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ABSTRACT

The new web resource EviNet provides an easily run
interface to network enrichment analysis for explo-
ration of novel, experimentally defined gene sets. The
major advantages of this analysis are (i) applicabil-
ity to any genes found in the global network rather
than only to those with pathway/ontology term an-
notations, (ii) ability to connect genes via different
molecular mechanisms rather than within one high-
throughput platform, and (iii) statistical power suffi-
cient to detect enrichment of very small sets, down
to individual genes. The users’ gene sets are either
defined prior to upload or derived interactively from
an uploaded file by differential expression criteria.
The pathways and networks used in the analysis can
be chosen from the collection menu. The calculation
is typically done within seconds or minutes and the
stable URL is provided immediately. The results are
presented in both visual (network graphs) and tabu-
lar formats using jQuery libraries. Uploaded data and
analysis results are kept in separated project directo-
ries not accessible by other users. EviNet is available
at https://www.evinet.org/.

INTRODUCTION

Modern analyses of biological data is increasingly based on
interactions between genes, proteins, and other biological
molecules, combined into networks, otherwise called inter-
actomes. Most often the task is to characterize a novel ex-
perimental or pathological condition through a set of genes
with altered molecular features.

This approach of testing biological hypotheses in the
network context requires running statistically adequate
topology-based procedures. We proposed a method of net-
work enrichment analysis (NEA) (1,2), where network
topology is employed to evaluate functional impact of ex-

perimentally determined gene sets. NEA became a natu-
ral extension of the well-known pathway overrepresenta-
tion analysis (ORA) into the interactomics domain. The
ORA methodology (3) has been elaborated during the last
two decades (4,5). It utilizes the abundance of known func-
tional gene sets (FGS), such as pathways, to characterize
novel, experimentally defined altered gene sets (AGS). This
is done by finding an overlap of the genes of FGS in the AGS
and testing its statistical significance. Performance and ap-
plicability of ORA have been limited by incomplete path-
way annotation of gene space and by only considering al-
terations observable within one platform, such as a tran-
scriptomics microarray. NEA largely overcomes these limi-
tations due to a key difference: while ORA counts the num-
ber of genes shared between an experimental list and a
pathway, NEA considers network edges between any genes
of both groups in the global network. This feature is sur-
prisingly absent in most of the previously proposed algo-
rithms for network enrichment analysis. Indeed, methods
such as that of Ingenuity Pathway Analysis [Ingenuity®
Systems, http://www.ingenuity.com], PheNetic (6), Steiner-
Net (7), ResponseNet (8,9) identify, in various ways, net-
work modules (clusters, sub-networks etc.) that appear en-
riched in altered genes. Then ORA might be applied post-
hoc to evaluate overlap between a module and each of the
tested pathways.

A number of web tools are close to the idea of EviNet,
such as e.g. EnrichNet (10). It also connects AGS and FGS
in the network, with the difference that network paths of
unlimited length are allowed and the node degrees are not
explicitly accounted for. However, the web interface of En-
richNet is limited to submission of gene lists one by one.
The same applies to a more recent web tool PathWAX (11),
which is based on the same NEA approach as EviNet (path
of length 1, i.e. accounts for only direct edges) but estimates
confidence via network randomization — which is slower
than the X? statistic calculation (12) employed by EviNet.
ToppGene (13) also enables analysis of a functionally rele-
vant gene set (usually representing a disease) against a single
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gene by using unlimited path algorithms PageRank, HITS,
and K-Step Markov. Another new tool, FunGeneNet (14)
allows analyzing network enrichment using the NEA ap-
proach, but specifically within one user-submitted gene set.
We note that in our resource this analysis is performed
by default, in parallel with evaluating enrichment of AGS
against FGSs. These alternative tools lack, to various ex-
tents, functionality for network visualization.

Another highly desirable feature is a dynamic re-
definition of experimentally derived gene lists, e.g. via
changing confidence thresholds. A web resource called
NetVenn (15) has enabled flexibility of input for net-
work analysis via Venn diagrams, although it identifies
and presents network modules enriched in differentially
expressed genes, thus performing the opposite task: gene
set exploration rather than functional characterization via
pathway enrichment.

The popular algorithms, such as PageRank, Random
Walk with Restart and their modifications (16-19), were
designed to operate along potentially unlimited network
paths with edge weights decaying along a path, which was
probabilistically modified by specific parameters.. While be-
ing commonly used today for biological enrichment analy-
sis, these parameters were never, to the best of our knowl-
edge, systematically optimized for biological networks. The
network topology, such as node degree values, either does
not affect ranking results and significance evaluation or
is biologically counterintuitive. As an example PageRank,
developed for Google search engine, considered hubs as
most relevant nodes, which would not be the case for novel
disease or drug target genes. By analyzing fixed paths of
length 1 and by built-in accounting for node degree of genes
and gene sets, the NEA approach reduces topological bias,
makes the analysis generally faster, more transparent, bi-
ologically relevant, and easy in visualizing detailed gene—
gene paths. We have also seen that NEA, given state-of-
the-art global networks, is not inferior to the long path al-
gorithms in terms of specificity and sensitivity (results to
be published elsewhere). Such networks, possessing around
one million edges and 10 to 20 thousands nodes as well as
scale free topology, are available from the EviNet collection
(STRING, FunCoup, PathwayCommons).

The new resource EviNet (https://www.evinet.org/) cre-
ates a user-friendly interface for gene network analysis in
both hypothesis-driven and hypothesis-free research. It pro-
vides (i) a clearly defined, sequential analytic procedure, (ii)
statistically rigorous hypothesis testing, (iii) biological in-
terpretability and transparency for hypotheses and discov-
eries and (iv) high-quality visualization of findings, both
as summarized and in depth details of gene—gene interac-
tions and evidence behind them. At the same time, the out-
put is maximally similar to ORA. While the web interface
of EviNet is created using jQuery functionality (https://api.
jquery.com/) and/or generated by perl scripts, the back-
end employs PostgreSQL database engine and core func-
tions of the R package NEArender (12). The latter is dedi-
cated to NEA, but possesses a number of additional func-
tions which, being irrelevant to the online analysis, are
available for off-line users (12) (https://cran.r-project.org/
web/packages/NEArender/). EviNet has been employed in
a number of research projects (20), (21-25) as well as a

platform for teaching systems biology. Here we demon-
strate use of EviNet in an analysis of transcriptome dy-
namics upon embryonic stem cell differentiation by com-
bining multiple differential expression criteria. It allowed
corroborating known and revealing novel signaling genes
and pathways potentially important for maintaining stem
cell pluripotency, differentiation, and diversification toward
either neuroectodermal or endodermal lineages.

MATERIALS AND METHODS
Cell differentiation

El4 mESCs were differentiated as described before
(43). Total RNA was isolated from cells every 24 h between
0 and 3 days of differentiation condition (DDC) using the
ZymoPure™ kit according to manufacturer’s instructions.
Three DDC cultures were enriched for neural progenitors
using promininl-based magnetic activated cell sorting
(p-MACS) (Miltenyi Biotec).

RNA sequencing and quantification of gene expression

The differentiation stages 0d (ESC), 1d, 2d, 3d and
3d(sorted) were represented with 2, 2, 2, 2 and 3 biological
replicates, respectively.

Reads were mapped with Tophat/2.0.4 (54) to the
mouse genome assembly (build GRCm38). BAM files
from samples run on different lanes were merged
with samtools (55). Merged BAM files were sorted
and duplicates removed using picard-tools/1.29
(http://broadinstitute.github.io/picard/). Mapping statis-
tics were calculated from numbers obtained by running
bam _stat.py (included in rseqc/2.3.6) on bam files with
and without duplicates. Script GeneBody_coverage.py (in-
cluded in rseqc/2.3.6) was run on bam files with duplicates
(56). Gene count values were generated using htseq/0.6.1
on BAM files with duplicates included (57). FPKM values
were not used in this analysis.

Analysis of differential expression

In order to compensate for heteroscedasticity (the correla-
tion between mean and variance of gene expression pro-
files), the sample-specific count values were processed in R
package limma (58) with function voom. After the empiri-
cal Bayesian variance interpretation, the DE and adjusted
P-values were calculated with limma function topFC.

Example data

The file for Venn diagram generation with count, voom and
differential expression values for this experimental series is
available at EviNet.org in the public project ‘stemcell’ and
in the menu Help.

Alternatively, example files with precompiled AGS col-
lections can also be found in Help or in File directory of the
demo project ‘myveryfirstproject’, ‘stemcell’.

Venn diagrams

The Venn diagrams overlay gene lists from different pair-
wise experimental contrasts. Such cross-comparisons allow


https://www.evinet.org/
https://api.jquery.com/
https://cran.r-project.org/web/packages/NEArender/
http://broadinstitute.github.io/picard/

( Altered \

gene sets, AGS

KNetwork enrichment analg

o L0 [07] g )

1) Text box:

i kL mn

% =
Dagsras, M ss ras

2) uploaded
gene lists:

3) Generated via
Venn diagram from
uploaded DE values:

7N\

Functional gene sets, FGS

Figure 1. Data flow of network enrichment analysis on EviNet.org. Three
components shall be specified for an analysis on the server: (1) AGS, ex-
perimentally derived gene/protein lists in one of the three shown formats;
(2) FGS, functional gene sets (typically pathways with well characterized
biological function) selected from the FGS collection menu and (3) global
network (also selected from the menu) where individual genes of AGS and
FGS are supposed to be connected via edges (presence of all genes is not
required, however AGS, FGS, and network must share the same name
space). The program will identify available AGS-FGS edges, perform net-
work enrichment analysis, produce graphical and tabular output, and store
the results in Archive for future investigation. See details in ‘Data analysis
and required input’.

the user to focus on gene sets characterizing specific pro-
cesses. The server-side script re-reads the file with DE val-
ues and generates lists of genes that satisfy each contrast-
specific set of filtering conditions. Each list corresponds to
one ellipse on the Venn diagram, generated with R packages
Vennerable (https://github.com/js229/Vennerable) and Ven-
nDiagram (59). Further, all possible overlaps in Venn dia-
grams (3, 7, and 15 in 2, 3 and 4-contrast analyses, respec-
tively) are accompanied by corresponding gene lists, which
pop up on the screen upon mouse clicks at the intersection
areas. The lists also contain DE values and can be investi-
gated by sorting, gene ID search etc. Users can change filter-
ing criteria, followed by re-generation of the Venn diagram
and the gene lists. Finally, the user chooses with checkboxes
an arbitrary number of intersection gene lists, which will be
treated as AGSs, and proceeds to the tabs Network, Func-
tional Gene Sets, and Check and submit in order to execute
NEA.

DATA ANALYSIS AND REQUIRED INPUT

An algorithm of the traditional, network-free gene set en-
richment analysis requires two components: set(s) of exper-
imentally derived genes/proteins that we term ‘altered gene
sets” (AGS) and a collection of gene/protein sets with pre-
viously characterized common functions (functional gene
sets, FGS). A network enrichment analysis in addition re-
quires a third component: a network where edges represent
functional couplings, interactions, regulatory relationships
etc. between genes and/or protein nodes (Figure 1). In or-
der to be unbiased, such a network should be global, i.e. en-
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compass all known nodes and edges rather than only those
relevant to the analyzed AGS.

Using the X? based statistic, which was described in
details elsewhere (1,12), enables quick and unbiased cal-
culation of connectivity expected by chance between the
given AGS and FGS from their cumulative node degrees
Nags and Nggs (the sums of connectivity values of the
member nodes):

~ Nacex N ~ .

AAGS—FGS = %‘mi“, so that 7iags_rgs 1S then used
for evaluating significance with:

XZ — (1AGS—FGs —AiaGs-_Fas)” + (! nacs-ros—liacs_ras)* . where

. AAGS—FGS o !;IAGS—I;GS )
naGs-rFGs 18 the actual connectivity and ‘I’ denote negation,

i.e. the rest of network edges.

In this implementation, the time needed for a typical
analysis of e.g. 10 AGSs versus 50 FGSs in a network of
one million edges is around 20 s.

In the following text, we describe the three components
and ways to define them for a particular analysis. Beyond
that, new users of the web site can begin by running the an-
imated demo analyses. The latter would sequentially fill all
the required fields and thus facilitate overview and master-
ing of the options. Flowcharts in the Help menu explain the
major analysis components and typical applications. The
text sections below correspond to the numbered web page
tabs, so that following this (although not fixed) order can
facilitate the task for novel users.

Altered gene sets

A typical input to NEA should be one or multiple AGSs,
in the form of gene or protein lists. Such lists can be sub-
mitted in one of three major ways, represented by three
sections in the tab Altered gene sets: (i) a list pasted into
the text box (minimally, a single ID); (ii) an uploaded file
with predefined lists (list IDs must be present in a dedicated
column) and (iii) an uploaded file with results of differen-
tial expression (DE) analysis that allows re-defining the lists
by changing DE criteria. The latter option requires the file
header to be in a standardized format, as explained in Help.
Upon the file upload, the header is rendered into a set of web
form controls, which allows to simultaneously consider up
to four DE contrasts, apply desirable criteria and explore
gene sets overlaps between specific DE lists.

For example, a user might possess transcriptomics data
from experiments X, Y, Z and a control condition C. A
DE analysis have compared these conditions using available
replicates and suitable software tools, which resulted in fold
change values and (adjusted) P-values for each contrast of
interest: X versus C, Y versus C, and Z versus C. The DE
lists can now be flexibly derived by choosing fold change
and/or P-value cut-offs. After setting the criteria, the user
can generate a Venn diagram of the three DE sets. This re-
veals gene groups that of particular interest in the given ex-
perimental design, such as e.g. differentially expressed in
X versus C and Y versus C but not between Z versus C
(dubbed ‘“++-"). Given sensible DE criteria, each group (‘-
+-7, ‘=++°, ‘“+++ etc.) will likely contain multiple genes.
The respective Venn intersections (Figure 2) are clickable,
resulting in pop-up tables of genes with respective DE val-
ues. These DE lists can be selected as AGS input for NEA.
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Figure 2. Scheme of stem cell differentiation and analysis of differen-
tial gene expression. Mouse embryonic stem cells (mESCs) treated with
retinoic acid (RA) and Shh agonist (SAG) were driven toward differenti-
ation during at least three days. The cell transcriptomes of the days 1, 2,
3 were compared to that of the original mESCs. By day 3, neural progeni-
tors emerged as a mixture population. From this mixture, neuroectodermal
cells were derived by cell sorting and studied against the former. The four
differential expression (DE) contrasts were selected and overlapped using
the Venn diagram tool of evinet.org. As an example, genes DE in each of
the four contrasts were chosen as the central intersection (table at the bot-
tom) and forwarded to network enrichment analysis of evinet.org.

In our experience, this should address a frequent need to ap-
ply complex criteria to a combination of DE analyses and
evaluate pathway enrichment in the overlap sets. In section
‘Transcriptomic changes during stem cell differentiation’ we
analyze cell differentiation stages compared to the original
embryonic stem cell state.

Network

The known part of the global gene network consists of
physical interactions and protein-mediated gene regula-
tion, which is learned experimentally (26). In addition, we
and others developed Bayesian tools that reconstruct novel
edges of functional coupling. This is done by integrating ev-
idence from multiple high-throughput platforms and eval-
uating consistency of literature reports (27-29). In order to
enable network analysis from different angles and consider
particular molecular mechanisms, one can use functional
links between genes and/or proteins from curated databases
of protein complexes (30), signaling and metabolic path-
ways (31,32), protein phosphorylation (33,34), transcrip-
tion factor binding (35) etc. Smaller networks have lower
sensitivity due to having fewer gene nodes and edges (22).
On the other hand, larger networks do gain from data in-
tegration: for instance, a pure protein interaction network
is inferior to a FunCoup network, which also integrates
gene co-expression, protein co-localization etc. At the same
time, another data integration network STRING, being
largely based on prokaryotic evidence (27), performs best
with metabolic pathways, while being inferior to FunCoup
in the cancer domain (22). In the tab ‘Network’, we pro-

vide a menu of such resources. It is also possible to choose
a combination of networks for a particular analysis.

Functional gene sets

The usage of FGS is most similar to that in the ORA
methodology. Each FGS (typically a pathway or a Gene
Ontology term) can be viewed as a dimension in a func-
tional space. Upon choosing one of the collections, such
as BioCarta (36), KEGG (31), MetaCyc (37), Reactome
(32), WikiPathways (38), Gene Ontology terms (39), or a
custom collection used in previous research, the resulting
network enrichment scores can be utilized either in an ex-
ploratory analysis (typically with few AGSs) or produce
an FGS score matrix potentially informative on e.g. clini-
cal phenotypes, when cohort patients are represented with
AGSs as explained in details elsewhere (12). Alternatively,
users can submit own, custom FGSs via the text box or by
uploading files with predefined lists in the same way as it is
done in the AGS section.

ANALYSIS OUTPUT AND AVAILABLE OPTIONS

When AGS, FGS, and network options have been defined
in the tabs described above, the selected choices can be re-
viewed in the tab Check and submit. The results are gen-
erated by pressing the‘Submit and calculate’ button. If the
analysis takes longer than a minute, the user can either
bookmark the permanent URL in order to access it upon
job completion or find the URL listed among previously
performed analyses in the project archive.

The output is provided in graphical, detailed tabular,
and matrix formats. The graph represents a map of sig-
nificant AGS-FGS edges, which summarize respective sin-
gle gene—gene connections. The tabular output provides an
overview of node degree values as well as significance esti-
mates. Normally distributed values needed for many down-
stream analyses are provided by recalculating the X? statis-
tic to z-scores. Matrices of z-scores, P-values (both raw and
adjusted for multiple testing), and other potentially infor-
mative values can be obtained from the auxiliary menu in
the top right corner of the tab. We should warn that ad-
justment for multiple testing by Benjamini and Hochberg
(40) might be calculated properly only on larger numbers
(e.g. hundreds) of tested hypotheses (AGSxFGS combina-
tions). Otherwise the adjusted values may approach origi-
nal P-values. For comparison with ORA, one can look at
the second last column Shared genes displaying the number
of genes that belong to both AGS and FGS, as well as the
P-value estimated via ORA. This reveals the much higher
sensitivity of NEA compared to ORA: the gene set overlap
rarely exceeds 5-10 genes (usually 0 or 1), while tens and
hundreds of AGS-FGS network edges are significant.

The graphical output is enabled with the jQuery plugin
Cytoscape.js (41). The accompanying menu provides a com-
prehensive control over the graph features (edge/node con-
tent, layout, naming, coloring, filtering, size etc.) and sav-
ing presentation-quality Figure ures in PNG format. Since
AGS-FGS edges summarize individual gene—gene connec-
tions, clicking on them retrieves respective sub-network
views (both as graphs and tables) for further investigation



of available evidence, such as edge confidence scores, links
to literature, and other annotations. The Archive window
displays a list of previous analyses in the current project,
with records of actual parameters and URLs for restoring
the results in a separate window.

Using the web site is open for everybody without regis-
tration or login. Each project with uploaded files is stored
in a separate directory. However, registered users might
obtain access to additional functionality via the project
management system. Access to user files and analysis re-
sults can be privately shared between the project members.
They may have different roles (administrator, read/write,
read only).Administrators can make projects public, which
might be convenient for publication purposes.

The web site works best with Google Chrome (v. 60 or
later) and Mozilla Firefox (v. 57 or later) on Windows and
Xubuntu. The site also works with Safari v. 11.1 (macOS
Sierra v. 10.12.6) and Edge v. 38 (Windows 10). Some func-
tions may not work with Internet Explorer 11.

Analysis of individual genes

A valuable feature of our NEA method is that it can be
applied to single node AGS or FGS. An ORA based on
estimating gene set overlap would not enable such tasks,
whereas estimating significance of network connectivity of
a single node against a multi-node set is fully possible in
NEA. An arbitrary single network node is likely to have
zero network connections to an arbitrary node set, and
therefore statistical power of NEA would be lower com-
pared to multi-node both AGS and FGS. However in prac-
tice almost any gene still reveals enrichment against a few
specific FGSs. This feature can help in describing poorly
characterized genes in the functional space, determining po-
tential impact of cancer mutations etc. Increasing the AGS
size - when it is feasible - can increase statistical power of
NEA. For instance, analyzing AGSs of 300 most significant
DE genes revealed a number of putative regulatory single
nodes (23). An EviNet analysis can be turned gene-wise via
check boxes at Check and submit tab or by submitting single
nodes as separate AGSs or FGSs.

TRANSCRIPTOMIC CHANGES DURING STEM CELL
DIFFERENTIATION

In order to test and demonstrate the web server functional-
ity, we analyzed a dataset from RNA sequencing of our ex-
perimental series in mouse embryonic stem cells (mESCs).
A non-differentiating stem cell condition was compared
to mESCs cultured for 1, 2 or 3 days in a differentiating
condition (1DDC, 2DDC, 3DDC). mESCs are pluripotent
stem cells that can give rise to ectodermal, endodermal,
and mesodermal cell lineages when cultured in appropriate
differentiation conditions (42).We used a protocol that via
treating cells with retinoic acid (RA) and Shh agonist (SAG)
drives differentiation of mESCs towards a ventral hindbrain
neural progenitor identity (43). In this differentiation con-
dition mESCs recapitulate ventral hindbrain development
and produce a population of neural progenitors with a mi-
nor presence of other cell types. This diversification occurs
in a largely uniform mESCs culture upon treatment with
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the same morphogen cocktail. Both the cell identities in this
population and the signaling cascades that govern this pro-
cess are unknown (Figure 2).

First, we analyzed the transcriptome differences between
mESCs in non-differentiating and differentiating condi-
tions. We detected a dramatic and progressive decrease
in expression of key regulators of pluripotency (Nanog,
Pou5f1, Kl1f4) and upregulation of neuroectodermal (Sox1,
Sox3, Nes, Prom1) and endodermal (Sox17, Sox7, Gata4)
markers but not of mesoderm-specific genes (Brachyury(T),
Eomes, Hand1) (44-46). In order to find genes involved
in pluripotent state maintenance or differentiation progres-
sion, we generated a Venn diagram that compared three
DE lists: mESCs versus 1DDC, mESCs versus 2DDC, and
mESCs versus 3DDC. This yielded genes that were consis-
tently either down- or up-regulated from 0 to 3DDC. In the
Venn diagrams, the full intersection of the three DE con-
trasts delineated 65 genes downregulated throughout 1, 2,
3 DDC (logy(FC) < -2; FDR < 0.05) and therefore puta-
tively involved in the maintenance of pluripotent state. On
the other hand, 149 genes upregulated throughout 1, 2, 3
DDC; log,(FC) > 2; FDR < 0.05) might be involved in
the differentiation progression. We note that typically up-
and down-regulated genes are analyzed together, so that a
pop up table can be automatically imported to the analy-
sis as a single AGS. However in this case we the up- and
down-regulated gene lists were of different biological na-
ture, so that we copied them from the pop up tables and
saved in a separate AGS file (these can be seen upon typing
in ID ‘stemcell’ in the project box and pressing ENTER).
The two AGSs were then used as input to NEA with the sig-
naling KEGG pathways chosen as FGSs. For the network,
we used a union of FunCoup (FClim), CORUM protein
complexes, KEGG pathways, and the protein phosphory-
lation network PTMapper. This choice based on our previ-
ous benchmark where a similar union of human networks
performed best (22).

This analysis (Figure 3) detected enrichment of FGSs
previously associated with either the pluripotent state, such
as JAK-STAT, TGF-beta, MAPK and VEGF signaling
pathways (47-49) or with the differentiation state, such as
WNT and Hedgehog signaling pathways (50,51). A detailed
sub-network (inset at Figure 3) behind the AGS-FGS link
‘differentiation — Sonic Hedgehog signaling’ shows that the
DE genes were connected to both the upstream (Gli genes)
and deep downstream (Wnt and Bmp families) parts of the
SHH cascade. For comparison, the trivial ORA detected
with a formally significant, unadjusted P-value only two of
the associations (TGF-beta and Hedgehog in the pluripo-
tent and differentiation states, respectively). Importantly,
the signaling pathways used in the NEA often overlapped
with each other, so that the same genes could be behind en-
richment of multiple FGS. As an example, Spry4 (sprouty
homolog 4) (52) was downregulated 5-10-fold in the 1, 2,
3 DDC as compared to mESCs. This gene was connected
in the global network to Cblb, Sosl, Sos2 (JAK-STAT sig-
naling) and Ppp3r2, Siahla (WNT signaling) and thus con-
tributed to enrichment scores of respective FGSs. Spry4 be-
longs to Sprouty genes which encode negative regulators of
the receptor tyrosine kinase signaling and therefore could
play an important role in stemness (53). On the other hand,
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Figure 3. Network enrichment of KEGG signaling pathways against gene
sets that showed ongoing up- and down-regulation during differentiation
toward neuroectodermal progenitor identity. Differentiation and Pluripo-
tency: AGSs of 149 and 65 genes that were respectively up- and down-
regulated at least 4-fold at each of the 1, 2 and 3 DDC compared to
mESCs. Yellow boxes: AGSs. Red boxes: FGSs. Circles in the inset: mem-
ber genes of AGS (yellow) and FGS (magenta) or both (orange). Node
size: log(node degree) in the global network (cumulative for FGS and in-
dividual for genes). Two-headed arrows: summaries of individual gene-
gene links (undirected or of arbitrary direction) from the global network
that connected AGS and FGS. Edge labels: the number of individual gene—
gene links behind each enrichment, where edge transparency corresponds
to confidence of network enrichment score (maximal allowed NEA FDR
= 0.05 corresponds to the highest transparency) and edge thickness stands
for the number of gene-gene links. Links in the inset: thickness denotes
edge confidence. For simplicity, FunCoup edges with Final Bayesian Score
< 5(29) are not shown.

individual important FGS genes could also be connected
to multiple AGS genes, likely affecting the up- and down-
regulation. We identified such genes by using the option
‘Analyze the FGS genes/proteins individually’ at Check and
submit tab. Although >85% of the signaling pathway genes
did not have any network edges connecting them to the two
AGSs, there was also a number of genes richly and sig-
nificantly connected to the downregulation AGS, such as
Fgfrl, Fefr2, Fgfrd; Tgfbl, Tgfb2, Tgfb3, Tgfa, Igflr and
Pdgfrb. On the upregulation side, the most connected were
Gria4, Grm3, Snap25, Camk2a, Shh, Thh, Dhh and oth-
ers, which could explain the pathway pattern at Figure 3.
Again, we emphasize that many contributing FGS genes
were not DE themselves. At the second stage, we searched
for FGSs that might regulate the selection between neu-
roectoderm and endoderm differentiation lineages. In or-
der to do that, we used transcriptomics data for the neu-
roectoderm population, derived by sorting three DDC cul-
ture. In this case, the DE values reflected a technical dif-
ference, i.c., a mixture of two (or even multiple) fractions
versus one filtered fraction, rather than a transcriptional
shift due to a biological transformation. Significant differ-
ential expression between the non-sorted and sorted popu-
lations was used as a criterion additional to the described
above. We retrieved gene lists in the contrasts correspond-
ing to 2DDC versus mESCs (logy(FC) > 1; FDR < 0.05)
and 3DDC versus mESCs (logy(FC) > 1; FDR < 0.195),
and either positive (log,(FC) > 1; FDR < 0.05) or nega-
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Figure 4. Network enrichment of genes characterized by up-regulation
during differentiation and by enrichment after sorting between neuroec-
toderm and endoderm. Neuroectoderm and Endoderm: AGS of genes up-
regulated at least 2-fold at both 2 DDC versus mESCs and three DDC
versus mESCs, and then either up-regulated 1.41-fold (N = 161) or down-
regulated 2-fold (N = 66) at three DDC versus three DDC(sorted), respec-
tively. Map legend: same as in Figure 3.

tive (logx(FC) < —0.5; FDR < 0.10) fold changes the con-
trast between 3DDC and 3DDC(sorted) which provided us
with AGSs specific for endodermal (N = 66) and neuroec-
todermal (N = 161) lineages, respectively. There were FGSs
enriched against both AGSs commonly (Hedgehog, VEGF,
JAK-STAT) and specifically against the neuroectodermal
AGS (WNT, NOTCH, axon guidance) (Figure 4). Some of
these pathways had been well known, while others appeared
novel and potentially interesting. Clicking at the link be-
tween neuroectodermal AGS and NOTCH (inset at Figure
4) demonstrated that most influential DE genes were likely
DII1 and Dtx4.

The analysis can be recapitulated from the Venn diagram
tab by setting the DE criteria as described above and using
column mapping for the DE file as shown in Table 1 (the
DE file is available for download from Help menu). There is
also a simplified demo version of the Venn diagram analysis,
which can be run from the Help.

CONCLUSION

We have introduced a novel web implementation of our
method for network enrichment analysis. It is streamlined
by (i) considering only single-step, direct links between AGS
and FGS genes, (ii) ignoring intra-FGS and intra-AGS
edges, (iii) disregarding edge confidence weights and direc-
tionality and (iv) replacing the network randomization step
with the unbiased analytic estimation of expected network
connectivity.

Compared to similar resources, the data flow and output
of EviNet appears the most similar to the classical ORA.
On the other hand, due to a much higher statistical power it
can be used for purposes other than an exploratory analysis,
such as evaluation of candidate disease genes, testing can-
cer mutations for being drivers, or building prognostic and
predictive statistical models using patient cohorts. Among
the alternative NEA matrix outputs, we recommend using
the z-score matrix because its values would be normally dis-
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Table 1. Mapping between experimental conditions and column identifiers in example file Pmatrix. NoModNodiff wESC.VENN.txt

Substring in file header
WT_Nondiff_LESCs_Control
WT_Nondiff_1_Control
WT_Nondiff_2_Control
WT_Nondiff_3_Control
WT_Prog_3(sorted)_Control
-FC

-P

-FDR

Meaning

mESCs

1 DDC, non-sorted culture

2 DDC, non-sorted culture

3 DDC, non-sorted culture

sorted 3 DDC culture

logy(fold change) of DE

DE P-value from eBayes

False discovery rate (adjusted P-value, or ¢g-value)

tributed under true null and would thus fit downstream sta-
tistical analyses.

We incorporated ancillary functionality for flexible re-
definition of DE gene list to be submitted to NEA. The
Venn diagram tool facilitates understanding and analysis
of the complex high-throughput experimental design. We
demonstrated how significant functional connections iden-
tified by EviNet in the differentiating mESCs suggested
potentially important roles in the integration of signaling
for specification between neuroectoderm and endoderm cell
fates.
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