24, 62, 63, 77]. Cur-
cumin [28], naringin [42], icariin [16, 78, 79], berber-
ine [68, 69], sinomenine [72], tetramethylpyrazine [13, 
70, 80], astragaloside IV [81], halofuginone [82], puera-
rin [83], quercetin [84], celastrol [54, 85], harpagoside 
[32], ferulic acid [55], shikonin, acetylshikonin [86], 

Table 1  (continued)

No. Herbal compounds In vivo in Vitro

35 Puerarin 25–50 mg/kg (mouse) [53] 50 nM (chondrocyte) [53]

30–200 mg/kg (rat) [83, 88]

36 Quercetin 50–100 mg/kg (rat) [21, 84] 25 μM (chondrocyte) [21]

25 mg/kg (rabbit) [98]

37 Resveratrol 45 mg/kg (mouse) [12, 25] 50 μM (SW1353 cell) [12]

10–50 μM/kg (rabbit) [14, 61] 10–100 μM (chondrocyte) [24, 26, 62]

30–120 mg/kg (rabbit) [64, 109] 1–5 μM (peripheral blood mononuclear cell) [63]

10–100 μg/8 μl (mouse) [77]

38 Shikonin 10 mg/kg (rat) [35] 50 μM (chondrocyte) [86]

39 Sinomenine 2 mg/kg (rabbit) [99] 10–250 μM (chondrocyte) [72]

5 mg/0.2 ml (rabbit) [102] 10–250 μM (cartilage explant) [72]

0.25 mM (mesenchymal stem cell) [93]

40 Tectorigenin 0.75–1.5 μg/kg (rat) [48] 50–100 μM (chondrocyte) [48]

41 Tetramethylpyrazine 30–100 mg/kg (rat) [19, 89] 0.5–200 μM (chondrocyte) [13, 70]

2.1 mg/0.1 ml (rat) [80] 50–200 μM (cartilage explant) [70]

42 Theaflavin-3,3′-digallate 25–75 μg/ml (chondrocyte) [59]

43 Triptolide 0.35 μg (mouse) [107] 20 ng/ml (THP-1 cell) [107]
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ginsenoside Rb1 [76, 87], cinnamophilin [30], honokiol 
[50], 2, 3, 5, 4′-tetrahydroxystilbene-2-O-β-d-glucoside 
[60], geniposide [31], ginsenoside Rg5 [74], cryptotanshi-
none [29], isofraxidin [33], paeonol [56], crocin [43], cop-
tisine [44], piperine [45], butein [46], licochalcone A [36], 
tectorigenin [48], theaflavin-3,3′-digallate [59], anemonin 
[49], gastrodin [51], compound K [37], and emodin [38, 
39] inhibit the expression of MMPs through a variety 
of pathways, such as IL-1β signaling, NF-κB signal-
ing, AMPK signaling, MAPK signaling, and NO signal-
ing, etc. The inhibition of cartilage catabolic processes 
by resveratrol [24], curcumin [66], and astragaloside IV 
[73] may be also related to their regulation on autophagy, 
activation of which may reduce the severity of OA. Addi-
tionally, Artesunate [57] and psoralen [75] can markedly 
enhance the expression of type II collagen as well.

Oxidative stress plays a crucial role in the progres-
sion of OA, and the dysregulation of various oxidative 
stress indices occurs in cartilage, such as NO, inducible 
NO synthase (iNOS), and ROS, etc. [54]. Resveratrol 
[61], tetramethylpyrazine [13, 70], celastrol [54], isof-
raxidin [33, 34], paeonol [56], shikonin [35], coptisine 
[44], piperine [45], butein [46], genistein [58], kaemp-
ferol [47], licochalcone A [36], honokiol [50], 2, 3, 5, 
4′-tetrahydroxystilbene-2-O-β-d-glucoside [60], com-
pound K [37], geniposide [31], emodin [38], and cur-
cumin [65] may reverse the abnormal expression of these 
indexes. Mitochondrial dysfunction in chondrocytes is 
associated with OA, and induces oxidative stress [88]. 
Puerarin [88] and quercetin [84] may attenuate mito-
chondrial dysfunction in OA rats. Subsequently, oxida-
tive stress induces endoplasmic reticulum stress in OA, 
and quercetin may also repress this process by activating 
the sirtuin1/AMPK signaling pathway [21].

Abnormal angiogenesis is also closely related to the 
development of OA [57]. Some herbal compounds (e.g. 
sinomenine [18], tetramethylpyrazine [89], astragaloside 
IV [90], and artesunate [57]) may suppress aberrant angi-
ogenesis by interfering with a variety of targets, such as 
vascular endothelial growth factor (VEGF), miR20b, and 
nerve growth factor (NGF), etc.

The effects of bioactive components on subchondral bone 
in OA
Besides cartilage, subchondral bone lesions are the char-
acteristic pathological changes in OA as well [91]. The 
micro-computed tomography scan shows that halofugi-
none restores coupled bone remodelling and aberrant 
angiogenesis in subchondral bone [82, 91]. Osteoclast is 
a type of bone cell breaking down bone tissue, and col-
lagen degradation mediated by which is also involved 
in the pathophysiology of OA [57]. Icariin [92] and 
sinomenine [93] suppress osteoclastogenesis through 

osteoprotegerin-NF-κB system. Halofuginone suppresses 
Th17-induced osteoclastogenesis via inhibition of TGF-β 
signaling [82]. Artesunate interrupts anterior cruciate 
ligament transection-associated osteoclastogenesis [57]. 
In addition to osteoclasts, osteoblasts are also the major 
cellular component of bone, which synthesize dense and 
crosslinked collagen and reshape bone tissue. Magno-
florine [23] and compound K [37] stimulate osteoblast 
proliferation, differentiation, and mineralization. Res-
veratrol may play the roles on alkaline phosphatase activ-
ity, osteocalcin release, and mineralization in osteoblasts 
via promoting the Wnt/β-catenin signaling pathway [94]. 
Histological analysis indicates that cryptotanshinone 
[29], isofraxidin [34], and resveratrol [77] may reduce 
subchondral bone plate thickness.

The effects of bioactive components on synovium in OA
Synovium supplies nutrients to cartilage and protects the 
joint structures and the adjoining musculoskeletal tis-
sues [95]. OA is a classic degenerative synovial disease. 
Synovitis affects both symptoms and progression of OA 
[95]. Curcumin [96, 97], icariin [95], psoralen [22], ber-
berine [17], quercetin [98], geniposide [31], sinomenine 
[99], and artesunate [57, 100] produce anti-inflammatory 
activity in synoviocytes/synovia by regulating the levels 
of various inflammatory factors, such as MMPs, ILs, and 
tumor necrosis factor (TNF)-α, etc. Synovial proliferation 
is induced by inflammation in OA [101]. The antiprolifer-
ative effects of curcumin [97] and icariin [95] may reverse 
this process. Likewise, angiogenesis and inflammation 
are closely associated in OA [57]. Sinomenine [18] and 
artesunate [57] may prevent the expression of angiogenic 
factors (e.g. VEGF, NGF, and angiopoietin-1, etc.). Oxida-
tive stress and inflammation promote each other in joints 
[98]. Quercetin [98] and geniposide [31] may inhibit oxi-
dative stress in synovial region. Glucose-regulated pro-
tein-78 aggregates in the endoplasmic reticulum, which 
is widely used as a marker for endoplasmic reticulum 
stress. Icariin can reduce Glucose-regulated protein-78 
expression in synovium of OA [95]. Geniposide [31] and 
sinomenine [102] can decrease the levels of MMPs and 
cartilage oligomeric matrix proteins in synovial fluid, 
which may help to alleviate the process of cartilage deg-
radation in OA. Insulin-like growth factor-1 accelerates 
the differentiation of chondrocytes, stimulates the syn-
thesis of cartilage matrix, and inhibits the matrix decom-
position, the up-regulation of which by artesunate may 
facilitate cartilage protection in OA [100].

The effects of bioactive components on circulatory system 
in OA
Circulatory pathology is closely related with OA [103]. 
A variety of herbal compounds can reverse some 
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pathological processes in serum of OA model. Querce-
tin [104], resveratrol [63, 105], sinomenine [99], puera-
rin [53], isofraxidin [34], naringin [106], ginsenoside 
Rb1 [87], triptolide [107], and icariin [108] can reduce 
the serum levels of inflammatory cytokines, such as 
ILs, TNF-α, and hsa-miR-20b, etc. Sinomenine [102], 
quercetin [98, 104], and artesunate [100] may regu-
late the expressions of cartilage catabolic factors (e.g. 
MMPs, tissue inhibitors of MMP, and a disintegrin and 
metalloproteinase with thrombospondin motifs, etc.) in 
serum. Icariin reduces VEGF and hypoxia-inducible fac-
tor‐lα levels in the peripheral blood, which may help to 
inhibit the formation of new blood vessels in the syno-
vial tissue of joints [9]. Resveratrol effectively improves 
the blood rheology, which facilitates to prevent and delay 
the degenerative changes in the articular cartilage of OA 
model [109]. Additionally, quercetin increases serum 
superoxide dismutase level, which is a major active mol-
ecule to scavenge free radical [98].

The effects of bioactive components on muscle in OA
Muscle weakness and inflammation also play a role in 
OA development and progression [110]. Crocin attenu-
ates OA symptoms through alleviating muscle oxidative 
stress (targets: nuclear factor (erythroid-derived 2)-like 
2, superoxide anion, and glutathione, etc.) and inflam-
mation (pathways: c-Jun N-terminal kinase, NF-κB, and 
MAPK, etc. signaling pathways) induction [110].

Pharmacokinetic parameters and drug‑likeness 
properties prediction of bioactive components 
with anti‑OA activities
In addition to their therapeutic activities, the pharma-
cokinetic behaviors of these components are also the 
key factors affecting their ability to develop drugs. Only 
the compounds with good drug-likeness properties have 
the possibility to be further investigated and developed. 
Thus, in the following section, the cheminformatics tools 
were applied to predict the pharmacokinetic parameters 
and drug-likeness properties of these compounds.

The pharmacokinetic parameters of these compounds 
were calculated by using pkCSM (http://biosi​g.unime​
lb.edu.au/pkcsm​/predi​ction​) [111]. The compounds 
depicted as 2D structures in the MDL Molfile format 
were imported into the website. The water solubility of 
the compounds can influence their efficacy in  vivo. The 
good aqueous solubility can facilitate the molecules dis-
persing into biological body fluids, thereby expediting 
their absorption and distribution processes [112]. Water 
solubility assessment showed that most of herbal com-
pounds (38/43) were soluble in water (> − 4 log mol/L), 
while five of 43 molecules were low soluble in water (< − 4 
log mol/L, Table 2). The low solubility of curcumin is one 

of the factors affecting its oral bioavailability. Reportedly, 
the solubility of curcumin can be significantly improved 
by addition of an electron-withdrawing group. A chemi-
cally modified curcumin, TRB-n0224, also has good ther-
apeutic effects on OA model [113].

The main pathological features of OA are the degen-
erative lesions of cartilage and synovium in the joint. It 
is not conducive to the treatment of local lesions of OA 
if the distribution of drug molecules in the blood is more 
than that in the lesion tissues. VDss index can be used 
to predict the distribution of molecules in tissue and 
plasma. VDss analysis showed that thirty-six of 43 herbal 
compounds were mainly distributed in the circulatory 
system (< 0.45 log L/kg, Table 2). This may require some 
measures to increase their levels in local tissues. Intra-
articular injection allows the molecules to accumulate 
in the joint cavity, thus enhancing their effects on local 
lesions. Intra‐articular delivery of resveratrol [77], tetra-
methylpyrazine [80], and anemonin [49] may enhance 
their articular cavity retention for treating OA.

In addition to intra-articular injection, transdermal 
delivery of joint is also one of the local administration 
methods. Extra-articular percutaneous approach has 
advantages over intra-articular injection, such as greater 
safety, easier use, better patient compliance, and so on. 
Skin permeability is the necessary requirement for trans-
dermal drug delivery. Skin permeability estimation indi-
cated that almost all of these herbal molecules (42/43) 
were easy to penetrate into the epidermis (prediction 
value less than − 2.5, Table  2), especially anemonin, 
sinomenine, and triptolide.

The low clearance rate of drugs results in the prolon-
gation of their half-life in vivo. This may produce a sus-
tained and stable curative effect on the chronic diseases, 
such as OA. At the same time, however, attention should 
also be paid to the cumulative dose of herbal components 
with low total clearance. These compounds may also 
cause cumulative toxicity when they are used for long-
term therapeutic purposes. Total clearance prediction 
showed that fifteen of 43 herbal compounds have the low 
hepatic clearance and renal clearance rates (prediction 
value less than 0.25, Table  2), especially celastrol, cur-
cumin, and butein.

The drug-likeness properties prediction of these herbal 
compounds was analyzed by using MolSoft online tools 
(http://molso​ft.com/mprop​/) [114]. The input for the 
analysis was the MDL Molfile format of these com-
pounds. Over half of these molecules (26/43) had the 
great possibility of becoming the drugs (prediction 
value between 0 and 2, Table 2), which have the possibil-
ity of being further studied and developed. However, of 
these compounds, nine molecules had poor drug-like-
ness properties (prediction value between -3 and − 0.5, 

http://biosig.unimelb.edu.au/pkcsm/prediction
http://biosig.unimelb.edu.au/pkcsm/prediction
http://molsoft.com/mprop/
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Table 2  Pharmacokinetic parameters and  drug-likeness properties prediction of  herbal compounds with  anti-OA 
activities

No. Herbal compounds Botanical source Water 
solubility (log 
mol/L)

Skin 
permeability 
(log Kp)

VDss 
(human) 
(log L/kg)

Total clearance 
(log ml/min/kg)

DL

1 2, 3, 5, 
4′-Tetrahydroxystilbene-
2-O-β-d-glucoside

Polygonum multiflorum Thunb. − 3.227 − 2.735 − 0.109 0.219 0.16

2 Acetylshikonin Lithospermum erythrorhizon Sieb. − 3.022 − 3.188 0.084 0.336 0.41

3 Anemonin Clematis L. − 1.436 − 3.646 − 0.005 0.431 − 1.57

4 Arasaponin R1 Panax notoginseng (Burkill) F. H. Chen − 2.765 − 2.735 − 0.239 0.497 0.24

5 Artesunate Artemisia annua L. − 3.125 − 2.734 0.286 0.973 − 0.39

6 Astragaloside IV Astragalus membranaceus (Fisch.) Bge. − 2.693 − 2.735 − 0.507 0.147 0.05

7 Berberine Hydrastis canadensis L., Phellodendron 
amurense Rupr., and Coptis chinensis 
Franch.

− 3.341 − 2.734 0.764 1.272 0.91

8 Butein Rhus verniciflua Stokes − 2.857 − 2.835 0.003 0.062 0.82

9 Celastrol Celastrus aculeatus Merr. − 4.584 − 2.720 − 0.987 − 0.090 0.63

10 Cinnamophilin Cinnamomum philippinense (Merr.) C. E. 
Chang

− 4.465 − 3.051 0.195 0.215 0.76

11 Compound K Panax ginseng C. A. Mey. − 3.683 − 2.735 − 0.627 0.475 0.34

12 Coptisine Coptis chinensis Franch. − 3.325 − 2.734 0.636 1.298 − 0.08

13 Crocin Crocus sativus L. − 2.804 − 2.735 − 0.294 1.768 − 0.27

14 Cryptotanshinone Salvia miltiorrhiza Bunge − 4.571 − 2.563 0.689 0.841 0

15 Curcumin Curcuma longa L. − 4.926 − 2.913 − 0.184 0.033 − 0.66

16 Emodin Rheum palmatum L. − 3.179 − 2.764 0.045 0.348 − 0.72

17 Ferulic acid Oldenlandia diffusa (Willd.) Roxb. − 1.737 − 2.621 − 0.642 0.653 − 0.44

18 Gastrodin Gastrodia elata Blume − 1.354 − 2.985 − 0.463 0.234 − 1.19

19 Geniposide Gardenia jasminoides J. Ellis − 2.534 − 2.914 − 0.415 1.408 0.51

20 Genistein Glycine max (Linn.) Merr. − 3.533 − 2.737 − 0.709 0.232 0.71

21 Ginsenoside Rb1 Panax ginseng C. A. Mey. − 2.839 − 2.735 − 0.440 0.570 0.28

22 Ginsenoside Rg5 Panax ginseng C. A. Mey. − 3.520 − 2.735 − 1.033 0.513 0.44

23 Halofuginone Dichroa febrifuga Lour. − 3.613 − 2.960 0.593 1.134 0.91

24 Harpagoside Harpagophytum procumbens DC. − 3.181 − 2.751 − 0.332 1.057 − 0.96

25 Honokiol Magnolia officinalis Rehd. et Wils. − 3.862 − 2.795 0.350 0.377 − 0.33

26 Icariin Epimedium brevicornu Maxim. − 2.930 − 2.735 − 0.278 0.076 1.09

27 Isofraxidin Acanthopanax senticosus (Rupr. & Maxim.) 
Harms

− 2.37 − 2.728 − 0.382 0.762 − 0.88

28 Kaempferol Kaempferia rotunda L. − 3.176 − 2.735 − 0.107 0.558 0.77

29 Licochalcone A Glycyrrhiza uralensis Fisch. − 4.161 − 2.808 0.092 0.482 − 0.16

30 Magnoflorine Phellodendron chinense Schneid. − 3.447 − 2.954 1.306 1.102 0.8

31 Naringin Citrus plants − 3.103 − 2.735 0.157 0.685 1.21

32 Paeonol Paeonia suffruticosa Andr. − 1.606 − 2.758 0.137 0.630 0.01

33 Piperine Piper nigrum L. − 3.799 − 2.824 0.266 0.240 − 0.02

34 Psoralen Psoralea corylifolia L. − 2.688 − 2.271 − 0.284 0.738 − 0.93

35 Puerarin Pueraria lobata (Willd.) Ohwi − 3.845 − 2.735 − 0.217 0.183 0.04

36 Quercetin Cudrania tricuspidata (Carr.) Bur. − 2.942 − 2.735 0.134 0.515 0.93

37 Resveratrol Polygonum cuspidatum Sieb., Veratrum 
album var. grandiflorum Maxim, and 
Vitis vinifera L. etc.

− 3.285 − 3.132 0.118 0.141 − 0.94

38 Shikonin Lithospermum erythrorhizon Sieb. − 2.535 − 2.775 0.297 0.105 0.36

39 Sinomenine Sinomenium acutum (Thunb.) Rehd. et 
Wils.

− 2.276 − 3.550 0.673 0.921 0.87

40 Tectorigenin Belamcanda chinensis (L.) Redouté − 3.580 − 2.737 − 0.644 0.166 0.58
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Table 2), which may require some measures to optimize 
their pharmacokinetics parameters, such as molecu-
lar modification, drug administration route change, and 
drug dosage form optimization, etc.

Conclusion and future directions
In this review, we have summarized and analyzed 43 
herbal compounds with anti-OA activities. The main 
therapeutic sites of these molecules for the treatment of 
OA are articular cartilage, subchondral bone, synovial 
membrane, and circulatory system, etc. Over half of these 
compounds have good drug-likeness properties (e.g. nar-
ingin, icariin, and quercetin, etc.), which may be worthy 
of further investigation and development. In addition, 
these compounds are mainly isolated from Araliaceae, 
Leguminosae, and Polygonaceae plants, etc., which would 
get more attention in the following researches.

Through cheminformatics analysis, the pharmacoki-
netic behavior of these components still needs to be fur-
ther optimized, which is conducive to the enhancement 
in their drug-likeness properties. The water solubility of 
molecules can be changed by mean of structural modi-
fication, so as to enhance their oral absorption process. 
In the subsequent distribution process, the accumula-
tion of drug molecules in the joint tissues is conducive to 
the treatment of the main lesion sites of OA. Both intra-
articular injection and articular percutaneous adminis-
tration can increase the levels of drug molecules in the 
joint, between which the latter one has a stronger appli-
cation potential in the treatment of OA. Additionally, the 
retention time of the components with low clearance rate 
is increased in vivo, which is conducive to the continuous 
treatment of OA. However, when used for a long time, 
their doses should be properly adjusted to avoid cumula-
tive toxicity.

At present, the application of herbal compounds in 
the treatment of OA has made some progress. However, 

compared to other arthritis (such as rheumatoid arthri-
tis (RA)), the application of herbal compounds in OA 
is still inadequate. There is some common pathogenesis 
between OA and RA, such as inflammation, apoptosis, 
and oxidative stress, etc. [112]. Therefore, the poten-
tial of anti-RA drugs in the treatment of OA would 
be further explored in future researches. In addition, 
some new research patterns can be used to speed up 
the exploration of the mechanism and chemical basis 
of herbs in the treatment of OA, such as biolabelled 
research pattern [115, 116], chinmedomics [117], and 
systems pharmacology [118], etc.
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Table 2  (continued)

No. Herbal compounds Botanical source Water 
solubility (log 
mol/L)

Skin 
permeability 
(log Kp)

VDss 
(human) 
(log L/kg)

Total clearance 
(log ml/min/kg)

DL

41 Tetramethylpyrazine Ligusticum chuanxiong Hort. − 0.786 − 2.671 − 0.136 0.551 − 1.53

42 Theaflavin-3,3′-digallate Black tea − 2.892 − 2.735 − 0.087 0.242 0.47

43 Triptolide Tripterygium wilfordii Hook.f. − 3.657 − 3.202 0.465 0.484 − 0.32

Water solubility: the solubility of the molecule in water at 25 °C; less than − 10: insoluble; between − 10 and − 6: poorly soluble; between − 6 and − 4: moderately 
soluble; between − 4 and − 2: soluble; between − 2 and 0: very soluble; more than 0: highly soluble

Skin permeability: the human skin permeability of compounds in vitro; more than − 2.5: low skin permeability; less than − 2.5: high skin permeability

VDss (human): the volume of compounds distributed in tissue; less than − 0.15: low distribution; more than 0.45: high distribution

Total clearance: a combination of hepatic clearance and renal clearance; less than 0.25: low total clearance; more than 0.25: high total clearance

DL: drug-likeness model score; between 0 and 2: very drug-like molecules; between − 3 and − 0.5: non-drug like molecules
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