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Opportunistic fungal infections are major causes of morbidity and mortality in patients

with single or multiple defects in their immunity. Antifungal agents targeting the pathogen

remain the treatment of choice for fungal infections. However, antifungal agents are

toxic to the host mainly due to the close evolutionary similarity of fungi and humans.

Moreover, antifungal therapy is ineffective in patients with immunosuppression. For this

reason, there is an increased demand to develop novel strategies to enhance immune

function and augment the existing antifungal drugs. In recent times, targeting the immune

system to improve impaired host immune responses becomes a reasonable approach

to improve the effectiveness of antifungal drugs. In this regard, immunomodulating

therapeutic agents that turn up the immune response in the fight against fungal infections

hold promise for enhancing the efficacy and safety of conventional antifungal therapy. In

general, immunomodulating therapies are safe with decreased risk of resistance and

broad spectrum of activity. In this review, therefore, clinical evidences supporting the

opportunities and challenges of immunomodulation therapies in the treatment of invasive

fungal infections are included.
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INTRODUCTION

Fungi cause a variety of clinical infections which range from asymptomatic-mild infections to
potentially life-threatening systemic infections (Brown et al., 2012). Over the past few decades,
the prevalence of fungal infections increased dramatically mainly due to the AIDS epidemics,
irrational use of broad-spectrum antibiotics, the widespread use of intravascular catheters, advances
in surgery and organ transplantation, and the increasing immune suppression (Segal et al., 2006;
Rodloff et al., 2011). Each year, about 11.5 million life-threatening infections and more than 1.5
million deaths occur due to fungal infections (Bongomin et al., 2017).

Antifungal agents targeting the pathogen such as polyenes, azoles, flucytosine, and
echinocandins are the treatment of choice for most fungal infections. However, the side effects
associated with the use of antifungal agents, the appearance of resistant fungal strains, varied
spectra of activity and failure to sterilize infected organs seriously limit the efficacy of antifungal
chemotherapy (Neofytos et al., 2009). Particularly in severely immunosuppressed patients, response
to systemic antifungal therapy alone remains disproportionately less satisfactory and cure
may be improved if the immune deficit remits (Brown et al., 2012; Safdar, 2013). Currently,
immunomodulating therapeutic agents that target the host immune response hold promise for
improving conventional antifungal therapy (Casadevall and Pirofski, 2001). However, there is
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limited data concerning the benefit and clinical effectiveness
of immunomodulation as an adjunct to antifungal therapy.
Therefore, in this review, clinical evidences supporting the
opportunities and challenges of immunomodulation therapies in
the treatment of invasive fungal infections are discussed.

IMMUNOMODULATING THERAPIES FOR
FUNGAL INFECTIONS

The lower burden of fungal infections in people with intact
immune response has been taken as strong evidence that normal
immunity mediates effective resistance to fungal infections
(Casadevall and Pirofski, 2001). In this regard, targeting the
immune system to augment impaired host immune responses
and thus enhance the efficacy of antifungal drugs becomes
a reasonable approach to improve the prognosis of fungal
infections (Casadevall and Pirofski, 2001; Segal et al., 2006).
Immunomodulation, therefore, refers to a range of treatments
aimed at harnessing patients’ immune system to achieve control,
stabilization, and potential eradication of disease (Sam et al.,
2018). As mentioned below and summarized in Table 1, several
immunomodulating approaches have been clinically tested for
the treatment of fungal infections.

Adoptive T-Cell Therapy
Adoptive T-cell therapy involves harvesting of T-lymphocytes
from a patient or donor’s blood, stimulating the cells to grow
and expand in an in vitro system, and subsequently re-infusing
the cells back into the patient. In this technique, high numbers of
specific T-cells are injected into the patient where they recognize
their target and aid the immune system in its elimination
(Papadopoulou et al., 2016). Adoptive T-cell therapy is usually
used after allogeneic stem cell transplantation (allo-SCT) because
the adaptive immune system reconstitutes much slower than the
innate immune system and artificial increase of specific T-cells
helps to clear fungal infections (Bacher et al., 2015).

Adoptive therapy using in vitro-expanded fungus-specific T
cells has shown clinical efficacy in murine and human clinical
studies. As reviewed in Deo et al. the use of Apsergillus-specific
CD4+ T cells isolated from the spleens of immunized mice
which were re-stimulated in vitro were protective and extended
the life of mice (Deo and Gottlieb, 2015). In a clinical trial by
Perruccio et al. ten haploidentical stem cell transplant recipients
with evidence of invasive aspergillosis received a single infusion
of 1 × 105-1 × 106 cells per kg of expanded donor-derived anti-
Aspergillus T-cell clones, and 9 of 10 patients cleared the infection
within 7.8± 3.4 weeks (Perruccio et al., 2005).

Adoptive cell therapy is a promising tool for the fight
against fungal infections. However, generating an adequate
number of fungal-specific T-cells with sufficient purity as per

Abbreviations: ADCC, Antibody-dependent cell mediated cytotoxicity; allo SCT,

Allogeneic hematopoietic stem cell transplantation; CAR, Chimeric antigen

receptor; CDC, complement dependent cytotoxicity; CSFs, Colony-stimulating

factors; G-CSF, Granulocyte Colony-Stimulating Factor; GM-CSF, Granulocyte-

Macrophage Colony-Stimulating Factor; M-CSF, Macrophage colony-stimulating

factors; MHC, Major Histocompatibility Complex.

the guidelines of Good Manufacturing Practice (GMP) is the
major limitation (Papadopoulou et al., 2016). Moreover, certain
immunosuppressants which are frequently used after allo-SCT
such as cyclosporine A, methylprednisolone, and mycophenolic
acid may interfere with adoptive T-cell transfer by lowering the
number and activation of specific protective Th1 cells (Tramsen
et al., 2014).

Chimeric Antigen Receptor (CAR) T-Cell
Therapy
CARs are artificially designed receptors that are introduced into
T-cells. The CAR modification allows T-cells to execute their
killing command without the need to bind to other receptors
(Meiliana et al., 2016). CAR T-cell therapies were approved by
the U.S. FDA for use in cancer (FDA news release, 2017), and the
success of CAR T-cells in B cell malignancies led to the attempt
to use CARs for infections including fungal diseases. Dectin-1, a
naturally occurring receptor of the innate immune system that is
not expressed on T-cells, has been targeted for CAR therapy. ß-
glucan, the ligand for Dectin-1, is a polysaccharide found on the
surface of many fungi (Lauruschkat et al., 2018). Kumaresan et al.
constructed a CAR T-cell adapting the fungal receptor Dectin-1
for Aspergillus to activate T-cells via chimeric CD28 and CD3-
ζ. In this study, the Dectin-CAR was activated by ß-glucan and
the growth of Aspergillus fumigatus was inhibited (Kumaresan
et al., 2014). CAR T-cells are one of the most promising
immunotherapeutic tools and major histocompatibility complex
(MHC) unrestricted antigen recognition is the main advantage of
CAR T-Cell therapy. In recent times, repurposing T-cells through
CAR T-cell therapy becomes an active area of research in the fight
against infections and hematological malignancies. However, this
therapeutic approach may provoke cytokine release syndrome
(CRS) and neurotoxicity (Kochenderfer et al., 2012; Brudno and
Kochenderfer, 2016). Moreover, the autologous generation of
sufficient numbers of CAR T-cells may take several weeks, which
might lose critical time in an acute infection like invasive fungal
infections (Neelapu et al., 2017). Allogeneic CAR T-cell therapy,
on the other hand, may give rise to off-the-shelf products with
decreased cost and it can also be suitable for many patients
as opposed to autologous CAR T-cell therapy in which each
treatmentmust bemade individually for each patient (Depil et al.,
2020). Yet, allogeneic CAR T cells may cause life-threatening
graft-vs.-host disease (GvHD), and these allogeneic T cells may
also be rapidly eliminated by the host immune system, limiting
their intended activity (Depil et al., 2020).

Granulocyte Transfusion
Patients with leukemia or undergoing haematopoietic stem
cell transplant (HSCT) are at higher risk of acquiring fungal
infections (Grow et al., 2002). Prolonged neutropenia has become
a major risk factor of invasive fungal infections and the spectrum
of infections in neutropenic patients has shifted, with invasive
fungal infections emerging as major determinants of morbidity
and mortality (Marr et al., 2002). Without correction of
neutropenia, antifungals alone may not resolve infections against
which neutrophils form the primary line of defense. Therefore, in
cases of drug-resistant fungal infections, granulocyte transfusion
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TABLE 1 | Clinical benefits and challenges of immunomodulating agents used in patients with fungal infections.

Immunomodulating Agents Clinical Benefit Challenges

Adoptive T-cell therapy Stimulation of T-cells with antigen and infusion into the patient

(Tramsen et al., 2014)

Generation of an adequate number of fungal-specific T cells with

sufficient purity is challenging (Papadopoulou et al., 2016)

Monoclonal antibodies Avoid toxicity risks because they are directed specifically to

pathogen epitopes, reduce durations of antifungal drug

treatment (Casadevall et al., 2004; Cassone, 2008)

Highly specific, high production costs (Chames et al., 2009)

CAR T-cell therapies T-cells are genetically modified to express CAR and provide

MHC unrestricted antigen recognition (Meiliana et al., 2016)

Cytokine release syndrome and neurotoxicity (Kochenderfer et al.,

2012; Brudno and Kochenderfer, 2016), longer time needed to

generate autologous CAR T-cells (Neelapu et al., 2017), allogeneic

T-cells may cause GvHD, and may be rapidly eliminated by the host

immune system (Depil et al., 2020)

Dendritic Cells (DCs) Leads to activation of specific T-cells and secretion of

cytokines and chemokines. It can be used both in

immunotherapy and vaccination (Lauruschkat et al., 2018)

Cost inefficient, difficult to scale, and labor intensive (Lauruschkat

et al., 2018)

G-CSF Restores neutrophil counts (Wright et al., 2017) Lineage-specific (Costa, 1998), may stimulate leukemia (Rowe, 2000)

GM-CSF Stimulates proliferation and differentiation of hematopoietic

progenitor cells. Enhances antimicrobial function of mature

neutrophils and monocytes against fungal targets (Safdar

et al., 2013). It has wide range of applications (Shiomi and

Usui, 2015)

Faster depletion, less stability and low targeting efficiency (Vanitha

et al., 2017), may stimulate leukemia (Rowe, 2000)

Granulocyte Transfusion Increases neutrophil counts, augments the host’s defenses

and reverses the increased susceptibility to infections (Hickey

and Kubes, 2009)

Limited success due to low granulocyte counts and short lifespan of

granulocytes (Estcourt et al., 2016; West et al., 2017)

IFN-g Enhance Th1 response and augments the antifungal activity

of macrophages and neutrophils (Stevens et al., 2006)

Potential to induce exacerbation of tissue inflammation, ischemia, and

necrosis (Safdar et al., 2005), may worsen GvHD in allogeneic HSCT

recipients (Wang et al., 2009)

Interleukins Enhance Th1-mediated immunity (Winn et al., 2003; Akdis

et al., 2011)

Unintended deleterious effects (Casadevall and Pirofski, 2001)

M-CSF Promotes the growth of macrophages, increases

phagocytosis, chemotaxis, and secondary cytokine

production in monocytes and macrophages (Kandalla et al.,

2016)

In cancer patients, it may worsen disease progression by enhancing

macrophage population (Medina-Echeverz et al., 2014)

NK cell therapy Release soluble factors (such as IFN-γ) which mediate

antifungal activity. It may have activity against a wide

spectrum of fungi (Schneider et al., 2016)

As shown in malignancies, evasion from NK cells control may limit the

success of NK cell therapy (Davies et al., 2014)

Pathogen recognition receptors

(TLR and PTX3)

Recognize motifs on fungal species and induce inflammatory

responses. It is useful for TLR-defective individuals (Netea

et al., 2006)

Difficult for manufacturing on a commercial scale, complex and

unpredictable mode of action (Zeromski et al., 2019)

TNF-α Stimulates PMNs (Lauruschkat et al., 2018) Hepatotoxicity, nephrotoxicity, and neurotoxicity after systemic

administration (Lauruschkat et al., 2018)

remains a logically attractive solution. Granulocytes engulf
fungus, release antimicrobial peptides, and form extracellular
traps (West et al., 2017). Granulocyte transfusion theoretically
increases neutrophil counts, augments the host’s defenses and
reverses the increased susceptibility to infections (Hickey and
Kubes, 2009).

The potential for leucocyte transfusion was established by

early animal studies. In 1953, Brecher et al. showed that

granulocytes transfused to neutropenic dogs migrated to areas
of infection (Brecher et al., 1953). Since then, different studies
supported the efficacy of granulocyte transfusion in invasive
fungal infections. In a retrospective review by Diaz et al. 80%
of children with granulocyte dysfunction or severe neutropenia
who received granulocyte transfusion demonstrated response
to invasive fungal infections (Díaz et al., 2014). Furthermore,
among pediatric HSCT recipients treated with granulocyte

transfusion, seven out of 14 patients with invasive fungal
infections showed radiological improvement, with 79% 100-
day survival (Nikolajeva et al., 2015). As reviewed by West
et al. granulocyte transfusion together with granulocyte colony-
stimulating factors (G-CSFs) yielded an overall response rate of
50–90% in invasive fungal diseases (West et al., 2017). However,
the overall success of granulocyte transfusion is limited due to
low granulocyte counts, low quality and short lifespan of the
granulocytes (Estcourt et al., 2016; West et al., 2017).

Dendritic Cells (DCs) Therapy
Dendritic cells recognize fungus by pattern recognition receptors
and process fungal antigens. Activated dendritic cells secrete
cytokines and chemokines, migrate to the lymph nodes and
present antigens to specific T cells, which in turn are activated
and primed (Bozza et al., 2003). In this approach, DCs can be
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stimulated with fungal antigens ex vivo and transfused to the
patient. These DCs induce protective immune responses to the
fungus due to activation of fungus-specific T cells (Roy and
Klein, 2012). In a mouse model by Shao et al. DCs that had
been transduced with IL-12 and stimulated by A. fumigatus
were administered to neutropenic mice, and the DC therapy
led to decreased mortality and fungal burden due to a strong
Th1 response (Shao et al., 2005). Likewise, in a murine model,
protective Th1 response was found when DCs were stimulated
by A. fumigatus conidia and transfected with IL-12 (Bozza et al.,
2003). However, despite the therapeutic potential of ex vivo DC
stimulation in fungal infection, administration to the human
patient is thought to be cost inefficient, difficult to scale, and labor
intensive (Lauruschkat et al., 2018).

Natural Killer (NK) Cell Therapy
NK cell therapy involves the transfer of NK cells from a donor to
a patient. NK cells are the most significant contributor to IFN-
γ secretion (Wang et al., 2012). Indeed, NK cell therapy is in
its trial stage and data are scarce pertaining to its application
in fungal infections. However, available reports showed that NK
cell therapy has an immunotherapeutic potential against a wide
spectrum of fungi, including Aspergillus fumigatus, Cryptococcus
neoformans, Rhizopus oryzae, Candida albicans, Paracoccidioides
brasiliensis, and Mucorales (Schneider et al., 2016). For instance,
in allo-SCT patients, increased NK cell counts were associated
with better control of invasive aspergillosis (Stuehler et al., 2015).

Cytokine Therapy
Strengthening the immune system through administration of
cytokines is the other approach to fight fungal infections.
Cytokines modulate the immune response of the host by acting
as signaling molecules that specifically induce the proliferation,
differentiation, and activation or suppression of different target
cells (Gulati et al., 2016). For instance, neutropenia predisposes
cancer patients on corticosteroids to invasive fungal infections.
Cytokines will shorten the duration of neutropenia by enhancing
the phagocytic and killing activities of neutrophils, monocytes,
and macrophages (Chiou et al., 2000; Winn et al., 2003).
Cytokines used as immunomodulatory agents in fungal infection
include colony-stimulating factors (CSFs), Interferon-Gamma
(IFN-γ), TNF α and Interleukins.

Interferon-Gamma (IFN-γ)
Interferon-gamma (IFN-γ) skews the immune response toward
a protective Th1 phenotype. IFN-γ has been implicated as a
treatment option in invasive fungal infections (Stevens et al.,
2006). IFN-γ therapy was shown to augment the antifungal
activity by significantly increasing the numbers of macrophages
and neutrophils (Stevens et al., 2006; Lehrnbecher et al., 2011).
In a randomized controlled trial on HIV positive patients with
Cryptococcus meningitis, Jarvis and colleagues compared the
addition of IFN-γ to standard amphotericin B therapy. In this
study, Jarvis et al. showed that short-course IFN-γ therapy
significantly increased the rate of CSF Cryptococcus clearance,
with no significant increase in adverse events (Jarvis et al., 2012).
Delsing et al. also recruited eight patients with invasive Candida

and/or Aspergillus infections and administered IFN-γ together
with standard antifungal therapy. In their finding, five of the eight
patients treated with IFN-γ recovered from the invasive fungal
disease (Delsing et al., 2014). Furthermore, three patients on
renal transplant who were suffering from disseminated invasive
aspergillosis were cured after 6 weeks of combined amphotericin
B and IFN-γ treatment (Armstrong-James et al., 2010). A recent
case report by Tsai and colleagues revealed that a child with
life-threatening disseminated coccidioidomycosis had shown a
reduced production of interferon-γ. The child was treated with
interferon-γ together with antifungal therapy, and the treatment
augmented type 1 immunity and resulted in complete resolution
of the disease (Tsai et al., 2020). However, IFN-γ therapy in
allogeneic hematopoietic stem cell transplant recipients may
potentially worsen GvHD (Wang et al., 2009).

Tumor Necrosis Factor α (TNF-α)
TNF-α stimulates polymorphonuclear neutrophils (PMNs),
which in turn increase oxygen radical release and cause
enhanced hyphal damage against fungal infections (Lauruschkat
et al., 2018). In an earlier study by Nagai et al. administration
of TNF-α to immunosuppressed mice in a model for pulmonary
aspergillosis increased survival (Nagai et al., 1995). Moreover,
in a mice model by Mehrad et al. intra-tracheal challenge
with A. fumigatus conidia in both neutropenic and non-
neutropenic BALB/c mice increased lung TNF-α levels.
This also correlated with infiltration of mononuclear and
polymorphonuclear cells (Mehrad et al., 1999). In the same
study, neutralization of TNF-α caused an increase in lung fungal
burden and mortality in both normal and neutropenic mice
(Mehrad et al., 1999). However, toxicity following systemic
administration, including hepatotoxicity, nephrotoxicity,
and neurotoxicity are major limitations of TNF-α therapy
(Lauruschkat et al., 2018).

Interleukins
Interleukins are known to enhance Th1-mediated immunity
which is essential for the protection against fungal pathogens
(Akdis et al., 2011). For instance, IL-12 production is strongly
correlated with the development of Th1 immunity through
inhibition of Th2 type cellular responses which enhances host
defense. In mice with neutropenia, IL-12 enhanced fluconazole
efficacy against Candida infections. Moreover, IL-12 alone was
shown to have an activity in experimental murine cryptococcosis,
histoplasmosis, aspergillosis, and coccidioidomycosis (Mencacci
et al., 2000; Winn et al., 2003). However, in human patients
with autologous bone marrow transplants, 2 of 12 patients
developed fatal fungal infections after IL-12 therapy. This
event raised the concern that IL-12 administration may
have unintended deleterious effects on immune function
(Casadevall and Pirofski, 2001).

Colony-Stimulating Factors (CSFs)
CSFs are secreted glycoproteins which bind to receptor proteins
on the surfaces of hemopoietic stem cells. Through activation of
intracellular signaling pathways, CSFs promote proliferation and
differentiation of cells into a specific kind of blood cell (Sionov
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and Segal, 2003). CSFs are mostly used to accelerate myelopoiesis
and augment phagocyte function. CSFs, including Macrophage
CSF (M-CSF), G-CSF, and Granulocyte-Macrophage Colony-
Stimulating Factor (GM-CSF) are used as immunomodulating
agents for the treatment of fungal infections (Sionov and Segal,
2003; Sionov et al., 2005).

M-CSF promotes the growth of macrophages, increases
phagocytosis, chemotaxis, and secondary cytokine production in
monocytes and macrophages (Kandalla et al., 2016). M-CSF has
been shown to be used for the treatment of fungal infections
as adjunct therapy with other conventional antifungal agents.
Kandalla et al. treated transplant-mouse models with M-CSF
and found improved survival of the mice when challenged with
A. fumigatus, from 10% in controls to 60% in M-CSF treated
mice (Kandalla et al., 2016). On the other study by Hume and
MacDonald, 46 stem cell transplantation patients with invasive
fungal disease were given recombinant human M-CSF with
conventional antifungal treatment, and patients who receivedM-
CSF showed better survival as compared to historical controls (27
and 5%, respectively) (Hume and MacDonald, 2012). However,
as tumor-associated macrophages represent up to 50% of the
tumor cell mass in cancer patients, administration of M-CSF
may accelerate disease progression by enhancing the macrophage
population (Medina-Echeverz et al., 2014). In this regard, M-CSF
is not usually recommended to be used in cancer patients with
fungal infections.

G-CSF, on the other hand, promotes survival, proliferation,
and differentiation of all cells in the neutrophil lineage. Plus,
G-CSFs increase the function of mature neutrophils (Roberts,
2005). As chemotherapy may be myelo-suppressive causing
neutropenia, G-CSF can be used adjunctly with conventional
antifungal agents to restore neutrophil counts. In the study
by Grigull et al. three children with proven fungal infections
and hematological malignancies were treated with combination
of G-CSF and antifungal therapy. The combination therapy
effectively treated the fungal infection and all children survived
both the underlying malignancy and the fungal infection (Grigull
et al., 2006). Moreover, in HIV-infected patients with Aspergillus
hyphae, G-CSF was shown to reverse neutrophil dysfunction
(Wright et al., 2017).

While G-CSF is relatively lineage-specific, GM-CSF stimulates
a wider range of immune cells (Costa, 1998). GM-CSF stimulates
maturation of dendritic cells from monocyte precursors,
differentiation of macrophages, and proliferation and activation
of macrophages, monocytes, neutrophils, eosinophils, dendritic
cells, and microglia (Shiomi and Usui, 2015). In this regard,
GM-CSF has a theoretical advantage against wide range of
fungal pathogens for which host defense is dependent on both
neutrophil and macrophage function (Shiomi and Usui, 2015;
Scriven et al., 2017). In a study by Giles et al. prophylaxis
with GM-CSF for patients receiving chemotherapy to treat acute
myelogenous leukemia led to a lower frequency of fatal fungal
infections (1.9%) as compared to placebo (19%) (Giles, 1998).
Chen et al. also examined the role of GM-CSF in patients with
Aspergillus ventriculitis which has a high mortality (67%) with
conventional treatment. In this study, GM-CSF was given as
adjunct therapy in conjunction with voriconazole, amphotericin

B, and caspofungin. After 2 years of therapy, patients fully
recovered and remained in remission (Chen et al., 2017).

CSFs can be administered separately or in combinations with
one or more CSFs. However, a better efficacy in reducing fungal
disease incidence was reported when two or more CSFs are
given combined with antifungal agents (Kuhara et al., 2000). For
instance, in a clinical trial, Wan et al. compared the effect of
prophylactic treatment of 206 allogenic HSCT recipients with
G-CSF, GM-CSF, or a combination of both (G-CSF + GM-
CSF). Their findings showed that invasive fungal disease related
mortality after 600 days was lower in the groups who received
G-CSF+GM-CSF (1.45%) or GM-CSF (1.47%) compared with
G-CSF (11.59%) (P = 0.016) (Wan et al., 2015).

MONOCLONAL ANTIBODIES

The efficacy of therapeutic antibodies stems from various natural
functions of antibodies including neutralization, antibody-
dependent cell mediated cytotoxicity (ADCC,) and complement
dependent cytotoxicity (CDC). Moreover, the antibody can
be utilized as a drug delivery carrier (Suzuki et al., 2015).
Humoral response is important for the host defense against
fungal infections. Antibodies activate the classical pathway of
the complement system and complement activation leads to
the killing of fungi by neutrophils. In this regard, monoclonal
antibodies (mAbs) can be used for immunotherapeutic purposes
(Casadevall and Pirofski, 2012). Mycograb, for instance, is a
human recombinant monoclonal antibody that was revealed to
have synergy when combined with fluconazole, caspofungin,
and amphotericin B against a broad spectrum of Candida
species (Bugli et al., 2013). In a murine model, Matthews
et al. tested the therapeutic potential of Mycograb with
a combination of standard antifungal therapy, amphotericin
B. Their findings showed a high overall response rate of
Mycograb (84%) compared to controls (49%). The overall
Candida-related mortality was also reduced from 18 (controls)
to 4% (Mycograb) (Matthews et al., 2003). Rudkin et al.
also generated a human recombinant anti- Candida mAbs
(Rudkin et al., 2018). According to the report, the binding
of mAb to C. albicans cell surface antigens promotes FcγR-
dependent phagocytosis by macrophages, and it resulted in a
reduced fungal burden in a murine model of disseminated
candidiasis (Rudkin et al., 2018). Furthermore, a 4-year-old
child with life-threatening disseminated coccidioidomycosis was
observed to have an exaggerated production of interleukin-4.
The child was treated with dupilumab, a monoclonal antibody
that blocks the alpha chain common to the interleukin-
4 and interleukin-13 receptors, and it resulted in rapid
resolution of the clinical symptoms (Tsai et al., 2020).
Moreover, as reviewed in Boniche et al. using monoclonal
antibody-based immunomodulation therapies was shown to
have a promising therapeutic potential over a wide range of
fungal infections, including, Histoplasma capsulatum, Aspergillus
fumigatus, Pneumocystis jirovecii, Cryptococcus neoformans,
Sporothrix schenckii, and Blastomyces dermatitidis (Boniche
et al., 2020). However, the majority of clinically utilized mAbs
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are chimeric, humanized or, fully human IgG1, produced by
hybridoma technology, and the production of these mABs
demands good manufacturing practice (GMP) conditions
(Strohl, 2014; Rudkin et al., 2018). Moreover, the high production
costs and high specificity restrain the extended use of mAbs
(Chames et al., 2009).

Toll-Like Receptors (TLRs)
Host immunity to recognize and respond to the fungal pathogen
is mediated by a range of pathogen recognition receptors
(PRRs) including TLRs (TLRs 2, 4, 7, 9). TLRs recognize
motifs on fungal species and regulate the induced inflammatory
responses (Plato et al., 2015). In view of this, TLR4 defective
mice were shown to be more susceptible to C. albicans
infection which is attributed to chemokine expression and
neutrophil recruitment (Netea et al., 2006). These conceptions
pave the way for the use of TLR agonists for the treatment of
fungal infections which doesn’t respond well in conventional
antifungal treatments. In the study by Erbagci et al. an
immunocompetent healthy patient who had lesions on her
face for over 20 years caused by Acremonium strictum and
which was unresponsive to topical and systemic antifungals was
successfully treated with a TLR-7 agonist (topical imiquimod)
(Erbagci et al., 2005).

Pentraxin-3 (PTX3)
PTX3 is a pentraxin-related protein which is encoded by
the PTX3 gene in humans. It is produced and released by
different cells, including dendritic cells (DCs), mononuclear
phagocytes, endothelial cells, and fibroblasts in response to
primary inflammatory signals (Kunes et al., 2012). PTX3
enables pathogen recognition by macrophages and DCs through
activation of the classical pathway of the complement system.
PTX3 binds with high affinity to selected microorganisms,
including A. fumigatus. In this regard, increased risk of fungal
infections has been associated with deficiency of PTX3 (Daigo
et al., 2016). In murine model, Pentraxin 3 deficient mice
demonstrated defective recognition of conidia by alveolar
macrophages and dendritic cells and they were highly susceptible
to Aspergillus infection. Then again, administration of pentraxin
3 protected against Aspergillus challenge (Garlanda et al.,
2002). Furthermore, in allogenic stem cell transplantation
patients, the increased risk of invasive aspergillosis was
linked to genetic deficiency of PTX3 (Cunha et al., 2014).
While encouraging, the application of PRRs faces certain
hurdles. On one hand, these natural products are usually
polymeric, and unsuitable for manufacturing on a commercial
scale. On the other hand, the mode of action is often
complex and the effects in living organisms are unpredictable
(Zeromski et al., 2019).

CHALLENGES OF IMMUNOMODULATION
THERAPY

The number of anti-fungal resistant isolates is increasing and
conventional antifungal drugs can have severe side effects to
the host. Conversely, immunomodulating agents, in general,
are reported to be safe with decreased risk of resistance and
broad spectrum of activity (Lauruschkat et al., 2018; Sam
et al., 2018). However, despite all the promising benefits,
immunomodulation therapies used for treating fungal infections
are still exploratory which involves complex as well as time-
intensive genetic and cellular manipulations before use. Much
more work has to be done to prove its efficacy in human trials
(Lauruschkat et al., 2018).

Immunomodulation therapies are also cost-intensive, and
the high costs may prohibit many patients from receiving this
potentially life-saving therapy, especially patients located in
the developing world where the burdens of fungal infections
are expected to be high (Segal et al., 2006). Furthermore,
immunomodulating therapies might sometimes be accompanied
by severe side effects, such as toxicities, and inflammation.
Pro-inflammatory cytokines, for instance, are essential to the
host as mediators of inflammation and host resistance to
infections. However, their overexpression leads to local and
systemic toxicity (Netea et al., 2006). Likewise, administration
of recombinant human G-CSF in A. fumigatus infected outbred
mice antagonized the action of SCH56592 azole derivative, and
resulted in large lung abscesses with increased fungal burden
(Graybill et al., 1998).

CONCLUSION

Immunomodulation approaches hold promise for improving
the efficacy of antifungal therapy, subsequently decreasing the
morbidity and mortality due to fungal infections. However, the
use of immunomodulating agents to combat fungal infections
is at the exploratory stage. To the date this review was done,
most of imunomodulating agentstargeted for the treatment of
fungal infections in humans are under clinical trials. However,
considering the revolution of immunotherapies in treating
cancer, immunomodulation may have the potential to become a
game changer in the treatment of fungal infections, perhaps in
the foreseeable future.
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