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Abstract: Vitamin D has been described as an essential nutrient and hormone, which can cause
nuclear, non-genomic, and mitochondrial effects. Vitamin D not only controls the transcription
of thousands of genes, directly or indirectly through the modulation of calcium fluxes, but it also
influences the cell metabolism and maintenance specific nuclear programs. Given its broad spectrum
of activity and multiple molecular targets, a deficiency of vitamin D can be involved in many
pathologies. Vitamin D deficiency also influences mortality and multiple outcomes in chronic kidney
disease (CKD). Active and native vitamin D serum levels are also decreased in critically ill patients
and are associated with acute kidney injury (AKI) and in-hospital mortality. In addition to regulating
calcium and phosphate homeostasis, vitamin D-related mechanisms regulate adaptive and innate
immunity. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have a role in
excessive proinflammatory cell recruitment and cytokine release, which contribute to alveolar and
full-body endothelial damage. AKI is one of the most common extrapulmonary manifestations of
severe coronavirus disease 2019 (COVID-19). There are also some correlations between the vitamin
D level and COVID-19 severity via several pathways. Proper vitamin D supplementation may be an
attractive therapeutic strategy for AKI and has the benefits of low cost and low risk of toxicity and
side effects.

Keywords: vitamin D deficiency; antioxidant; anti-inflammatory effects; acute kidney injury; severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2); coronavirus disease 2019 (COVID-19)

1. Introduction

Vitamin D is obtained from fortified foods, dietary supplements, and exposure to
sunlight. Vitamin D from the diet and skin is transported in the blood by circulating vitamin
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D-binding protein (DBP) to the liver. In the liver, vitamin D is metabolized by vitamin D-25-
hydroxylase to 25-hydroxyvitamin D, the major circulating metabolite used to determine a
patient’s vitamin D status [1]. Almost all 25-hydroxyvitamin D bound to circulating DBP is
filtered by the kidneys and reabsorbed by the proximal convoluted tubules. In the proximal
renal tubules, 25-hydroxyvitamin D is hydroxylated by the enzyme 25-hydroxyvitamin D3
1α-hydroxylase (CYP27B1) to its active form, 1,25-hydroxyvitamin D [2]. The production of
1,25-hydroxyvitamin D is regulated by serum calcium and phosphorus, plasma fibroblast
growth factor 23 (FGF23), and parathyroid hormone levels [3,4]. Appropriate vitamin D
supplements can prevent some chronic diseases, such as diabetes mellitus, cardiovascular
disease, and chronic kidney disease (CKD), by regulation of oxidative stress through the
following ways: inducing the expression of several molecules involved in the antioxidant
defense system including glutathione, glutathione peroxidase, superoxide dismutase (SOD);
suppressing the expression of nicotinamide adenine dinucleotide phosphate hydrogen
(NADPH) oxidase [1–5].

In addition, the vitamin D receptor (VDR) is widely distributed in more than 38 types
of tissues [5]. Vitamin D also plays nonclassical roles in cell differentiation and proliferation
and has an immunomodulatory effect [6]. This immunomodulatory effect was based
on the widely expressed VDR, which is present in T and B lymphocytes, macrophages,
and antigen-presenting cells [7,8]. Vit-D induces tolerogenic dendritic cells (DCs) and
increases the expression of immunoglobulin-like transcript 3 (ILT3), an important regulator
of dendritic cell tolerance, resulting in increased numbers of CD4+CD25+ regulatory
T cells [8]. In addition, 1,25-dihydroxyvitamin D increased insulin production, myocardial
contractility, the reproductive system, and hair growth and inhibited renin synthesis.
Vitamin D may play an important role in modifying the risk of cardiometabolic outcomes,
including hypertension, cardiovascular diseases, and type 2 diabetes mellitus [9–12].

Acute kidney injury (AKI) is a syndrome of different etiologies that is characterized
by a rapid decline in glomerular filtration. In 2002, the Acute Dialysis Quality Initiative
group proposed the RIFLE classification that defined the three grades of increasing severity
(i.e., risk of acute renal failure; injury to the kidney; failure of kidney function) and two
outcome classes (i.e., loss of kidney function and end-stage kidney disease) [13]. In 2005,
the Acute Kidney Injury Network (AKIN) group modified the AKI definition. This new
staging system classified patients with a change in serum creatinine (sCr) concentration
≥0.3 mg/dL (≥26.4 µmol/L) within 48 h as having AKIN stage 1, whereas patients re-
ceiving renal replacement therapy (RRT) were included in AKIN stage 3. RIFLE-Risk was
classified as Stage 1; RIFLE-Injury and Failure were classified as Stages 2 and 3, respec-
tively; the two outcome classes of RIFLE-Loss and RIFLE-End-Stage Kidney Disease were
removed [14,15]. AKI is one of the major causes of morbidity and mortality in hospital-
ized patients, especially in intensive care centers. Progressive AKI leads to the depletion
of renal function, which causes retention and accumulation of phosphate. Phosphate
acts as a downregulator of 1-hydroxylase, an enzyme involved in 1,25(OH)2D synthe-
sis and, therefore, decreases vitamin D production. In addition, the progressive loss of
active nephrons contributes to attenuating vitamin D synthesis [16]. The incidence of
vitamin D insufficiency in critically ill patients has been reported to range from 26% to
82% [17,18]. Two large observational cohort studies showed that vitamin D deficiency
(serum 25(OH)D < 15 ng/mL) prior to hospital admission or at the time of critical care is
independently associated with increased morbidity and mortality [19,20]. This insufficiency
may worsen existing immune and metabolic dysfunctions in critically ill patients, leading
to worse outcomes [21]. Both AKI and vitamin D deficiency are common in critically ill
patients, and both are associated with increased mortality [22].

The benefit of vitamin D supplements in preventing acute respiratory tract infections
was observed via a meta-analysis of 11,321 participants and other reviews [23–27]. The
possibility of decreasing the risk of respiratory tract infections, including coronavirus
disease 2019 (COVID-19), may contribute to several immune pathways, such as stimulating
antiviral mechanisms, reducing proinflammatory cytokines, modulating concentrations
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of ACE2, and decreasing the chances of endothelial dysfunction [28]. COVID-19 not only
causes respiratory disease but also induces the dysfunction or failure of multiple organs
in severe cases. The kidney is the second most commonly affected organ after the lungs.
COVID-19-associated AKI is linked to an increased risk of mortality and comorbidities.

2. Antioxidant and Renoprotective Effect of Vitamin D in AKI Animal Models

Many AKI animal models (Table 1) have also shown that vitamin D has a renoprotec-
tive effect. In a contrast-induced AKI model, paricalcitol caused a reduction in unfavorable
histopathological findings via its antioxidant effects by inhibiting lipid peroxidation [29].
In a gentamicin-induced AKI model, paricalcitol restored impaired renal function by in-
hibiting renal inflammation and fibrosis via the interruption of the nuclear factor-kappaB
(NF-κB)/extracellular signal-regulated kinase (ERK) signaling pathway and preservation of
tubular epithelial integrity via the inhibition of the epithelial–mesenchymal transition (EMT)
process [30]. Although another study indicated that the progression of gentamicin-induced
AKI was not alleviated by vitamin D treatment, it probably has some beneficial effects
on the renin–angiotensin system (RAS) by lowering blood pressure and increasing urine
volume as well as a promising effect on the antioxidant system [31]. The NF-κB signaling
pathway was also found to have a positive correlation with SARS-CoV-2-related AKI [32].

Table 1. Summary of the studies evaluating the effect of vitamin D therapy in AKI animal models.

AKI Animal Models Intervention Outcomes Summary of Results

Contrast induced (Wistar
albino rats) [33] Paricalcitol i.p. for 5 days

Attenuated the increase in
oxidative biomarkers;

histological improvement

Antioxidant effect via the
inhibition of lipid oxidation

Gentamicin induced
(Sprague–Dawley rats) [34] Paricalcitol s.c. for 14 days

Attenuated the increase in
inflammatory cytokines and

adhesion molecules; reversed
the TGF-1-induced EMT
process and extracellular

matrix accumulation

Inhibition of renal
inflammation and fibrosis

through the interruption of
the NF-κB/ERK signaling

pathway, and preservation of
tubular epithelial integrity via
inhibition of the EMT process

Gentamicin induced (Wistar
albino rats) [35] 1α,25(OH)2D3 s.c. for 8 days

Lowered blood pressure and
increased urine volume by
increasing GSH levels; no
histological improvement

Antioxidant effect; beneficial
effects via the RAS system

Ischemia/reperfusion induced
(C57BL/6 mice) [36]

Paricalcitol i.p. 24 h before
ischemia

Attenuated functional
deterioration and histological
damage; decreased Toll-like

receptor 4 and nuclear
translocation of the p65

subunit of NF-κB

Suppression of
TLR4/NF-κB-mediated

inflammation

Ischemia/reperfusion induced
(Wistar albino rats) [37]

Vitamin D (0.25, 0.5,
and 1 mg/kg) for 7 days

before ischemia/reperfusion

Attenuated the increase in
oxidative biomarkers Activation of PPAR-γ

Cisplatin induced
(Sprague–Dawley rats) [38] Paricalcitol s.c. for 4 days

Attenuated the increase in the
expression of p-ERK1/2,

P-p38, fibronectin, and CTGF
and proapoptotic markers

CDK2, cyclin E, and PCNA

Suppression of fibrotic,
apoptotic, and proliferative
factors via the inhibition of
TGF-β1, MAPK signaling,

p53-induced apoptosis, and
augmentation of p27kip1
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Table 1. Cont.

AKI Animal Models Intervention Outcomes Summary of Results

Cyclosporin induced
(Sprague–Dawley rats) [39] Paricalcitol s.c. for 28 days

Prevented TGF-β1-induced EMT
and extracellular matrix

accumulation

Suppression of inflammatory,
profibrotic, and apoptotic

factors via the inhibition of
the NF-κB, Smad, and MAPK

signaling pathways

Obstructive nephropathy
(CD-1 mice) [40] Paricalcitol s.c. for 7 days

Inhibited RANTES mRNA and
protein expression and abolished

the ability of tubular cells to
recruit lymphocytes and
monocytes after TNF-β

stimulation

Inhibition of renal
inflammatory infiltration and

RANTES expression by
promoting the VDR-mediated

sequestration of NF-κB
signaling

Obstructive nephropathy
(CD-1 mice) [41] Paricalcitol s.c. for 7 days

Abolished TGF-β1-mediated
E-cadherin suppression and
α-smooth muscle actin and

fibronectin induction in tubular
epithelial cells by blocking the

EMT directly; completely
suppressed the renal induction

of Snail

Preservation of tubular
epithelial integrity via the
suppression of the EMT

Lipopolysaccharide (LPS)
induced nephropathy

(CD-1 mice) [42]

Vitamin D3 (each 25 µg/kg)
by gavage at 1, 24, and 48 h

before LPS injection

Attenuated LPS-induced
inflammatory cytokines and
chemokines and adhesion
molecules; reinforced the

interaction between VDR and
NF-κB p65 subunit in the kidney

Vitamin D3 pretreatment
downregulated the renal

inflammatory response, and
the interaction between VDR
and the NF-κB p65 subunit

provided an explanation

Lipopolysaccharide (LPS)
induced nephropathy

(CD-1 mice) [43]

Vitamin D3 (each 25 µg/kg)
by gavage at 1, 24, and 48 h

before LPS injection

Alleviated LPS-induced renal
GSH depletion, lipid

peroxidation, serum and renal NO
production, and protein nitration
through regulating oxidant and

antioxidant enzyme genes

Vitamin D3 pretreatment
alleviated LPS-induced renal

oxidative stress through
regulating oxidant and

antioxidant enzyme genes

In a cisplatin-induced and cyclosporine-induced AKI model, paricalcitol may ame-
liorate cisplatin-induced renal injury by suppressing fibrotic, apoptotic, and proliferative
factors via a mechanism that may include the inhibition of transforming growth factor
beta-1 (TGF-β1), suppression of mitogen-activated protein kinase signaling (MAPK), and
attenuation of p53-induced apoptosis [44,45]. In an ischemia/reperfusion-induced animal
AKI model, the renoprotective effect of vitamin D occurred via peroxisome proliferator-
activated receptor gamma (PPAR-γ) [46], and pretreatment with paricalcitol also had a
renoprotective effect, possibly via Toll-like receptor 4 (TLR4)/NF-κB-mediated inflamma-
tion [47]. In an obstructive nephropathy model, paricalcitol preserved tubular epithelial
integrity via the suppression of EMT [48,49].

In a lipopolysaccharide (LPS)-induced AKI model, vitamin D3 pretreatment had
different effects including (1) significantly attenuating LPS-induced renal inflammatory
cytokines, chemokines, and adhesion molecules [33] and reinforcing the interaction between
renal VDR and the NF-κB p65 subunit; (2) alleviating LPS-induced renal glutathione
(GSH) depletion and lipid peroxidation and attenuating serum and renal NO production
and protein nitration by regulating oxidant and antioxidant enzyme genes [34]. These
results provide a mechanistic explanation for vitamin D3-mediated anti-inflammatory and
antioxidative activities.

The vitamin D analogues protect the kidney by targeting three major pathways:
the local RAAS, antioxidation, and the NF-κB pathways. In contrast to the recognized
importance of vitamin D in CKD patients, the role of vitamin D in AKI patients is not
as well defined. It is reasonable to hypothesize that the manner by which vitamin D
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deficiency may predispose critically ill patients to AKI is related to the innate and adaptive
immune response.

3. Vitamin D and the Renin–Angiotensin–Aldosterone System (RAAS)

Previous studies have found an inverse correlation between changes in vitamin
D and changes in plasma renin activity. Compared with individuals with sufficient
25-hydroxyvitamin D levels (i.e., ≥30.0 ng/mL), those with 25-hydroxyvitamin D deficiency
(i.e., <15.0 ng/mL) had higher circulating angiotensin II (Ang II) levels and significantly
blunted renal plasma flow responses to infused Ang II. These data suggest that low plasma
25-hydroxyvitamin D levels may result in the upregulation of the RAAS in otherwise
healthy humans [35].

Subsequently, mechanistic studies have demonstrated that renin gene expression is
increased in the kidneys of VDR-null mice, which was accompanied by increased plasma
Ang II levels, hypertension, and cardiac hypertrophy [38]. Conversely, treatment with
calcitriol reduced renal renin production independent of calcium and parathyroid hormone
(PTH). Calcitriol binds to the VDR and blocks the formation of CRE–CREB–CBP complexes
in the promoter region of the renin gene, thus reducing its level of expression [39].

Several experimental studies have confirmed that the renoprotective effects of vitamin
D analogue alone can improve proteinuria, glomerulosclerosis, and interstitial infiltration
and reduce renal oxidative stress. Combined treatment with paricalcitol and losartan
suppressed the induction of fibronectin, TGF-β, and monocyte chemoattractant protein-1
and reversed the decline in the slit diaphragm proteins nephrin, Neph-1, ZO-1, and alpha-
actinin-4 [37]. A VDR agonist would provide additional renoprotection via its negative
regulation of renin [36]. Paricalcitol has been shown to suppress the expression of renal
TGF-β1 and its type 1 receptor, restore VDR abundance, block epithelial to mesenchymal
transition, and inhibit cell proliferation and apoptosis [40]. Experiments using VDR-null
mice indicated that VDR attenuated renal inflammation at least, in part, by suppressing
the RAS [41]. In the VITAL study, the administration of paricalcitol in addition to RAAS
blockade further reduced albuminuria compared with RAAS blockade alone in patients
with diabetic nephropathy [42].

Although animal and clinical studies have provided important mechanistic clues
regarding the crosstalk between RAAS and vitamin D, they are unable to show the transla-
tional benefits of vitamin D-mediated RAAS blockade on AKI [43,50].

SARS-CoV-2 binds to the ACE2 receptor expressed on the surface of lung epithelial
cells, which causes downregulation of the ACE2 receptor and then leads to excessive
presence of Ang II. A high concentration of Ang II may facilitate AKI [28].

4. Vitamin D Deficiency and the Risk of AKI

Vitamin D deficiency, which is defined as a serum 25-hydroxyvitamin D level below
50 nmol/L (20 ng/mL), was linked to several types of cancer and autoimmune and
metabolic diseases. Vitamin D deficiency is found worldwide [51,52]. In the United States,
vitamin D insufficiency (serum 25-hydroxyvitamin D (25(OH)D) < 28 ng/mL) was present
in approximately 41% of men and 53% of women [53]. In addition to calcium homeostasis
and bone metabolism, vitamin D also plays a role in improving glucose control, thus reduc-
ing the need for erythropoiesis-stimulating agents, modulating inflammatory and immune
responses, and regulating the RAAS as well as cellular proliferation, differentiation, and
apoptosis [50,54].

In animal models of sepsis, the administration of 1,25(OH)D was correlated with
improved blood coagulation parameters in sepsis-induced disseminated intravascular
coagulation [55]. Another study showed that decreased absolute levels of DBP were
consistent in early sepsis and were a prognostic factor for disease severity [56]. 1,25(OH)D
can also modulate the levels of inflammatory cytokines and may play a role in LPS-induced
immune activation of endothelial cells during Gram-negative bacterial infections.
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Jeng et al. [57] found a significantly lower plasma 25(OH)D concentration in patients
with sepsis than in healthy controls. Those authors suggested that a low level of circulating
25(OH)D was associated with low cathelicidin. Among mechanically ventilated patients, a
25(OH)D level < 20 ng/mL was associated with a significantly shorter average survival time
compared with that of patients with a normal serum level [58]. The 25(OH)D concentration
may be either a biomarker of survival or a cofactor in severely ill patients. In critically
ill surgical patients, 25(OH)D levels < 20 ng/mL have a significant impact on organ
dysfunction, infection rates, and length of stay [58,59]. In some systematic reviews and
meta-analyses, vitamin D supplementation also ameliorated ventilator demands, ICU
admission and mortality rates in COVID-19 patients [60].

Large retrospective observational cohort studies have demonstrated that vitamin D
deficiency, defined as a serum 25(OH)D level < 15 ng/mL, both at preadmission and at the
time of critical care, was independently associated with increased morbidity and mortality
in intensive care unit (ICU) patients [61]. These data also indicated that preadmission
vitamin D deficiency was a significant predictor of AKI. The association between 25(OH)D
and AKI was not dependent on the timing of the prehospital 25(OH)D draw. In a secondary
analysis, a threshold level of 25(OH)D < 21 ng/mL was significantly associated with AKI
with RIFLE-Injury and Failure stage [22]. Another observational cohort study demonstrated
the absence of an association between the serum 25(OH)D level at the time of AKI diagnosis
and 90 day all-cause mortality in patients with AKI. This result may be because most
patients enrolled in the study were too young [62].

In a recent prospective cohort study of 30 individuals with AKI and 30 controls from
general hospital wards and ICUs, 25(OH)D levels were inversely correlated with sepsis
severity. The principal finding of that study was that the levels of bioavailable 25(OH)D
were inversely associated with the severity of sepsis and hospital mortality among patients
with AKI. Because the levels of the major metabolite of vitamin D were not elevated in AKI,
the reduced levels of 25(OH)D resulted from decreased production and were not related to
FGF23. The strong association between the severity of sepsis and bioavailable 25(OH)D
vs. total 25(OH)D levels may be related to the selective uptake of bioavailable 25(OH)D by
nontraditional target organs including macrophages [63]. Although the exact mechanism
underlying this association is unknown, larger studies including serial measurements of
25-hydroxyvitamin D are needed to determine how vitamin D status changes with the
progression of AKI and whether vitamin D status at different stages is associated with
prognosis [22]. Figure 1 integrates the hypothesis of the association between vitamin D
deficiency and AKI.
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Figure 1. Integrated hypothesis of the association between vitamin D deficiency and acute kidney
injury (AKI). Vitamin D deficiency may trigger innate and adaptive immune disorders, RAAS
hyperactivity, and systemic and glomerular capillary endothelial dysfunction. All of these factors
lead to direct kidney cell injury, microcirculatory dysfunction, excessive inflammation, and even
macrophage activation syndrome or cytokine storms, which are key factors in the development of
acute kidney injury.

5. Vitamin D and the Immune System

The importance of vitamin D in immune regulation is highlighted by the fact that VDR
is expressed in activated inflammatory cells, T-cell proliferation is inhibited by 1,25(OH)2D3,
and activated macrophages produce 1,25(OH)2D3 [64]. The innate immune response in-
volves the activation of TLRs on polymorphonuclear cells, monocytes, macrophages, and
several epithelial cells. The earliest evidence of the effect of vitamin D on innate immu-
nity came from ultraviolet B (UVB)-irradiated sheep’s wool lanolin, which is a major
source of vitamin D [65]. The action of vitamin D on macrophages includes the abil-
ity to stimulate the differentiation of precursor monocytes into more mature phagocytic
macrophages [66]. Macrophages have their own 1α-hydroxylase and require sufficient
ambient levels of 25(OH)D substrate to generate internal 1,25(OH)2D3. Unlike renal
1α-hydroxylase, the 1α-hydroxylase produced by macrophages is not suppressed by ele-
vated calcium or by 1,25(OH)2D3 and is upregulated by immune stimuli, such as interferon
gamma (IFN-γ) and lipopolysaccharide (LPS) [67]. In monocytes, the activation of TLR2
induced interleukin-15 (IL-15) secretion and bacterial killing via three key mechanisms:
induction of CYPB27B1 (1α-hydroxylase) gene expression, an increase in the expression
of VDR, and enhancement of the transcription of the antibacterial cathelicidin (LL37)
gene [68,69]. The exposure of monocytes to a pathogen induces 1α-hydroxylase and VDR
after the pathogen is recognized by the TLR, which results in the production of cathelicidin.
This cathelicidin cleaves microbial membranes and is upregulated in response to infections
in humans; it acts against bacteria, viruses, and fungi [70,71]. In some patients with critical
sepsis, significantly lower serum 25(OH)D and cathelicidin levels have been identified. The
association between a low level of cathelicidin and death from an infectious cause has also
been observed in hemodialysis patients. In addition, our previous study indicated that
the presence of the C allele of −1237T/C in the TLR9 gene increases susceptibility to the
development of end-stage renal disease (ESRD). Thus, patients with this functional TLR9
promoter polymorphism had a higher mean plasma IL-6 level than did those carrying
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the −1237TT polymorphism [72]. Excessive concentrations of IL-6 also play a role in the
pathogenesis of COVID-19. Intravascular coagulation may occur, which causes multiorgan
injury and endothelial dysfunction [28].

In macrophages, vitamin D suppresses NF-κB activity by upregulating the expression
of IκB through the stabilization of the IκB-mRNA and a reduction in its phosphorylation.
Although vitamin D has an antimicrobial effect, it also provides feedback regulation of the
immune activation pathways. 1,25(OH)2D3 has been shown to potently downregulate the
expression of monocyte TLR2 and TLR4, thereby suppressing the inflammatory responses
that are normally activated by these receptors [73]. In the presence of 1,25(OH)2D3, den-
dritic cells (DCs) exhibit reduced expression of major histocompatibility complex (MHC)
class II molecules and other activation markers and costimulatory makers (i.e., CD40, CD80,
and CD86) [74]. This leads to reduced antigen presentation, which is accompanied by
lower IL-12 secretion but increased production of tolerogenic IL-10; this then promotes
the development of Th2 lymphocyte differentiation [64]. Therefore, vitamin D inhibits
the maturation and differentiation of DCs, and it might be expected that treatment with
vitamin D or its analogues will reduce the inflammatory response. Overall, 1,25(OH)2D3 is
able to enhance the innate antibacterial defense capacity and may play a determinant role
in infection in patients with AKI.

Vitamin D exerts an inhibitory action on inflammatory properties of the adaptive
immune system. 1,25(OH)2D3 plays an important role in the proliferation and differenti-
ation of T cells. Hypovitaminosis D is associated with an increased risk of autoimmune
diseases, such as type 1 diabetes mellitus [75], multiple sclerosis, and inflammatory bowel
disease, in humans. Suppression of the adaptive immune response could be useful for
treating a variety of autoimmune diseases and for protecting transplanted organs from
rejection. To date, four potential mechanisms through which vitamin D influences T-
cell function have been proposed: (1) direct endocrine effects via systemic 1,25(OH)2D3;
(2) direct intracrine conversion of 25(OH)D to 1,25(OH)2D3 by T cells themselves; (3) direct
paracrine effects after the conversion of 25(OH)D to 1,25(OH)2D3 by local monocytes or
dendritic cells; (4) an indirect effect on antigen presentation to T cells, which is mediated by
localized adenomatous polyposis coli (APC) and is affected by calcitriol [76]. Vitamin D
promotes a T-cell shift from Th1 to Th2, and treatment of T cells with calcitriol or analogues
inhibits the secretion of the proinflammatory Th1 (IL-2, IFN-γ, and tumor necrosis factor
α (TNF-α)), Th9 (IL-9), and Th22 (IL-22) cytokines [77,78] but promotes the production of
other anti-inflammatory Th2 cytokines (i.e., IL-3, IL-4, IL-5, and IL-10) [79]. Active vitamin
D can modulate Th2 cell responses both indirectly via the suppression of IFN-γ and IL-2 in
Th1 cells and directly by influencing the expression of Th2 cytokines such as IL-4.

1,25(OH)2D3 also reduces the expression of IL-17. IL-17-producing Th17 cells play a
crucial role in the induction of autoimmune disease and inflammation [80]. T cells exposed
to 1,25(OH)2D3 produced significantly decreased levels of IL-17, IFN-γ, and IL-21 and
had significantly increased expression of genes that are typical of regulatory T cells [81].
Regulatory T cells play an anti-inflammatory role and control autoimmune diseases by
releasing IL-10 and TGF-β [82]; in addition, regulatory T cells can be induced and stimu-
lated by 1,25(OH)2D3 through an indirect pathway, via APCs and DCs, or through a direct
pathway, via an endocrine effect or the intracrine conversion of 25(OH)D to 1,25(OH)2D3 by
themselves [83,84]. Thus, 1,25(OH)2D3 exerts a broad range of effects on inflammation and
autoimmune diseases by reducing the number of Th17 cells and by having effects that are
beneficial in terms of autoimmune and host–graft rejection; these events occur by enhancing
the number of regulatory T cells. In B cells, 1,25(OH)2D3 plays an antiproliferative role that
involves the inhibition of cell differentiation, the inhibition of cell proliferation, reduced
initiation of apoptosis, and decreased immunoglobulin production. These effects are proba-
bly indirectly mediated by T cells [85]. Overall, 1,25(OH)2D3 is able to modulate adaptive
immunity and may play a determinant role in reducing inflammation in patients with AKI.
FGF23 is a protein that is synthesized by osteocytes and osteoblasts and plays a key role in
the bone–parathyroid–kidney axis and in the regulation of phosphate/calcium/vitamin D
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metabolism [69,86,87]. FGF23 attenuates the renal production of 1,25(OH)2D3 by inhibit-
ing the mRNA expression of CYP27B1 in the renal proximal tubule and simultaneously
increasing the expression of 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1), which
results in the generation of the inactive metabolite 24,25-dihydroxyvitamin D [88,89].

In addition to its phosphaturic effect, a recent study demonstrated that FGF23 regulates
cardiomyocyte biology in a Klotho-independent manner. FGF23 was able to induce in vitro
hypertrophy of cardiomyocytes, with the activation of prohypertrophic genes; this effect
was dependent on the activation of the FGF receptor [90]. In patients with CKD, elevated
FGF23 levels were independently associated with a greater risk of death, cardiovascular
events, progression to ESRD, and premature allograft loss after kidney transplant [91,92].
Recent small studies have also reported that FGF23 increases in patients with AKI [93]. One
study indicated that elevated FGF23 levels were associated with a significantly increased
risk of death or the need for dialysis [94]. In 305 critically ill patients, higher urinary
FGF23 levels were also independently associated with several important adverse outcomes,
including greater hospital, 90 day, and 1 year mortality and longer length of stay. The study
concluded that elevated FGF23 levels measured in the urine or plasma may be a promising
novel biomarker of AKI, death, and other adverse outcomes in critically ill patients [95]. By
using animal models, one study showed that the elevated FGF23 level was independent
of PTH, vitamin D signaling, and dietary phosphate [96]. The elevated FGF23 level was
consistent with patients who developed AKI after cardiac surgery and should be because
of increased bone production and a longer half-life in AKI. Similarly, FGF23 can modulate
peripheral immune cell function by affecting 1-alpha hydroxylase expression in monocytes
and decreasing cathelicidin synthesis [3]. These data indicate that the upregulation of
FGF23 may play a crucial role in defining immune responses to vitamin D, which may be
a key determinant of infection in patients with AKI. The function of vitamins in innate
and adaptive immunity as well as the associated process in the fight against COVID-19 are
shown in Figure 2.

Int. J. Mol. Sci. 2022, 23, 7368 9 of 18 
 

 

to vitamin D, which may be a key determinant of infection in patients with AKI. The func-

tion of vitamins in innate and adaptive immunity as well as the associated process in the 

fight against COVID-19 are shown in Figure 2. 

 

Figure 2. (A) Vitamin D-related innate immunity. SARS-CoV-2 viral proteins are able to inhibit var-

ious immune processes such as pathogen recognition, IFN production and signaling and series of 

interferon-stimulated genes (ISGs). Vitamin D supplement can promote IFN production and subse-

quent IFN signaling (A-1). Vitamin D binds to vitamin D receptors (VDRs) and act as a transcription 

factor, which induces the expression of cathelicidin and β-defensin 4A and promotes autophagy 

through autophagosome formation. Cathelicidin, β-defensin 4A, and mature autophagosomes then 

work in concert to eliminate bacteria. Vitamin D supplementation may reduce the severity of 

COVID-19 via enhancing the innate immune response through TLR activation and autophagy, up-

regulating antimicrobial peptide synthesis, and increasing the generation of lysosomal degradation 

enzymes within macrophages (A-2). (B) Vitamin D-related adaptive immune responses. Vitamin D 

can stimulate effector CD4+ cells to differentiate into one of the four types of CD4+ cells. It not only 

increases T helper (Th) 2 (Th2) cytokines (e.g., IL-10) and the efficiency of regulatory T (Treg) lym-

phocytes but also promotes the association of Th2 cells with humoral immunity. In addition, vita-

min D inhibits the development of Th1 cells, which are associated with the inflammation in cellular 

immune response. Furthermore, vitamin D promotes the shift from Th1 to Th2 cells. Vitamin D also 

suppress the development of Th17 cells, which play roles in tissue damage and inflammation. Col-

lectively, these functions may have a benefit in SARS-CoV-2 infection. 

6. Vitamin D and Endothelial Dysfunction 

Recent studies have found a relationship between vitamin D status and endothelial 

function [97]. Vitamin D therapy can improve endothelial function. In a clinical trial of 

patients with type 2 diabetes mellitus who had vitamin D deficiency, a one-time large 

dose of vitamin D improved flow-mediated vasodilation of the brachial artery and signif-

icantly decreased systolic blood pressure compared with placebo [98]. In 42 subjects with 

vitamin D insufficiency, normalization of 25-OH D at 6 months was associated with in-

creases in the reactive hyperemia index and subendocardial viability ratio and a decrease 

in mean arterial pressure [99]. An in vitro study indicated that vitamin D may attenuate 

Figure 2. (A) Vitamin D-related innate immunity. SARS-CoV-2 viral proteins are able to inhibit
various immune processes such as pathogen recognition, IFN production and signaling and series of



Int. J. Mol. Sci. 2022, 23, 7368 10 of 18

interferon-stimulated genes (ISGs). Vitamin D supplement can promote IFN production and subse-
quent IFN signaling (A-1). Vitamin D binds to vitamin D receptors (VDRs) and act as a transcription
factor, which induces the expression of cathelicidin and β-defensin 4A and promotes autophagy
through autophagosome formation. Cathelicidin, β-defensin 4A, and mature autophagosomes then
work in concert to eliminate bacteria. Vitamin D supplementation may reduce the severity of COVID-
19 via enhancing the innate immune response through TLR activation and autophagy, upregulating
antimicrobial peptide synthesis, and increasing the generation of lysosomal degradation enzymes
within macrophages (A-2). (B) Vitamin D-related adaptive immune responses. Vitamin D can stimu-
late effector CD4

+ cells to differentiate into one of the four types of CD4
+ cells. It not only increases T

helper (Th) 2 (Th2) cytokines (e.g., IL-10) and the efficiency of regulatory T (Treg) lymphocytes but
also promotes the association of Th2 cells with humoral immunity. In addition, vitamin D inhibits the
development of Th1 cells, which are associated with the inflammation in cellular immune response.
Furthermore, vitamin D promotes the shift from Th1 to Th2 cells. Vitamin D also suppress the
development of Th17 cells, which play roles in tissue damage and inflammation. Collectively, these
functions may have a benefit in SARS-CoV-2 infection.

6. Vitamin D and Endothelial Dysfunction

Recent studies have found a relationship between vitamin D status and endothelial
function [97]. Vitamin D therapy can improve endothelial function. In a clinical trial of
patients with type 2 diabetes mellitus who had vitamin D deficiency, a one-time large dose
of vitamin D improved flow-mediated vasodilation of the brachial artery and significantly
decreased systolic blood pressure compared with placebo [98]. In 42 subjects with vitamin
D insufficiency, normalization of 25-OH D at 6 months was associated with increases in the
reactive hyperemia index and subendocardial viability ratio and a decrease in mean arterial
pressure [99]. An in vitro study indicated that vitamin D may attenuate the adverse effects
(including increased NF-κB expression) of advanced glycation end products on endothelial
cells [100].

There is also the role of SARS-CoV-2 infection in endothelial activation and en-
dothelial dysfunction via elevated levels of chemokines (i.e., monocyte chemoattractant
protein-1), proinflammatory cytokines (i.e., interleukin-1, interleukin-6 (IL-6), and TNF-α),
von Willebrand factor (vWF), and factor VIII. A review described that vitamin D maintains
endothelial function by reducing the production of reactive oxygen species (ROS) as well
as reducing proinflammatory mediators, such as IL-6 and TNF-α, suppressing the NF-κB
pathway and attenuating lung injury by inhibiting TGF-β-induced epithelial–mesenchymal
transition and stimulating type II alveolar epithelial cell proliferation and migration, re-
ducing epithelial cell apoptosis [28]. Endothelial injury directly affects afferent arterioles
and results in endothelin release and further vasoconstriction, which together cause renal
microcirculatory dysfunction and induce AKI (Figure 1) [101,102].

7. SARS-CoV-2 and Acute Kidney Injury

The putative pathogenesis of AKI caused by COVID-19 is shown in Figure 3. SARS-
CoV-2 infects both alveolar macrophages and type II alveolar cells by binding to angiotensin-
converting 2 (ACE2) receptors with the receptor-binding domain (RBD) of the spike protein
as a possible pathophysiological pathway. Furthermore, SARS-CoV-2 requires type 2
transmembrane protease (TMPRSS2) for the cleavage of its spike protein and to support
its cell entry after binding of the RBD and ACE2. ACE2 is consumed due to the virus’
entry which, in turn, upregulates Ang II, which modulates the gene expression of sev-
eral inflammatory cytokines via NF-κB signaling. In addition, infected monocytes and
macrophages in the mononuclear phagocyte system also produce various proinflammatory
cytokines and chemokines. Regarding the pathogenesis of AKI caused by COVID-19,
intrinsic AKI has been shown to be the most common renal involvement. The process
includes several pathological changes such as acute tubular injury (most common), acute
interstitial nephritis, podocytopathy/collapsing focal segmental glomerulosclerosis, and
thrombotic microangiopathy. Overexpression of CD147 protein also has an impact on
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proteinuria, and hematuria appears to be relatively prominent in COVID-19-associated
AKI [103]. The mechanism of COVID-19-associated AKI includes indirect and direct causes
(Figure 3). Direct viral infection of renal tubular epithelial cells, complement activation,
endothelial damage, collapsing glomerulopathy and coagulopathy are probable direct
causes of AKI caused by COVID-19. Indirect contributors to COVID-19-associated AKI
may include organ interaction, non-COVID-19 infection, ischemic injury arising from hy-
potension or hypoxemia, toxic injury and possible complications of mechanical ventilation.
Gastrointestinal upset and dysregulation of the Ang II pathway are other indirect contribu-
tors [103,104]. The direct or indirect actions on the kidney may also cause mitochondrial
damage. Mitochondria are involved in ATP synthesis (through an efficient electron trans-
port chain (ETC)), metabolic oxidation (via the tricarboxylic acid cycle), and full fatty acid
oxidation. Mitochondria also help immune cells mature and function by reducing the
generation of ROS. Persistent mitochondrial dysfunction can exacerbate AKI and increase
mortality and disease mobility. Several drug targets have been reported to improve mito-
chondrial dysfunction including the peroxisome proliferator-activated receptor δ (PPAR δ)
nuclear receptor and nicotinamide adenine dinucleotide (NAD) conservation via quinoli-
nate phosphoribosyltransferase (QPRT) and α-amino-b-carboxy-muconate-e-semialdehyde
decarboxylase (ACMSD). Another treatment option for reducing inflammation and aiding
repair, such as alkaline phosphatase treatment, was also presented [105]. Melatonin has
also been reported to have a number of functions in mitochondrial dysfunction, includ-
ing restoring ATP generation, suppressing mitochondrial fission, preventing apoptosis in
healthy cells, maintaining mitochondrial homeostasis, and improving ROS removal. In
conclusion, melatonin can help mitochondria perform their regular metabolic duties while
also reducing the generation of oxygen free radicals [106].
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Figure 3. The putative pathogenesis of acute kidney injury (AKI) caused by COVID-19. The pathogen-
esis of AKI in patients with COVID-19 is multifactorial, which is consistent with the pathophysiology
of AKI in other critically ill patients including the direct effects of SARS-CoV-2 on kidney cells and
indirect effects due to the presence of systemic mechanisms. SARS-CoV-2 may exhibit viral tropism
and directly affect the kidneys. Endothelial dysfunction, coagulation dysfunction, and complement
activation may be important mechanisms for the development of AKI in some patients with COVID-
19. The roles of systemic inflammation and immune dysfunction in the development of AKI in
COVID-19 remain uncertain.
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8. Anti-Inflammatory Effects of Vitamin D on SARS-CoV-2

Vitamin D may have the benefit of reducing the severity of COVID-19 via several
pathways, such as activating monocyte (TLR1/TLR2) by pathogen-associated molecular
patterns (PAMPs), enhancing antimicrobial peptide (cathelicidin and β-defensin 4A) synthe-
sis, and increasing the generation of lysosomal degradation enzymes within macrophages.
Furthermore, vitamin D has a role in adaptive immune responses to COVID-19 via en-
docrine, intracrine, and paracrine effects. Vitamin D not only suppresses the maturation
of dendritic cells and weakens antigenic presentation but also suppresses Th1 and Th17
cytokine secretion as well as related tissue destruction. Finally, it increases cytokine pro-
duction by CD4+ T cells, promotes the shift from Th1 to Th2 cells, and intensifies the
efficiency of Treg lymphocytes, which results in increased humoral immunity and anti-
inflammatory effects.

Furthermore, vitamin D may increase ACE2 levels to reduce the activity of the RAS by
converting angiotensin I and Ang II into angiotensin 1–9 and angiotensin 1–7, respectively,
which results in decreased pathophysiological effects on tissues such as inflammation
and fibrosis [107]. Other benefits, such as decreasing matrix metallopeptidase 9 (MMP-9)
levels and reducing bradykinin storms, have also been reported [28]. Several systematic
reviews have also revealed that vitamin D supplementation is advantageous in reducing
COVID-19 severity or that vitamin D deficiency is related to poor prognosis of COVID-19. It
is reasonable that vitamin D may reduce the severity of COVID-19-associated AKI. In other
words, vitamin D deficiency may increase the risk and severity of COVID-19-associated
AKI [60,108,109].

9. Side Effects of Excess Vitamin D

Some studies in the past showed that either too high or too low levels of 25(OH)D
could cause a poor prognosis [110,111], but subsequent studies found no definite correlation
between 25(OH)D levels and outcome [112,113]. More research indicates that raising
calcium levels in the blood as a result of vitamin D supplementation may be the main
cause of the poor prognosis [114–118]. Additionally, a previous study recommended that
vitamin K2 could assist in putting calcium in the hard tissues rather than the soft tissues,
minimizing the likelihood of calcium-related side effects [119].

25(OH)D can exert biological activities at high concentrations by activating the VDR,
and the affinity of 25(OH)D for the VDR is approximately 1000-fold less than that of
1,25(OH)2D3 [120]. Kusunoki et al. found that excess 25(OH)D exacerbates tubuloint-
erstitial injury by modulating the kidney infiltration phenotype in mice [121]. AKI also
plays a role in vitamin D toxicity. The major cause may be hypercalcemia and hyperphos-
phatasemia due to hypervitaminosis. The mechanism of hypercalcemia leading to AKI may
include polyuria and diuresis caused by diabetes insipidus, obstruction via nephrolithiasis
and renal calcification and a severe glomerular filtration rate (GFR) decrease via renal
vasoconstriction. Acute phosphate nephropathy due to the tubulointerstitial deposition of
phosphate calcium was mentioned as the mechanism of hyperphosphatasemia leading to
AKI [16]. The safe upper limit of 25(OH)D and the benefits of vitamin D supplementation
in patients with CKD and AKI still need further appropriate randomized controlled trials.

10. Conclusions

Vitamin D deficiency is common in COVID-19 patients and is associated with increased
mortality and risk of AKI. COVID-19 can cause acute damage to the renal parenchyma
through the virus directly or indirectly due to the presence of systemic factors. The kidneys
of AKI patients were also more susceptible to SARS-CoV-2 infection because they had more
receptors for viral entry. AKI may also cause vitamin D deficiency and increase the risk
and severity of COVID-19. COVID-19 can trigger a virus-induced immune cell response,
resulting in accelerated vitamin D metabolism and vitamin D consumption in the body,
resulting in a decrease in vitamin D in the body. Deficiency of vitamin D activates the RAAS
system in the kidneys and the whole body, which easily damages glomerular endothelial
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cells, podocytes, and tubular epithelial cells, thereby increasing the incidence of AKI, and it
also aggravates the severity of COVID-19. The damage to the kidney tubules caused by
AKI also increases FGF23 levels which, in turn, leads to lower levels of the enzyme that
makes vitamin D. Furthermore, proteinuria in AKI increases the urinary loss of vitamin
D. These results showed that there are cross-relationships between vitamin D deficiency,
AKI, and COVID-19 (Figure 4). The efficacy and safety of vitamin D supplementation in
COVID-19 patients remain controversial. Further large prospective studies evaluating the
association between vitamin D and AKI in COVID-19 patients are needed before vitamin D
supplementation is recommended.
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D activates the RAAS system inside the kidney and the whole body. At the same time, the lack of
vitamin D can also easily cause damage to glomerular capillary endothelial cells, podocytes, and
renal tubular epithelial cells, which will increase the chance of contracting COVID-19. (e) Vitamin D
deficiency will activate the RAAS system and easily damage glomerular endothelial cells, podocytes,
and renal tubular epithelial cells, thus increasing the incidence of AKI. (f) AKI will cause damage
to the renal tubules and increase FGF23 levels, which will lead to a decrease in the concentration of
enzymes that make vitamin D. Moreover, proteinuria in AKI will also increase urinary loss of vitamin D.
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