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Abstract: To evaluate patients’ radiation exposure undergoing CT-guided joint injection in prepa-
ration of MR-arthrography. We developed a novel ultra-low-dose protocol utilizing tin-filtration,
performed it in 60 patients and compared the radiation exposure (DLP) and success rate to conven-
tional protocol (26 cases) and low-dose protocol (37 cases). We evaluated 123 patients’ radiation
exposure undergoing CT-guided joint injection from 16 January–21 March. A total of 55 patients
received CT-guided joint injections with various other examination protocols and were excluded
from further investigation. In total, 56 patients received shoulder injection and 67 received hip injec-
tion with consecutive MR arthrography. The ultra-low-dose protocol was performed in 60 patients,
the low-dose protocol in 37 patients and the conventional protocol in 26 patients. We compared
the dose of the interventional scans for each protocol (DLP) and then evaluated success rate with
MR-arthrography images as gold standard of intraarticular or extracapsular contrast injection. There
were significant differences when comparing the DLP of the ultra-low-dose protocol (DLP 1.1 ± 0.39;
p < 0.01) to the low dose protocol (DLP 5.3 ± 3.24; p < 0.01) as well as against the conventional
protocol (DLP 22.9 ± 8.66; p < 0.01). The ultra-low-dose protocol exposed the patients to an average
effective dose of 0.016 millisievert and resulted in a successful joint injection in all 60 patients. The
low dose protocol as well as the conventional protocol were also successful in all patients. The
presented ultra-low-dose CT-guided joint injection protocol for the preparation of MR-arthrography
demonstrated to reduce patients’ radiation dose in a way that it was less than the equivalent of the
natural radiation exposure in Germany over 3 days—and thereby, negligible to the patient.

Keywords: radiation exposure; CT intervention; radiation protection; tin-filtration; joint injection;
MR-arthrography

1. Introduction

The gold standard to diagnose labral tears in hips and shoulders is MR-arthrography
featuring direct contrast injection into the joint [1–3]. Although conventional fluoroscopy
represents the most widely used imaging modality for injection guidance (61%), followed
by ultrasound (26%), roughly 9% of MR-arthrographies are prepared using CT guidance
for joint injection [4]. As stated by Mulligan this in many cases might be owed to a lack of a
conventional fluoroscopy suite or even a sonography unit, especially in outpatient imaging
centers [5] which primarily focus on cross-sectional examinations. Furthermore, although
CT-guided percutaneous needle biopsy is the gold standard to probe and diagnose most
types of cancer [6], it is currently being avoided whenever possible for the preparation of
MR-arthrography due to increased radiation dose in contrast to conventional fluoroscopy.
Almost 20 years ago Binkert et al., proposed CT fluoroscopy as an image guiding modality
for shoulder injections to substantially decrease patient’s radiation dose [7]. However,

Diagnostics 2021, 11, 1835. https://doi.org/10.3390/diagnostics11101835 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-2540-850X
https://doi.org/10.3390/diagnostics11101835
https://doi.org/10.3390/diagnostics11101835
https://doi.org/10.3390/diagnostics11101835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11101835
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11101835?type=check_update&version=3


Diagnostics 2021, 11, 1835 2 of 10

this technique has the drawback of increased radiation dose to the medical staff as the
interventional radiologist is exposed to ionizing radiation while injecting the needle into
the shoulder joint during CT fluoroscopy. Over the course of a work life this has a share in
the accumulation of the occupational dose radiologists receive—with still unknown long
term effects on health [8]. Therefore, similar to the workflow of most other CT-guided
interventions, [9,10] CT image guidance without fluoroscopy remains the predominant
workflow for joint injections in clinical practice. In order to decrease patients’ radiation
dose when undergoing CT-arthrography, various approaches have been taken recently,
such as decreasing the tube potential of the X-ray tube [11], utilization of tin-filtration [12]
or C-arm flat-panel CT-arthrography [13]. However, to our knowledge until now nobody
investigated how to substantially decrease radiation dose for patients and medical staff
when performing CT-guided joint injection as preparation for MR-arthrography. Roughly
29% of MR-arthrographies are indicated to suspected labrum defects (in hip and shoulder)
and 6% [4] for evaluation of femoroacetabular impingement. This particular patient
population usually is in the range of 20–40 years, making the reduction of the radiation
dose for the preparation of MR-arthrography highly beneficial to the patient. Therefore,
we developed a CT-guided joint injection protocol utilizing tin filtration and aggressive
X-ray spectral shaping to drastically reduce radiation dose.

In CT attenuation by the patient is high for photons with low energy ranges from 1 to
roughly 30 keV such that all photons in this range will most likely interact with patient
tissue [14]. Since photons of this energy range are not part of the measured signal, they are
useless for imaging but contribute to patient radiation those nonetheless [14]. Therefore,
photons with energy ranges not contributing to the measured signal should be eliminated or
reduced in intensity wherever possible [14]. Historically, filters, e.g., aluminum, of certain
thickness have been placed in the beam path permanently to absorb low energy photons
to reduce patient dose level while maintaining information level of the detected signal,
this is referred to as beam-hardening filtration [14]. Recently, additional pre-patient filters
have been introduced to further reduce the number of low energy photons and modify the
average intensities of the spectrum (spectral shaping) [14]. Tin has been evaluated as the
element with the most potential for spectral shaping [14]. Therefore, in addition to existing
pre-patient filtration, a movable, selectable filter made of Sn is positioned in front of the
X-ray tube radiation exit window. At 100 kV this leads to a narrower X-ray tube spectrum
(spectral shaping) with fewer low energy photons and higher mean energy level while
maintaining similar average mean intensity compared to the standard X-ray tube voltage
of 120 kV [14] (Figure 1). Ultimately, the tin filter grants for similar beam hardening effects
to the standard 120 kV spectra at a significantly reduced dose.

The aim of this study was to evaluate the radiation exposure, and success of CT-guided
ultra-low-dose protocol for joint injection guidance and compare these to conventional and
low-dose protocols.

We hypothesize that the novel CT-guided ultra-low-dose protocol for joint injection ex-
poses the patients to significantly less radiation than conventional and low-dose protocols,
while being just as successful.
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ray spectrum after passing through a 20 cm water phantom [14]. (Figure courtesy of Siemens 
Healthineers, Erlangen, Bavaria, Germany). 

The aim of this study was to evaluate the radiation exposure, and success of CT-
guided ultra-low-dose protocol for joint injection guidance and compare these to conven-
tional and low-dose protocols. 

We hypothesize that the novel CT-guided ultra-low-dose protocol for joint injection 
exposes the patients to significantly less radiation than conventional and low-dose proto-
cols, while being just as successful. 

2. Materials and Methods 

Figure 1. The 120 kV spectrum with standard pre-filtration (left) and 100 kV spectrum with standard
pre-filtration plus additional tin filter (Sn 100 kV) (right) demonstrating similar average mean
intensities even with different X-ray potentials. The dotted line represents the mean energy of X-ray
spectrum after passing through a 20 cm water phantom [14]. (Figure and its copyright permission
courtesy of Siemens Healthineers, Erlangen, Bavaria, Germany).

2. Materials and Methods

This study was conducted in accordance with the guidelines of the Declaration of
Helsinki and approved by the Ethics Committee of University Hospital Erlangen un-
der the approval number 258_18B. The Ethics Committee waived the written informed
consent requirement.

We compared the radiation dose of 123 patients undergoing CT-guided joint injection
featuring three different examination protocols. Furthermore, we analyzed interventional
success rate with MR-arthrography images as gold standard of intraarticular or extracapsu-
lar contrast injection.

2.1. Patient Population

Based on their PACS archived patient protocol 123 consecutive patients who under-
went CT-guided joint injection between 01/16–03/21 where retrospectively assigned to
either an ultra-low-dose group (ULD), a low-dose group (LD) or a conventional group
(CG). There were 60 patients in the ULD (40 men, 20 women; mean age 31 ± 13 years), 37 in
the LD (22 men, 15 women; mean age 34 ± 14 years) and 26 in the CG (20 men, 6 women;
mean age 37 ± 13 years). A total of 58 patients received shoulder joint injections (30 ULD,
19 LD, 9 CG) while received 65 hip injections (30 ULD, 18 LD, 17 CG).

2.2. CT-Guided Joint Injections

All interventions were performed utilizing a 128-slice SOMATOM go.Top CT scanner
(Siemens Healthineers, Erlangen, Bavaria, Germany). In all three different protocols the
patients were placed on the CT-table in supine position. In case of shoulder injection, the
arm was externally rotated, and this position was fixed by placing a 2 kg sandbag onto the
hand (Figure 2a).

In hip arthrography the patients were lying relaxed and with flat outstretched legs.
After an initial topogram scan a sequential CT-scan of the respective joint was performed.
Within this sequential dataset the joint was located, and the interventional path was planned
utilizing the Guide&GO intervention tool (Siemens Healthineers, Erlangen, Bavaria, Ger-
many). The table was moved to the corresponding position of the planed puncture site
and utilizing the laser light in the gantry the estimated skin location was marked with
a radio-opaque target. To verify the skin marking a single slice CT-scan was performed
(Figure 2a).
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Figure 2. CT-guided joint injection: In shoulder injections the arm was externally rotated and this
position was fixed by placing a 2 kg sandbag onto the patient’s hand. After needle pathway planning
and under sterile provision the interventional radiologist advanced a spinal needle towards the
joint (a). If the needle tip appeared to be intraarticular, 1–2 mL of Iopamidol were injected and the
intraarticular distribution was confirmed by sequential CT. Thereafter, 10–20 mL of Gadopentetat-
Dimeglumin were injected into the joint (b).

If the marked skin location corresponded with the planned needle pathway, a sterile
drape was placed over the target location (Figure 2a) and the skin was disinfected; if the
radio-opaque target and the previously planned path did not match, target repositioning
and single slice scanning were performed until satisfaction.

Subsequently the interventional radiologist put on a surgical gown and stepwise ad-
vanced a 20 G spinal (Quincke Type point needle, BDTM, Heidelberg, Baden-Wuerttemberg,
Germany) towards the joint (Figure 2a). To check the needle position, the radiologist left
the CT-room and the assisting technician performed a sequential scan. If the needle tip
appeared to be intraarticular the interventional radiologist injected 1–2 mL of Iopamidol
(Solutrast ® 250 M, Bracco Imaging Deutschland GmbH, Konstanz, Baden-Wuerttemberg,
Germany) and another spiral scan was performed to check the intraarticular distribution
of the CT-contrast agent (Figures 3b and 4a,b). If the hyperdense contrast agent was found
to be extracapsular the last two steps were repeated until the joint space was hit and
contrasted. Thereafter, 10–20 mL of Gadopentetat-Dimeglumin (Magnevist ®, Bayer Vital
GmbH, Leverkusen, North Rhine Westphalia, Germany) were injected into the joint, the
needle was extracted and MR-arhtrography was performed on which joint distension and
success of contrast injection could be visualized (Figures 3c,d and 4c,d).

2.3. The Three Different Examination Protocols

The ULD protocol consists of a topogram with a tube voltage of 100 kV and a current
of 20 mAs. Each sequential scan contains 3 single slice scans with an increment and slice
thickness of 3 mm, a fixed tube voltage of 150kV and a current of 5 mAs. For both, the
topogram as well as the sequential scans tin filtration is applied (Figure 5). This causes
spectral X-ray shaping as the tin filter removes the bulk of low energy photons that hardly
contribute to image quality but increase radiation dose [15]. The tin filter can actively be
added or subtracted to an examination during examination planning by the technician
(within supplier given ranges of tube voltage and current). Although tin filtered images are
usually reconstructed and displayed utilizing advanced modeled iterative reconstruction,
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this option is not given in sequential scan mode as applied in our research. All ULD
CT guided injections were performed utilizing a 128-slice SOMATOM go.Top (Siemens
Healthineers, Erlangen, Bavaria, Germany) scanner.
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Figure 5. Example of a tin filter as it is incorporated in the SOMATOM go.Top scanner utilized in this research. Together
with our created examination protocol featuring a tube voltage of 150 kV and a current of 5 mAs it enabled the examinations
in the ultra-low-dose group. (Figure courtesy of Siemens Healthineers, Erlangen, Bavaria, Germany).

Both the LD and the CG CT-guided injections were performed utilizing a 128-slice
SOMATOM Definition AS (Siemens Healthineers, Erlangen, Bavaria, Germany) scanner.
Furthermore, the topograms in both examination protocols were set to a tube voltage of
120 kV and a current of 35 mAs. The X-ray tube settings in the LD examinations were set to
a tube voltage of 80 kV and a current of 45 mAs, while the CG examinations were set to a
tube voltage of 120 kV and a current of 50 mAs.
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2.4. Radiation Exposure and Interventional Success

We separately documented the dose of each complete interventional procedure includ-
ing the dose of the topogram and all performed sequential scans as overall examination
dose length product (DLP). Following the recommendations of the European Working
Group for Guidelines on Quality Criteria for CT [16], we calculated the mean effective
dose equivalent (ED) by multiplying the dose length product (DLP) with a conversion
coefficient (k). In accordance with the findings published by Christner et al. [17] we applied
a conversion coefficient of k = 0.015 * mSv/(mGy * cm) for the abdomen and respec-
tively the hip interventions and k = 0.014 * mSv/(mGy * cm) for the thorax and shoulder
interventions respectively.

Further, as visualized in Figures 3c,d and 4c,d joint space distension and contrasting
in the subsequent MRI-arthrography was evaluated for intervention success in all 123
patients.

2.5. Statistical Analysis

Quantitative variables are expressed as a mean ± standard deviation. The data were
tested for normal distribution using the Shapiro–Wilk test. Groups were compared us-
ing Kruskal–Wallis for independent non-parametric samples. SPSS 21 (IBM Corporation,
Armonk, NY, USA) was used for the analysis. A p-value of <0.05 was considered statisti-
cally significant. Power was calculated Sealed Envelope Ltd. 2012. Power calculator for
continuous outcome superiority trial [18].

3. Results

There were 60 patients in the ultra-low-dose group, 30 received shoulder arthrography
and 30 received hip arthrography. The mean radiation dose of the entire CT-guided joint
injection (including topogram and all sequential scans) resulted in a DLP of 1.1 ± 0.39. This
resulted in an effective dose of 0.0154 mSv for shoulder and of 0.0165 mSv for hip injection.

There were 37 patients in the low-dose group, 19 received shoulder arthrography
and 18 received hip arthrography. The mean radiation dose of the entire CT-guided joint
injection (including topogram and all sequential scans) resulted in a DLP of 5.3 ± 3.25. This
resulted in an effective dose of 0.074 mSv for shoulder and of 0.08 mSv for hip injection.

There were 26 patients in the conventional group, 9 received shoulder arthrography
and 17 received hip arthrography. The mean radiation dose of the entire CT-guided joint in-
jection (including topogram and all sequential scans) resulted in a DLP of 22.93 ± 8.66. This
resulted in an effective dose of 0.317 mSv for shoulder and of 0.343 mSv for hip injection.

The Kruskal–Wallis test displayed significant differences between the DLP of the ULD
versus LD (p < 0.01) and for the ULD versus the CG (p < 0.01) (Figure 6).

The ULD was successfully performed in all cases resulting in sufficient joint space
distension and contrasting in the subsequent MRIs. Similarly, the CG and LD were as well
performed successfully in all cases.

Power analysis demonstrated 1-β >95% for a significance level of 2.5% when perform-
ing continuous outcome superiority testing [18] for the ULD protocol against the CG as
well as against the low-dose protocol.
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4. Discussion

As demonstrated by this work, the presented novel CT-guided ultra-low-dose protocol
significantly reduced patients’ effective dose in contrast to the conventional protocol and a
low-dose protocol. In fact, the effective dose of a CT-guided injection utilizing the proposed
protocol resulted in an average of 0.0154 millisievert for shoulder and of 0.0165 millisievert
for hip injections during the entire procedure including the topogram and all interventional
scans. To put this into perspective, the average annual dose of a person living in Germany
corresponds to 2.1 millisiervert [19]. Therefore, the dose of our proposed ultra-low-dose
CT-guided joint injection protocol equates to the natural radiation exposure of just under
3 days in Germany.

Undoubtedly, the utilization of tin filtration and aggressive X-ray spectral shaping
increased the image noise, however, this did not impair the success of the joint injections
as these were all performed successfully utilizing the novel presented protocol. Tin fil-
tration has recently been utilized to drastically reduce the effective dose of various CT
examinations, from virtual colonography [20] to examinations of pediatric and adolescent
patients [21] or even as substitute for conventional X-ray [22]. Moreover, while Choi et al.,
performed CT-arthrography [12] with tin filtration and substantially reduced the radiation
dose, the preparation for CT-arthrography in that study featured conventional fluoroscopy.
In our investigation, we take the next logical step by trying to reduce radiation exposure
from CT-guided joint injection utilizing tin filtration. Additionally, we lowered the tube
current in the ULD protocol to 5 mAs which in combination with the tin filtration enabled
the drastic cut in patients’ effective dose. Furthermore, imaging centers that do not have
a conventional fluoroscopy unit [5] are bound to preparing MR-arthrographies utilizing
CT. We expect the number of patients receiving MR-arthrographies with CT-guided joint
injections (currently 9% [4]) to increase in the future and our ultra-low dose protocol has
the potential to drastically reduce radiation exposure for all of these patients.
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Furthermore, in contrast to the previously published low-dose protocol for CT-guided
joint injection utilizing CT-fluoroscopy [7], our workflow and protocol effectively excludes
any personal radiation to the interventional radiologist and mitigates wearing a lead
apron. Additionally, our ultra-low-dose protocol proved to substantially outperform the
CT fluoroscopy workflow as this came down to an effective dose of 0.22 mSv [7].

Although indirect MR-arthrography has been studied extensively for the shoulder,
hip, knee and wrist [23–27] it has not been able to replace direct arthrography [28–30].
Although advances in musculoskeletal stress MRI [31,32] and deep learning [33] show
potential in diagnosing joint pathologies, the gold standard in diagnostic workup remains
direct arthrography.

One limitation of this study is the single center evaluation and the moderate amount
of CT interventions in the low-dose and conventional group. To at least in parts com-
pensate for this shortcoming, we performed power analysis which demonstrated >95%
when comparing the ultra-low-dose protocol against the low-dose and the conventional
protocol. Another limitation is the fact that we did not compare the radiation dose of the
CT guided joint injections against conventional fluoroscopy in our work as it is not any
more performed at our institution. Nevertheless, Binkert et al., demonstrated conventional
fluoroscopy to result in a mean effective radiation dose of 0.0015 mSv which represents
10% of the radiation dose exposed in contrast to the by us proposed ULD protocol.

5. Conclusions

The presented ultra-low-dose CT-guided joint injection protocol for the preparation of
MR-arthrography significantly reduces patients’ radiation dose in a way that equates to
the equivalent of natural radiation exposure in Germany for just under 3 days—thereby
being negligible to the patient.
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