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Abstract

Air pollution has been linked to Alzheimer’s disease and related dementias (ADRD), but the 

mechanisms connecting air pollution to ADRD have not been firmly established. Air pollution 

may cause oxidative stress and neuroinflammation and contribute to the deposition of amyloid 

beta (Aβ) in the brain. We examined the association between fine particulate matter<2.5 μm in 

diameter (PM2.5), particulate matter<10 μm in diameter (PM10), nitrogen dioxide (NO2), and 

plasma based measures of Aβ1–40, Aβ1–42 and Aβ1–42/Aβ1–40 using data from 3044 dementia-

free participants of the Ginkgo Evaluation of Memory Study (GEMS). Air pollution exposures 

were estimated at residential addresses that incorporated address histories dating back to 1980, 

resulting in one-, five-, 10- and 20- year exposure averages. Aβ was measured at baseline (2000–
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2002) and then again at the end of the study (2007–2008) allowing for linear regression models 

to assess cross-sectional associations and linear random effects models to evaluate repeated 

measures. After adjustment for socio-demographic and behavioral covariates, we found small 

positive associations between each air pollutant and Aβ1–40 but no association with Aβ1–42 or 

the ratio measures in cross sectional analysis. In repeat measures analysis, we found larger positive 

associations between each air pollutant and all three outcomes. We observed a 4.43% (95% CI 

3.26%, 5.60%) higher Aβ1–40 level, 9.73% (6.20%, 13.38%) higher Aβ1–42 and 1.57% (95% CI: 

0.94%, 2.20%) higher Aβ1–42/Aβ1–40 ratio associated with a 2 μg/m3 higher 20-year average 

PM2.5. Associations with other air pollutants were similar. Our study contributes to the broader 

evidence base on air pollution and ADRD biomarkers by evaluating longer air pollution exposure 

averaging periods to better mimic disease progression and provides a modifiable target for ADRD 

prevention.
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1. Introduction

The global population is rapidly aging. Globally, the percentage of people age 65 and older 

is expected to increase from 8% in 2010 to 16% by 2050 (Nichols et al., 2022). With the 

aging population, cases of dementia are also anticipated to rise, resulting in an estimated 

152.8 million cases, a tripling, by 2050 (Nichols et al., 2022). Treatments for Alzheimer’s 

Disease and related dementias (ADRD) remain elusive, but several modifiable risk factors 

have been identified. In addition to lifestyle factors such as exercise and diet (Bhatti et al., 

2019; Kivimäki and Singh-Manoux, 2018), environmental hazards such as air pollution have 

also been linked to ADRD (Weuve et al., 2021).

The mechanism by which air pollution causes dementia has not yet been firmly established. 

Several animal studies suggest that air pollution through its impacts on the central nervous 

system (CNS) causes neuroinflammation and oxidative stress, which are critical to the 

development of ADRD (Bhatt et al., 2015; Patten et al., 2021; Sahu et al., 2021). In addition, 

by altering the activity of key enzymes, air pollution may increase deposition of amyloid 

beta (Aβ) in the brain, a hallmark of Alzheimer’s disease (AD) (Patten et al., 2021). Animal 

studies have found that long-term exposure to traffic-related air pollution (TRAP) resulted 

in more Aβ plaques in animals exposed to TRAP compared to those exposed to filtered air 

(Patten et al., 2021; Sahu et al., 2021).

Although the utility of treatments that reduce Aβ plaques as a means to improve cognitive 

function have been debated (Ackley et al., 2021), understanding the mechanism by which 

air pollution impacts brain health remains an important endeavor. Aβ1–40, a peptide with a 

chain of 40 amino acids, has proinflammatory and atherosclerotic properties and has been 

associated with cardiovascular disease and diabetes (Peters et al., 2017; Roeben et al., 2016; 

Stamatelopoulos et al., 2018); studying Aβ1–40 and air pollution can also shed light on 
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other disease processes. Aβ1–42, on the other hand, is a key component of Aβ plaques 

found in the brain (Gouras et al., 2015; Wang et al., 2017).

Unlike Aβ plaques in the brain, the presence of Aβ in plasma is expected. Plasma Aβ 
biomarkers are dynamic over time, can be impacted by various factors (Lopez et al., 2020) 

and have different trajectories for cognitively intact individuals compared to those that go on 

to develop dementia. For the cognitively intact, plasma Aβ levels increase with age (Song 

et al., 2011; Wang et al., 2020) while for those who transition from intact to MCI to AD, a 

decline in plasma Aβ biomarkers is seen over time (Bateman et al., 2012; Wang et al., 2020). 

Aβ from the brain can be transported to the blood via the blood brain barrier (and vice versa) 

(Chen et al., 2017; Wang et al., 2020). In disease-free individuals, soluble Aβ found in the 

brain could clear into the blood resulting in higher plasma levels, while in diseased persons, 

the soluble Aβ turns into insoluble Aβ plaques in the brain, which the body is unable to 

clear, resulting in lower plasma levels.

Given that higher air pollution has been shown to result in worse outcomes (greater 

cognitive decline and more dementia) (Semmens et al., 2022; Weuve et al., 2021), we would 

expect that higher air pollution levels would be associated with lower plasma Aβ levels 

among those who go on to develop dementia but higher among those who remain disease 

free. Higher plasma Aβ levels may signify air pollution’s role in accelerating plasma Aβ 
levels that could then result in worse cognitive health.

Only a few studies have explored the association between air pollution and Aβ in humans, 

some using positron emission tomography (PET) scans or magnetic resonance imaging 

(MRI) to identify Aβ (Alemany et al., 2021; Iaccarino et al., 2021; Lee et al., 2020), 

others using cerebrospinal fluid (CSF) (Alemany et al., 2021; Calderón-Garcidueñas et al., 

2018, 2016) or autopsy data (Caldeón-Garcidueñas et al., 2012; Calderón-Garcidueñas et 

al., 2008; Shaffer et al., 2021). Overall the research finds a positive association between 

air pollution and Aβ; studies using imaging data show a more consistent association. These 

approaches, although effective at identifying Aβ, have disadvantages in terms of ease, cost 

and participant burden relative to blood biomarkers of AD. To our knowledge, no study has 

examined the effect of air pollution on plasma-based Aβ biomarkers.

Researchers continue to search for highly sensitive approaches to measuring Aβ in the blood 

(Hansson, 2021) in hopes of developing a diagnostic test to more easily identify ADRD. 

Once identified, these approaches will allow for a better understanding of the mechanisms 

underlying demonstrated associations between air pollution and dementia. In this study we 

examined the associations between air pollution and plasma based biomarkers of Aβ both 

cross-sectionally and in repeated measures in a cohort of dementia-free older adults.

2. Materials and methods

This study consisted of 3,069 adults aged 75 years or older who were free of dementia at 

baseline and enrolled in the Ginkgo Evaluation of Memory Study (GEMS), a randomized 

double-blind controlled trial originally designed to evaluate the efficacy of Ginkgo biloba 
on AD and dementia (DeKosky et al., 2008, 2006). Participants were recruited from 
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four US study sites (Winston-Salem, North Carolina; Hagerstown, Maryland; Sacramento, 

California; and Pittsburgh, Pennsylvania) between 2000 and 2002 (Fitzpatrick et al., 2006) 

and followed through 2008. Participants were censored upon death, the development of 

ADRD or loss to follow-up. This study was approved by the Institutional Review Board at 

the University of Washington and all institutions affiliated with the trial.

2.1. Exposure ascertainment

Primary exposures of interest were long-term residential concentrations of fine particulate 

matter<2.5 μm in diameter (PM2.5), particulate matter<10 μm in diameter (PM10) and 

nitrogen dioxide (NO2) estimated at participant residential addresses. Address histories 

dating back to 1980 (20 years prior to study entry) were reconstructed using data from 

LexisNexis (LN), a data analytics corporation that applies a proprietary algorithm to 

publicly available real estate, driver’s license, voting and court records to identify residential 

history. LN has been used by a few previous epidemiologic studies to create residential 

histories (Hurley et al., 2017; Semmens et al., 2022; Woolpert et al., 2021). For individuals 

missing historical residential address data, we used air pollution estimates from last known 

residential address. More information on the reconstruction of residential histories can be 

found in the supplement of Semmens et al., 2022.

A previously-described spatiotemporal model was then applied to individual addresses to 

predict air pollution concentrations at participant’s address (Kim et al., 2017; Young et al., 

2016). Briefly, the model uses inputs from EPA monitoring data and over 300 geographic 

covariates to predict air pollution. External validation statistics show good performance of 

the air pollution prediction models, with R2 ranging from 0.84 to 0.91 for PM2.5 and 0.78 

to 0.88 for NO2 (Kim et al., 2017; Young et al., 2016). Several exposure metrics reflecting 

different averaging periods were created to better understand when during the life course 

exposure to air pollution was most strongly associated with Aβ and to better reflect the 

development of ADRD. Exposure to PM2.5 was estimated by averaging one, five, ten, and 20 

years of modeled PM2.5 prior to the date of blood draw. Estimates of PM10 and NO2 were 

based only on one-, five- and ten-year exposure metrics because data were not available to 

create a 20-year prediction.

2.2. Outcome ascertainment

Primary outcomes of interest were levels of plasma Aβ1–40, Aβ1–42 and Aβ1–42/Aβ1–40 

ratio. The ratio of Aβ1–42/Aβ1–40, both in plasma and CSF, has been found to improve 

diagnosis of AD relative to Aβ1–42 alone (Dumurgier et al., 2015) and is used frequently 

in research. Aβ levels were measured from stored blood samples collected in 2000–2002 

and 2007–2008 using a sandwich ELISA initially developed by Eli Lilly and implemented 

at the University of Vermont Laboratory for Clinical Biochemistry. Interassay coefficients of 

variation ranged from 3.1% to 7.9% for Aβ1–40 and 12.0% to 20.0% for Aβ1–42 (Shah et 

al., 2012).

2.3. Covariates

Covariates included basic socio-demographic characteristics: continuous age, sex (male or 

female), race (white or person of color), education (high school or less, some college, 
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college graduate or postgraduate), and study site (Winston-Salem, NC; Sacramento, CA; 

Hagerstown, MD; and Pittsburgh, PA). Although the GEMS clinical trial was negative, 

treatment assignment (Ginkgo biloba vs placebo) was included to account for potential 

differences between the two arms of the original study. Cystatin C (from plasma collected at 

the same time as Aβ) was an additional covariate given its role in binding to soluble Aβ and 

inhibiting Aβ deposition in the brain (Levy, 2008).

A neighborhood deprivation index (NDI) was created for all GEMS participants because of 

the lack of data on individual income and to account for its potential role as a confounder 

between air pollution and Aβ. Annual NDI values for each participant were based on the 

census tract of residence and were created from decennial Census data from 1980, 1990, 

2000 and American Community Survey (ACS) 2005–2009. Previous research used over 

30 Census variables to conduct a principal components analysis (PCA) to identify the 

variables that most strongly represented the latent construct of neighborhood disadvantage 

(Christine et al., 2015). Seven variables were identified from the PCA (% of adults age 

25 or older with at least a high school education; % of adults age 25 or older with at 

least a Bachelor’s degree; % of persons age 16 and older with executive, managerial, or 

professional occupation; median value of owner occupied housing units; median household 

income; % of households with income of at least $50,000; and % of households with 

interest, dividend, or net rental income) and weighted according to factor loadings (see 

supplementary material for more information).

Covariates to account for behavioral factors were smoking status (current, former, never), 

pack-years smoking, percentage of life exposed to secondhand smoke (created by dividing 

the number of years exposed to secondhand smoke by age at baseline), alcohol consumption 

(yes/no), and physical activity. We created a physical activity score based on responses 

to questions from the GEMS questionnaires that are adapted from components of the 

validated Physical Activity Scale for the Elderly (PASE) questionnaire (Washburn et al., 

1999) designed to assess physical activity in adults aged 65 years and older. The total 

physical activity score was calculated from answers to questions about the frequency of 

engaging in seven activities: gardening and yard work, walking, volunteering, assisting 

family or friends, hunting, fishing or camping, babysitting and shopping. Response options 

were “never or less than once a month”, “once a month”, “few (2–3) times a month”, “once 

a week”, “few (2–3) times a week” and “every day”. Responses were assigned a score of 0–5 

and then summed to a total score ranging from 0 to 35 (potential maximum total score) with 

higher scores indicating greater physical activity. Missing values were imputed by taking the 

average of the non-missing responses within each participant if at least 3 of the questions 

had complete data. In the present study, we used physical activity data collected one year 

after baseline (nearest the blood sample collection in 2000–2002) and carried forward to 

missing measurements at the 2007–2008 visit in participants with non-missing data.

Apolipoprotein E (APOE ε4) carrier status (yes/no), hypertension (defined as anti-

hypertensive medication use or systolic blood pressure ≥ 140 mmHg or diastolic blood 

pressure ≥ 90 mmHg and recorded one year after baseline) and body mass index (BMI) 

created from measured height and weight were also included as covariates. Mild cognitive 

impairment (MCI) was defined using guidelines from the International Working group on 
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mild cognitive impairment (Snitz et al., 2009) and provided for descriptive purposes as was 

participant’s average score on the Modified Mini-Mental State Examination (3MSE).

2.4. Statistical analyses

Descriptive statistics were calculated for all variables. Due to the skewed nature of Aβ, a one 

percent Winsorization was performed, i.e., values less than or equal to the first percentile 

of the distribution were set to the minimum value. For Aβ1–40 these values corresponded 

to 56.75 and 28.73 pg/mL in 2000–02 or 2007–08 respectively and for Aβ1–42 they were 

0.75 and 0.77 pg/mL respectively. Winsorized values were then log transformed (Fig. 1). 

To create Aβ1–42/Aβ1–40 ratio, we first log-transformed the numerator and denominator 

before dividing the values. Given the continuous nature of the outcomes, cross-sectional 

associations were examined using ordinary least squares regression. Repeated measures 

analyses were evaluated using linear random effects models with a random intercept for 

participant. Results were reported as percent differences with their corresponding 95% 

confidence intervals (CIs).

A staged modeling approach was used to assess the impact of adding increasingly 

more covariates. Model 1 included basic socio-demographic characteristics (continuous 

age, sex, race, education, study site, treatment assignment, Cystatin C and NDI). Model 

2 included Model 1 covariates plus smoking history, alcohol consumption, pack-years 

smoking, percentage of life exposed to secondhand smoke and physical activity. Model 

3 included Model 2 covariates plus APOE ε4, and Model 4 included Model 3 covariates plus 

hypertension and BMI. As these variables are potentially on the causal pathway between air 

pollution and Aβ, they were included at the last stage. We considered model 3 as the primary 

model of interest. Age, Cystatin C, NDI, BMI and hypertension were treated as time-varying 

in the random effects models.

Data in 2000–02 were carried forward for two individuals missing data on non-time-varying 

covariates in 2007–08. Most covariates had ≤ 8% missing data with the exception of APOE 

ε4 which had about 20% missingness. We implemented multiple imputation using chained 

equations (MICE) to handle missing continuous and categorical covariates. Separate MICE 

procedures were implemented for each combination of air pollution metric and Aβ outcome 

at baseline and repeat measures. Logistic or multinomial regression models were specified to 

impute missing categorical variables. Predictive mean matching was used to impute missing 

continuous variables. All covariates were included as predictors in the imputation models, 

but we also included time-varying 3MSE scores as they are potentially informative variables. 

Ten imputed datasets were constructed using 50 iterations per imputation. Final models 

were evaluated on all ten imputed datasets and parameter estimates and standard errors were 

pooled according to Rubin’s rules (Rubin, 2004).

In addition to our main analysis, we conducted a secondary analysis to explore the 

association between air pollution and Aβ outcomes among those with and without MCI. 

This analysis assessed whether or not plasma Aβ biomarkers show different trajectories for 

cognitively intact individuals versus those exhibiting some cognitive impairment irrespective 

of if they go on to develop ADRD. We ran stratified models for both cross-sectional and 
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repeated measures analysis using only Model 3 covariates and the longer-term averaging 

periods for air pollutants.

Two sensitivity analyses are also presented. First, to explore the impact of our approach 

to handling outliers we constructed models using a) the original distribution of values and 

b) excluding those that were less than or equal to the first percentile. Second, to account 

for potential selection bias among participants who remained in the study until the end 

of follow-up (those with repeated Aβ measurements), we ran separate OLS models with 

baseline and follow-up Aβ as the outcome among only those participants with repeated Aβ 
measurements (i.e., we did not include those who only had baseline values of Aβ).

Analyses were performed with SAS version 9.4 (SAS Institute Inc., Cary, NC). MICE was 

performed using PROC MI/PROC MIANALYZE in SAS, and plots were generated using R 

version 4.0.4 (R Foundation for Statistical Computing). All statistical tests were two-sided 

and considered significant at p-value < 0.05.

3. Results

We excluded 25 individuals who did not have data on at least one baseline Aβ measurement; 

23 of these individuals were also missing address data so did not have air pollution exposure 

estimates. Our final analytic cohort consisted of 3,044 participants, among whom 1,669 

participants had Aβ1–40 or Aβ1–42 measurements from blood samples drawn between 

2007 and 2008. Specifically, 1375 censored participants did not have a blood sample 

available for testing at follow-up, of these 379 died, 469 developed ADRD, and 527 were 

lost to follow-up. Exact sample sizes vary depending on the specific outcome (Supplemental 

Fig. 1). Baseline Aβ1–40 ranged from 56.75 pg/mL to 473.95 pg/mL and Aβ1–42 from 

0.75 pg/mL to 140.23 pg/mL (Fig. 1). At baseline, average age was 78.6 years, participants 

were mostly non-Hispanic White (95%), were 46% female, and 64% had at least a college 

degree (Table 1). Seventeen percent were considered to have mild cognitive impairment 

at baseline and the average score on the 3MSE for all participants was 93.4 out of 100. 

Distributions of air pollutants showed higher levels of PM2.5 and NO2 at the Pittsburgh site, 

higher concentrations for longer averaging periods (e.g., 20 year vs one year averages) and 

declines in air pollution between baseline and follow-up (Fig. 2). Model results are reported 

per interquartile range (IQR) increase which corresponded to 2 μg/m3 for PM2.5, 3 μg/ m3 

for PM10 and 6 ppb for NO2. IQR for each air pollutant was obtained by taking the mean 

IQR across all averaging periods at baseline.

Characteristics that are updated at follow-up visit include age, neighborhood deprivation 

index, body mass index, hypertension, Cystatin C, mild cognitive impairment status and 

Mini-Mental State Exam Score.

Number and percent missing are presented for the following characteristics that were 

missing data at baseline and follow-up visits, respectively: alcohol consumption, n = 48 

(2%) and n = 26 (2%); smoking history, n = 58 (2%) and n = 32 (2%); pack-years smoking, 

n = 230 (8%) and n = 132 (8%); percentage of life exposed to SHS, n = 63 (2%) and n = 33 

(2%); neighborhood deprivation index, n = 15 (<1%) and n = 10 (<1%); body mass index, n 
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= 13 (<1%) and n = 4 (<1%); hypertension, n = 2 (<1%) and n = 11 (<1%); physical activity 

score, n = 185 (6%) and n = 21 (1%); Cystatin C, n = 3 (<1%) and n = 2 (<1%); APOE ε4 

carrier status, n = 624 (20%) and n = 305 (18%); and Mini-Mental State Exam score, n = 0 

(0%) and n = 18 (1%).

In cross-sectional analysis using baseline Aβ measurements, we observed small positive 

associations between Aβ1–40 and each air pollutant in Model 3, our primary model. 

A 2 μg/m3 higher one-year PM2.5 level was associated with a 1.69% higher Aβ1–40 

concentration (95% CI: 0.52%,2.87%). The estimates were attenuated and much closer 

to zero for longer PM2.5 averaging periods. All PM10 averaging periods showed a similar 

association with Aβ1–40, where a 3 μg/m3 higher PM10 was associated with 2% (95% CI: 

0.82%, 3.19%), 2.19% (95% CI: 0.92%, 3.48%) and 1.89% (95% CI: 0.74%, 3.05%) higher 

Aβ1–40 for the one-, five- and ten-year averages respectively. Associations between the one, 

five and ten-year NO2 metrics and Aβ1–40 were similar in magnitude but had slightly worse 

precision. For the other two outcomes, Aβ1–42 and the ratio measure, Model 3 showed null 

associations between our three air pollutants at differing averaging periods (Fig. 3a – 3c and 

Supplemental Table 1).

The repeated measures analysis showed stronger magnitudes of effect for all pollutant-

outcome combinations in Model 3 (Fig. 3d – 3f and Supplemental Table 2). We observed a 

4.43% (95% CI 3.26%, 5.60%), 5.01% (95% CI 3.93%, 6.10%) and 7.20% (95% CI 5.45%, 

8.97%) higher Aβ1–40 level associated with an IQR higher 20-year average PM2.5, ten-year 

PM10 and ten-year NO2 respectively. Aβ1–42 had even higher magnitudes of association 

with each of the air pollutants: 20-year PM2.5 was associated with 9.73% (6.20%, 13.38%) 

higher Aβ1–42; ten-year PM10 was associated with 7.34% (95% CI 4.19%, 10.60%) 

higher Aβ1–42; and ten-year NO2 was associated with 13.28% (95% CI: 7.95%, 18.86%) 

higher Aβ1–42. The Aβ1–42/Aβ1–40 ratio showed the smallest associations with all three 

pollutants: 1.57% (95% CI: 0.94%, 2.20%) with 20-year PM2.5, 1.13% (95% CI: 0.56%, 

1.71%) with ten-year PM10 and 2.09% (95% CI: 1.16%, 3.03%) with ten-year NO2.

Our MCI-stratified models showed little difference between those with and without 

MCI both in cross-sectional (Supplemental Table 3) and repeated measures analysis 

(Supplemental Table 4). For example, a 2 μg/m3 higher 20-year average PM2.5 was 

associated with a 3.55% higher Aβ1–40 among those with MCI and 4.37% higher Aβ1–40 

among those without MCI. Slightly larger differences between those with and without MCI 

were seen in the Aβ1–42 results, however, the confidence limits were wide and overlapping.

In sensitivity analyses, we explored alternative methods to ensure normality of the outcome 

residuals, specifically trimming (i.e., excluding) the extreme outliers and making no change 

to the distribution. This did not change the results in any substantive way but did result 

in a slight attenuation of parameter estimates when outliers were excluded specifically 

in the repeat measures analysis (Supplemental Table 5 for cross sectional analysis and 

Supplemental Table 6 for repeat measures analysis).

Furthermore, we investigated the potential impact of selection bias by examining only those 

participants who contributed samples to both baseline and the 2007 – 2008 visit (i.e., those 
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who were not censored or lost to follow-up). We found stronger associations for both PM2.5 

and NO2 with all outcomes measured at follow-up relative to baseline (Supplemental Table 

7). There was little change in PM10 results. This suggests that findings from our repeated 

measures analysis were driven by participants who remained in the study until the end of 

follow-up.

4. Discussion

Our study examined the association between air pollutants and biomarkers of Aβ in 

plasma samples of dementia-free older adults. Findings suggest strong positive associations 

in the repeat measures analysis for all pollutant-outcome combinations, confirming our 

initial hypothesis, but largely null associations (with the exception of Aβ1–40) in the cross-

sectional ones. Our study contributes to the broader evidence base on air pollution and 

ADRD biomarkers by evaluating longer air pollution exposure averaging periods relative 

to many existing studies (Alemany et al., 2021; Calderón-Garcidueñas et al., 2018, 2016; 

Iaccarino et al., 2021; Lee et al., 2020) and improved exposure assessment relative to others 

(Calderón-Garcidueñas et al., 2018; Iaccarino et al., 2021; Lee et al., 2020). Given that 

ADRD develops over the course of many years, evaluating air pollution at longer averaging 

periods more closely mimics disease development (Jack et al., 2013).

There are several potential reasons that our repeated measures analysis produced stronger 

associations compared to the cross-sectional results. First, we have more power to detect 

an effect in the repeated measures analysis given its larger sample size. In addition, those 

in our repeated measures analysis may have less misclassification of exposure because we 

are more certain about residential histories during follow up and the several years prior 

to GEMS enrollment (e.g., approximately 1998–2008 for the 10 year averaging period) 

relative to residential histories prior to GEMS enrollment (approximately 1990–2000 for 

the 10 year averaging period). Furthermore, exposure assessment further back in time relies 

on historical models which are based on less monitoring data and are thus more prone to 

measurement error. Both improved power and less exposure measurement error could be 

producing estimates with larger magnitudes in the repeat measures analysis.

We opted to perform a repeat measures analysis as opposed to one that evaluates change in 

Aβ over time because plasma biomarker data fluctuates significantly, with some disease-free 

participants seeing decreases in Aβ over the period of follow up. Given the dynamic nature 

of plasma Aβ (described above), this is to be expected. Furthermore, given the loss to follow 

up in our sample the repeat measures approach allows us to have a more generalizable 

sample with more power.

In terms of our MCI stratified results, we did not observe lower Aβ levels among those with 

MCI. It has been well documented that some with MCI revert back to normal cognition 

over time (Canevelli et al., 2016); one study estimates an over 50% reversion rate from 

MCI to normal (Overton et al., 2019). Alternatively, those with stable MCI may not be far 

enough along in their disease progression to show declines in Aβ. Furthermore, the number 

of people with MCI in our study was relatively small and our analysis may have been 

underpowered to see an effect.
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Our findings are not directly comparable to existing research as ours was the first to examine 

plasma Aβ; other studies examined Aβ via PET scans, CSF and autopsy data. Studies in 

cognitively normal or mildly impaired populations found five-year average PM10 (Lee et 

al., 2020) and annual average NO2 (Alemany et al., 2021) to be associated with higher 

odds of Aβ positivity measured via PET scan (i.e., those with indication of Aβ deposits in 

their brain). Although these studies were cross-sectional in nature, for these mildly impaired 

groups the association with air pollution was in the expected direction and corroborates our 

findings.

Another study found that biennial PM2.5 concentrations were associated with higher odds 

of Aβ positivity, also measured with PET scans, in a population composed of participants 

with either MCI or dementia (Iaccarino et al., 2021). One might expect to see different 

associations with air pollution between the two groups; air pollution would be associated 

with higher odds of Aβ positivity in the MCI group, but lower Aβ positivity in those with 

dementia (Jansen et al., 2015; Ossenkoppele et al., 2015). To better evaluate the Iaccarino et 

al. findings, stratification by dementia and MCI would be needed.

Limited research has explored the association between air pollution and Aβ measured 

in CSF. One recent study found no association between several air pollutants and Aβ 
ratio (Alemany et al., 2021), but others have seen lower concentrations of Aβ1–42 among 

children living in more polluted areas (Calderón-Garcidueñas et al., 2018, 2016). Substantial 

research finds that those with AD have lower concentrations of Aβ1–42 in CSF compared 

to those with MCI and normal cognition (Ma et al., 2022; Skillbäck et al., 2015; Toledo et 

al., 2015). Thus future air pollution studies should stratify by disease stage in order to better 

evaluate the relation between air pollution and CSF Aβ.

It is difficult to compare our results to autopsy studies (Calderón-Garcidueas et al., 2012; 

Shaffer et al., 2021) because the GEMS population at the end of follow-up is likely a mix of 

those who have ADRD pathology and those who do not and because we do not know who 

went on to develop ADRD after the GEMS study ended.

Many studies of dementia do not find Aβ1–40 to be highly predictive of dementia status 

(Song et al., 2011; Wang et al., 2020). In our study the strong associations with Aβ1–40, 

which as noted above has inflammatory and atherosclerotic properties (Peters et al., 2017; 

Roeben et al., 2016; Stamatelopoulos et al., 2018), could reflect the well-established relation 

between air pollution and cardiovascular disease (Brook et al., 2010; Cosselman et al., 

2015). These results help validate our findings and suggest that future research on air 

pollution and dementia should explore Aβ1–40 as it may be playing an important role in 

vascular dementia.

Our study has several strengths. GEMS provides a large sample size of standardized data, 

thorough adjustment for potential confounders, and state-of-the-art exposure assessment 

approaches at the individual residential address level. In terms of limitations, we recognize 

that our study uses an older biomarker assay. In recent years the scientific community 

has made significant advances in identifying Aβ in plasma (Hansson, 2021; Nakamura et 

al., 2018); we hope to utilize new biomarker technology for future air pollution studies. 
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Furthermore, GEMS is a cohort of primarily White participants who were more educated 

relative to the US population. At the end of GEMS follow up we were left with a healthier 

and more resilient population. These features limit our ability to generalize to the broader 

population. Lastly, we did not adjust for multiple comparisons, which could increase the 

possibility that findings are due to chance alone, because we set out to test a priori 

hypotheses about the importance of evaluating longer air pollution averaging periods and 

because the multiple averaging periods (5-, 10- and 20 year) are nested exposures so may 

not be considered separate exposures.

A better understanding of the relationship between air pollution and plasma biomarkers of 

ADRD will help shed light on the mechanisms by which air pollution may be impacting 

cognitive health. Air pollution is modifiable through policy and regulation thus providing 

another realistic target for ADRD prevention.
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Fig. 1. 
Histograms of log-transformed and winsorized Aβ1–40 (pg/mL), Aβ1–42 (pg/mL) and 

Aβ1–42/Aβ1–40 ratio values at 2000–02 (A, B and C) and 2007–08 (D, E and F). Aβ 
values less than or equal to the first percentile of their distributions at 2000–02 and 2007–08 

were removed and set to the minimum value (winsorized) and then log-transformed. The 

Aβ1–42/Aβ1–40 ratio was created by taking the log-transformation of both the numerator 

and denominator before division.
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Fig. 2. 
Distributions of PM2.5, PM10 and NO2 by study site and different exposure periods (1-, 

5-, 10- and 20-year averages) prior to 2000–02 (A, B and C) and 2007–08 (D, E and 

F). Abbreviations: CA, California; MD, Maryland; NC, North Carolina; PA, Pennsylvania. 

Note: Data were not available for 20-year averages of PM10 and NO2.
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Fig. 3. 
Adjusted percent differences and 95% confidence intervals (CIs) in baseline (A, B and 

C) and repeat (D, E and F) measures of Aβ1–40, Aβ1–42 and Aβ1–42/Aβ1–40 ratio per 

1 interquartile range (IQR) unit higher PM2.5 (IQR = 2 μg/m3), PM10 (IQR = 3 μg/m3) 

and NO2 (IQR = 6 ppb) by different averaging periods for PM2.5 (10 and 20 years) and 

PM10 and NO2 (5 and 10 years for both) in Model 3. Model 3 adjusted for age, sex, race, 

education, study site, treatment assignment, Cystatin C, neighborhood deprivation index, 

smoking history, alcohol consumption, pack-years smoking, percentage of life exposed to 

secondhand smoke, physical activity and APOE ε4.
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Table 1

Characteristics at baseline and follow-up of GEMS participants stratified by groups with Aβ measurements at 

2000–02 (N = 3,044) and 2007–08 (N = 1,669).

Characteristic 2000–02 2007–08

N = 3,044 N = 1,669

Age, years 78.6 (3.3) 84.5 (3.0)

Female sex, n (%) 1408 (46) 727 (44)

People of color, n (%) 139 (5) 68 (4)

Placebo assignment, n (%) 1511 (50) 847 (51)

Education, n (%)

High school or less 335 (11) 168 (10)

Some college 763 (25) 415 (25)

College graduate 767 (25) 400 (24)

Postgraduate 1179 (39) 686 (41)

Study site, n (%)

Winston-Salem, NC 724 (24) 384 (23)

Sacramento, CA 909 (30) 533 (32)

Hagerstown, MD 454 (15) 252 (15)

Pittsburgh, PA 957 (31) 500 (30)

Alcohol consumption, n (%) 1328 (44) 766 (47)

Smoking history, n (%)

Never 1214 (41) 684 (42)

Former 1637 (55) 887 (54)

Current 135 (5) 66 (4)

Pack-years smoking 3.6 (0.0, 27.0) 2.4 (0.0, 24.8)

Percentage of life exposed to SHS 24 (1, 46) 24 (0, 45)

Neighborhood deprivation index

1 year 0.04 (−2.26, 2.22) −0.08 (−2.28, 1.87)

5 year 0.08 (−2.18, 2.18) −0.06 (−2.27, 1.90)

10 year 0.10 (−2.20, 2.22) 0.01 (−2.20, 2.02)

20 year 0.14 (−1.93, 2.25) 0.12 (−2.10, 2.05)

Body mass index, kg/m2 27.1 (4.3) 26.4 (4.1)

Hypertension, n (%) 2114 (69) 1319 (80)

Physical activity score 13.4 (4.8) 14.0 (4.5)

Cystatin C, mg/L 0.83 (0.21) 0.97 (0.32)

APOE ε4 carrier status, n (%) 574 (24) 299 (22)

Mild cognitive impairment status, n (%) 510 (17) 469 (28)

Modified Mini-Mental State Exam score 93.4 (4.7) 94.9 (4.9)

Continuous variables are presented as mean (SD) or median (interquartile range), where appropriate, and categorical variables are presented as n 
(%). Abbreviations: APOE, apolipoprotein E; SHS, secondhand smoke.
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