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Abstract: Increasing the impact resistance properties of any transport vehicle is a real engineering
challenge. This challenge is addressed in this paper by proposing a high-performing structural solu-
tion. Hence, the performance, in terms of improvement of the energy absorbing characteristics and
the reduction of the peak accelerations, of highly efficient shock absorbers integrated in key locations
of a minibus chassis have been assessed by means of numerical crash simulations. The high efficiency
of the proposed damping system has been achieved by improving the current design and manufac-
turing process of the state-of-the-art shock absorbers. Indeed, the proposed passive safety system is
composed of additive manufactured, hybrid polymer/composite (Polypropylene/Composite Fibres
Reinforced Polymers—PP/CFRP) shock absorbers. The resulting hybrid component combines the
high stiffness-to-mass and strength-to-mass ratios characteristic of the composites with the capability
of the PP to dissipate energy by plastic deformation. Moreover, thanks to the Additive Manufacturing
(AM) technique, low-mass and low-volume highly-efficient shock-absorbing sandwich structures can
be designed and manufactured. The use of high-efficiency additively manufactured sandwich shock
absorbers has been demonstrated as an effective way to improve the passive safety of passengers,
achieving a reduction in the peak of the reaction force and energy absorbed in the safety cage of the
chassis’ structure, respectively, up to up to 30 kN and 25%.

Keywords: composite materials; crashworthiness; additive manufacturing; hybrid shock absorber;
finite elements

1. Introduction

Nowadays, crashworthiness properties are a widely explored topic in the design of
safe and effective transportation systems [1-4]. The development of concepts aimed to
improve the passive safety of transport vehicles is one of the most popular challenges in
contemporary engineering. Among the proposed solutions, a significant contribution to
this issue was reached by introducing shock absorbers in strategic structure locations [5-9].
In particular, shock absorbers have been found to be a good alternative to the high-pressure
chamber landing system usually installed on helicopters, showing appreciable energy
absorbing capabilities during crash events [5]. In [6], the effectiveness of hexagonal metal
honeycomb structures has been investigated as crashworthy structures in a lunar lander
system. In [7], crushable hybrid energy absorbers have been incorporated as vertical struts
in a fuselage structure to improve the crashworthiness of aircrafts. In [8], the employment of
energy absorbing devices incorporated in the seats and subfloor section of a helicopter has
been investigated as an effective way to reduce the impact loads transferred to passengers.
Furthermore, the increase in the shock absorber’s energy damping capability, resulting from
the structural combination of ductile and composite materials, is demonstrated in [9], where
a hybrid metal/composite shock absorber system was placed in the bottom of an ejection
seat, absorbing more than 50% of the resulting energy. Sandwich structures represent an
optimum solution among the different available shock absorber structures thanks to their
remarkable energy absorbing capability.
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Sandwich shock absorbers are usually composed of ductile materials, which allow the
dissipation of high energy rates through plasticisation [10-12]. Nevertheless, such solutions
are characterised by a significant footprint in terms of mass and volume [13]. Nowadays,
innovative production processes based on additive manufacturing help to overcome this
limitation [9,11,14], allowing structural lightening by adopting complex shapes (e.g., latex
domains), while preserving energy absorption capabilities [15].

An applicative test case in the automotive field of this new structural shock absorbers
concept is proposed in this work. In particular, this work aims to quantify the benefit of
introducing several shock absorber systems, designed for Additive Manufacturing (DfAM)
in key locations of a minibus chassis.

The dynamic response of the introduced absorber configurations has already been
assessed both numerically and experimentally in [15,16]. Indeed, the absorber geometry
is the same reported in [15]. In particular, it consists of a sandwich configuration with
Polypropylene (PP) core and internal skin and carbon fibre composite (CFRP) external
coating. This allows to combine the flexibility of the polymeric component with the
lightness and strength of the external composite skins. Moreover, the selection of PP was
also made to fulfil the European Commission’s directives in terms of recyclability. Indeed,
as polypropylene is a thermoplastic polymer, it is totally recyclable.

All components in the shock absorber device fulfil a specific role during the impact
phenomena: the polypropylene core can easily dissipate the impact energy through plas-
ticisation mechanisms, and the composite skin reinforces the sandwich structure and
contributes to the energy dissipation through onset and propagation of intralaminar dam-
ages, while the PP skin allows a better adhesion between the PP core and the composite
skin, avoiding delamination. The employment of a thinner and a thicker core allows the
investigation of the influence of the PP core thickness on the energy absorption capabilities
of the device. The mathematical chassis and shock absorber discretization has been per-
formed in the Abaqus environment adopting a detailed approach that adopts 3D elements
formulation (C3D8R and SC8R).

The investigation has been conducted by comparing the results, in terms of stress
field, deformations, and energy recorded in the safety cage of the chassis, resulting from
numerical crash test simulations performed on the steel frame of the standard configuration
and of ones equipped with different hybrid shock absorber systems.

In accordance with the Euro NCAP standard for full frontal crash tests, the impact
speed considered in the explicit simulation is 50 km/h. However, this is the maximum
achievable impact velocity (due to design constraints) for the minibus.

A description of the mathematical assumption and materials adopted to perform the
numerical investigation is introduced in Section 2. The developed FE models are presented
in Section 3, and a comparison and discussion of the obtained numerical results is provided
in Section 4. Finally, a detailed theoretical background has been presented in Appendix A.

7

2. Theoretical Remarks and Materials

The numerical crash test simulations have been performed by means of dynamic
explicit analyses in the Abaqus environment. The failure mechanisms of the considered
materials have been taken into account in the numerical analysis as well. In particular,
the onset and evolution of the intralaminar damage mechanisms of the shock absorber’s
composite skins component has been assessed by using the Hashin’s criteria, based on a
Continuous Damage Mechanics (CDM) formulation; this approach allows one to identify
the breakage of fibres and matrix and investigate the evolution of the damages under
tensile and compressive loading. Moreover, the elasto-plastic behaviour of the polymeric
component has been evaluated by means of its o-¢ curve; finally, the ductile damage
mechanisms of the A-36 steel component, which constitutes the chassis” structure, has been
considered by introducing the Johnson—Cook criteria.
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A detailed theoretical background on the explicit integration scheme for the crash
simulations and on the damage mechanisms for steel, composite and polymeric materials
employed in this work are briefly reported in Appendix A.

The composite material considered in this investigation is IM7/977-2 carbon fibre-
reinforced polymer composite. Its mechanical properties, implemented in the numerical
software, are reported in Table 1. The main mechanical properties of the polymeric PP
material, involved as an internal component of the shock absorbers, are listed in Table 2,
while the mechanical properties of the ASTM A36 steel (both elastic and ductile J]-C damage
properties) considered as material of the chassis structure are given in Table 3.

Table 1. Mechanical properties of IM7/977-2 composite material.

Property Value
Density [kg/ m3] 1580
Eq [MPa] 153,050.00
E, = E3 [MPa] 10,300.00
G12 = G13 [MPa] 6000.00
Gy3 [MPa] 3700.00
V12 = V13 0.30
Vo3 0.40
Longitudinal Tensile Strength [MPa] 1250.00
Longitudinal Compressive Strength [MPa] 850.00
Transverse Tensile Strength [MPa] 65.00
Transverse Compressive Strength [MPa] 200.00
Longitudinal Shear Strength [MPa] 75.00
Transverse Shear Strength [MPa] 35.00
Longitudinal Tensile Fracture Energy [Kk]/ m?] 15.00
Longitudinal Compressive Fracture Energy [k]/ m?] 7.00
Transverse Tensile Fracture Energy [k]/ m?] 0.50
Transverse Compressive Fracture Energy [kJ/m?] 4.00

Table 2. Mechanical properties of polypropylene [17].

Property Value
Young’s modulus [MPa] 1620.00
Density [kg/ m3] 1090
Poisson’s ratio 0.35
Tensile strength (at breakage) [MPa] 20
Elongation at breakage [%] 16

Table 3. Mechanical properties of ASTM A36 steel used for the chassis structure.

Property Value
Density [kg/m?] 7890
Young’s Modulus [MPa] 200,000.00

Poisson’s ratio 0.26
Plastic (Nominal)
A [MPa] 286.10
B [MPa] 500.10
n 0.2282
m 0
Melting Temperature 0

Transition Temperature 0
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Table 3. Cont.

Property Value
Rate dependent (Nominal)
C 0.0171
% 1
Damage evolution

dq 0.403

d; 1.107

ds —1.899

dy 0.00961

ds 0.3
Reference Strain Rate 1

3. FE Model

In this section, information on the geometry of the structures, the discretisation of the
finite element models, and the set-up imposed for the numerical crash test investigation
are provided.

In particular, Section 3.1 introduces the geometrical characteristics of the introduced
configurations, Section 3.2 presents a sensitivity analysis of the computational grid aimed
to select a suitable finite element dimension, and, finally, Section 3.3 describes the BCs used
to simulate the numerical crash tests.

3.1. Structure Geometry

By adding to the basic chassis four different shock-absorbing systems, five different
configurations have been defined. Figure 1 displays the arrangement of the shock absorbers
on the front of the chassis.

In detail:

Chassis 1 identifies the all-steel structure, without shock absorbers (Figure 1A);

In chassis 2, a system composed of two shock absorbers with a total sandwich height
of 15 mm has been introduced. The mass of this damping system is 0.264 kg (Figure 1B);

In chassis 3, the shock absorption system of chassis 2 has been extended, assuming a
total of six devices placed in the corners and in the middle of the structure’s frontal section,
each one with a sandwich height of 15 mm. The total shock absorbing system mass is
0.792 kg (Figure 1C);

Chassis 4 includes a damping system with the same mass as the one introduced in
Chassis 3, but composed of only four absorbers. In this configuration, the shock absorbers
are placed only in the corners of the structure’s frontal section. However, each absorber is
23 mm high. The mass of this damping system is 0.792 kg (Figure 1D).

This type of configuration with four shock absorbers was considered because the com-
posite amount is reduced by approximately 33% compared to the Chassis 3 configuration
(as it has eight rather than twelve composite skins). In addition, since it is non-recyclable
and the most expensive part of the shock absorber, this makes this solution cheaper and
more environmentally friendly than the Chassis 3 one.

Moreover, in order to further reduce the masses (and consequently the costs) of the pro-
posed solutions, the effectiveness of another solution (Chassis 5) with four shock absorbers
with the same thin core structure as Chassis 3, and placed at the same critical points as
Chassis 4, is explored. The total mass of this shock absorption system is 0.528 kg (Figure 1E).



Polymers 2022, 14, 4163 5o0f 23

Chassis 1 Chassis 2

Figure 1. Explored chassis configurations. (A) Configuration not equipped with damping systems
(Chassis 1); (B) Configuration with a damping system composed by two shock absorbers (Chassis 2);
(C) Configuration with a damping system composed by six shock absorbers (Chassis 3); (D) Configu-
ration with a damping system consisting of four shock absorbers with a higher polymer core than the
other ones (Chassis 4); (E) Configuration with a damping system consisting of four shock absorbers
with a thin polymer core (as the one in Chassis 3).

Figure 2 shows the geometrical dimensions of the chassis, which is the part shared
by each configuration, in different views. According to Figure 2, the longitudinal chas-
sis dimension (in the X direction) is 5375 mm. This length classifies this structure as
representative of a minibus chassis.
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2585,9 mm

5375 mm
A) B)
1920 mm 40 mm
C) D)

Figure 2. Geometrical dimensions of the chassis. (A) lateral view, (B) frontal view, (C) top view, and
(D) detail of the frame component.

Figure 3 introduces the geometry of the shock absorbers. It should be noted that the
height of the core is indicated by a parameter labelled T, which assumes two different
values according to the different configuration: 7 mm for the system in Chassis 2, Chassis 3,
and Chassis 5, and 15 mm for the system in Chassis 4. The thickness of each PP and CFRP
skin is 2 mm.

As expressed in Figure 3, the shock-absorbing device has been obtained by combining
two materials: polypropylene (PP Roboze—red region) and 16 CFRP Composite layers
(IM7/977-2—ivory region), each with a thickness of 0.125 mm and stacked according the
sequence [0; 45; —45; 90]s2, have been employed as external skins.

As demonstrated in the literature [15], this approach is particularly advantageous for
structures relegated to the dissipation of impact energy as it allows for the combination of
the ability to absorb energy in plastic form by the polymeric core with the high stiffness-to-
weight and strength-to-weight ratios of composite external skins.

Moreover, the extremely thin wall of the honeycomb should also be noted. Indeed, in
the frame of additive manufacturing, it has been set to 1 mm. This confers a high flexibility
to the structure, maximising its energy absorption capability.

Finally, in order to display the interaction between the chassis and the damping
systems, an enlargement of the section of the chassis where the latter are placed is pro-
vided in Figure 4.
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143.31 mm

:
-
I o002 2e%e%

I PP ROBOZE

[ ] m7i977-2

C)

Figure 3. Geometrical details of the shock absorber. (A) lateral view, (B) top view, and (C) isometric view.

Chassis 2 Chassis 3 Chassis 4 Chassis 5

A) B) C) D)

Figure 4. Chassis-damping systems interaction zone. (A) Chassis 2, (B) Chassis 3, (C) Chassis 4, and
(D) Chassis 5.

3.2. Sensitivity Analysis

The mathematical approach employed for the development of FE models is based on
a detailed formulation with three-dimensional finite elements. In particular, as indicated
in Figure 5, the chassis structure was discretised using SC8R elements (coloured in green),
while, for the shock absorbers, C3D8R (coloured in grey) elements were selected for the
polymer component and SC8R elements for the external composite skins.
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A,

B)

Figure 5. Finite element discretization. (A) Computational grid of the chassis with SC8R elements, (B)
Computational grid of the shock absorber with SC8R elements (in green) and C3D8R elements (in grey).

The size of the FE was defined assessing the solution accuracy related to the computa-
tional cost by performing linear static simulations, imposing a 5 mm traction displacement
to the front wheel axle and locking the rear wheel axle.

Figure 6 displays the applied load conditions, while Figure 7 compares the different
configurations resulting from the variation of the FE size, in terms of von Mises Sigma
(Figure 7A) and computational time (Figure 7B), normalized with respect to the configura-
tion with maximum computational time.

REAR WHEEL AXLE FRONT WHEEL AXLE
I I

nii!!ﬂ!ii

il [
e

RBEIN jrawmwaNi 5IEE

ENCASTRE 5 mm

Figure 6. Finite Element discretization.
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Figure 7. Finite element discretization. (A) Histogram graph of stresses as a function of element size;
(B) Histogram graph of calculation time as a function of element size.

The mesh sensitivity analysis proves that a discretization of the chassis with elements
smaller than 10 mm does not provide an improvement in the solution, since from this
element size the stress stabilises at 127 MPa. However, as shown in Figure 7B, there is a
significant increase in computational time when the chassis is discretized with elements
smaller than 10 mm. Therefore, 10 mm element size dimension has been selected to
discretize the chassis. This finite element dimension overcomes the hourglass problems to
which these reduced-integration elements are subject.

Following this preliminary numerical investigation, the definitive FE model of the
chassis was composed of 4901200 SC8R elements, while 1039040 C3D8R elements and
480000 SC8R elements formed each shock absorber.

3.3. Crash Test Set-Up

Numerically modelled road and rigid wall have been added to perform the full-frontal
crash test analyses. The road has been modelled as a 7000 x 3000 mm? rectangular planar
shell, discretised by using S4R elements. The rigid wall has been modelled as a 3000 x
2500 x 100 mm? solid part, discretised by using C3D8R elements. Both the road and the
rigid wall have been considered as rigid bodies by creating two reference points, where the
boundary conditions for each region have been assigned. Figure 8 shows the assembly of
the crash test set-up.
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Clamped

Rigid body

Figure 8. Crash test set-up. (A) lateral view, (B) isometric view.

To perform the crash test analyses, the reference points of both the road and the rigid
wall have been clamped, while a 50 km/h initial velocity has been assigned to the chassis
in the x-positive direction, according to the full-frontal crash test standard of Euro NCAP
and to the maximum speed achievable by the minibus due to design constraints. Moreover,
a gravity load is also defined by assigning the gravitational acceleration in the vertical
direction to the whole model and considering the density associated with the materials, in
order to take into account the gravitational effect as well.

4. Numerical Results

The benefit of introducing composite shock-absorption systems at the front rear of
the chassis is discussed in this section. In particular, this has been assessed by means of
cross-comparison between the data resulting from all the configurations, in terms of von
Mises stresses (Figures 9 and 10) and energy recorded in the chassis’ safety cage. Therefore,
the comparison in terms of von Mises Sigma highlights that the maximum value of the
stress field is reached in the configuration without composites shock absorbers system.
Indeed, as detailed in Figure 9, in the Chassis 1 configuration the maximum predicted
stress is 794.6 MPa.
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Figure 9. Comparison in terms of Von Mises’s stress. (A) Chassis 1, (B) Chassis 2, (C) Chassis 3,
(D) Chassis 4, and (E) Chassis 5.

A contribution in terms of load dissipation can be found by adding the damping
system consisting of just two shock absorbers of the Chassis 2 configuration. Indeed, this
configuration is characterized by the maximum stress of 720.0 MPa.

A significant effect was recorded in Chassis 3, Chassis 4, and Chassis 5 configurations.
Indeed, by introducing six shock absorbers (Chassis 3), the maximum stress reached is
652.9 MPa, whereas by introducing damping systems with four shock absorbers, the stress
field reaches 670.6 MPa in Chassis 5 and the minimum value of 604.1 MPa in Chassis 4.
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Figure 10. Comparison with stress exceeding 400 MPa. (A) Chassis 1, (B) Chassis 2, (C) Chassis 3,
(D) Chassis 4, and (E) Chassis 5.

In all structural responses, the stress field exceeds the allowable stress limit value for
this test category, which is equal to 400 MPa. However, as shown in Figure 10, it can be
seen that integrating in the chassis’ structure the damping systems, the area characterized
by values exceeding the maximum limit of 400 MPa significantly reduces.

It should be noted that in Chassis 3, Chassis 4, and Chassis 5 configurations, these
particularly critical areas are limited to a few points where there are multiple frame inter-
sections. Hence, in these cases, this effect could be easily solved by installing joints which,
compared to welding, provide a less rigid connection.
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Chassis 2

An enlargement on the chassis-shock absorbing systems interaction region, after the
crash simulations, is reported in Figure 11.

Chassis 3 Chassis 4 Chassis 5

Figure 11. Chassis-damping systems interaction zone after crash tests. (A) Chassis 2; (B) Chassis 3;
(C) Chassis 4; (D) Chassis 5.

Figure 12 compares the percentage of total energy transferred in the safety cage (which
is the most critical area of the frame) between the explored configurations. This graph
shows that by integrating shock-absorbing systems at specific points in the chassis, it is
possible to reduce the percentage of impact energy transferred to the safety cage up to 25%.
Specifically, for the Chassis 1 configuration, the total energy transferred in the safety cage
is 90%, for Chassis 2 it is 81%, for Chassis 3 it is 78%, while in Chassis 4 and Chassis 5
configurations it is 75% and 80%, respectively.

Energy [kJ]

B Total Energy EChassis1 EChassis 2 OChassis3 O Chassis4 EChassis 5

Figure 12. Comparison of energy detected in the safety cage.

It should be noted that the largest energy gap is observed when comparing the re-
sponses of the undamped configuration (Chassis 1) with that of Chassis 2, which is the
configuration with the minimum number of absorbers. This means that shock absorbers
help to dissipate impact energy immediately. This means that the shock absorbers con-
tribute effectively to dissipating the impact energy.

From an energy point of view, the shock-absorbing systems also introduce another impor-
tant effect, which can be deduced from the force-time charts comparison shown in Figure 13.
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Figure 13. Force-time graph.

Indeed, by comparing the curves on the force-time graph, it can be seen that by
introducing the shock-absorbing systems, the peak force decreases. This is most evident
when comparing the undamped Chassis 1 configuration with the Chassis 3 and Chassis
4 configurations, where the peak force is reduced by approximately 30 kN. Moreover, it
should be also noted that in the first interval time, the blue curve of the Chassis 1 configura-
tion exhibits a sudden collapse. This is because there is no damping and the phenomenon
immediately triggers the catastrophic failure of the structure. This is prevented equip-
ping the damping systems. Indeed, all shock absorber reinforced arrangements assume
a horizontal trend, since the damping systems confers to the assembly the capability to
dissipate impact energy by means of plastic deformation of the shock absorbers’ core and
intralaminar cracking of the composite skins. These effects (maximum peak force reduction
and peaks damping in horizontal trend) significantly improve the crashworthiness of the
structure, resulting, in practical terms, in a reduced perception of impact acceleration by
the passengers and therefore an increase in their safety and comfort.

The energy absorbing contributions of shock absorbers through core plasticisation and
composite intralaminar damage assessed according to Hashin’s failure indices are depicted
in Figures 14 and 15, respectively.

By comparing the data shown in Figure 14, it is evident that the crash test has a
greater effect on plastic deformations in the Chassis 4 and Chassis 5 configurations. The
lowest values are recorded in the Chassis 3 configuration. This could induce one to think
erroneously that the Chassis 2 shock absorber system is more efficient in terms of absorption
and dissipation of impact energy than the Chassis 3 one. However, this is not true since
the plastic contribution provided by the shock absorber system is also a function of the
number of absorbers of which it is composed. Indeed, the Chassis 2 shock absorber system
dissipates more energy through plastic deformation than that of Chassis 3 only from a local
point of view.

Among all configurations, the one that dissipates the maximum amount of energy
in plastic form in the single absorber is Chassis 4. This is due to the fact that in this
configuration, each absorber has a higher proportion of thermoplastic polymer in its core
than in the one of the others arrangements.
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Figure 14. Equivalent Plastic Strain of the shock absorbers’ core.
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COMPRESSIVE MATRIX
FAILURE
TENSILE MATRIX
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Figure 15. Comparison of intralaminar damages in the upper absorbers skin.

Finally, as deducible from Figures 12 and 13, due to the greater number of shock
absorbers, the total amount of energy dissipated by the Chassis 3 system is higher respect
to the Chassis 2 system.

In Figure 15, a comparison of the intralaminar damages in the upper skin of a repre-
sentative absorber of each shock-absorbing system is presented.

The adopted failure criteria allowed for the investigation of the specific intralaminar
failure modes of the composite components.

The greatest amount of intralaminar damages occurs in Chassis 2 and Chassis 5 config-
urations. Indeed, by comparing the shock-absorbing systems of these two configurations
with the one present in Chassis 3, it is evident that in these two cases the impact loads
are distributed over a smaller surface area before being propagated over the chassis. This
is because Chassis 3’s shock-absorbing system is composed of the maximum number of
six shock absorbers, while in these two cases the absorbers are two and four, respectively.
On the other hand, conducting the same comparison with Chassis 4, it appears that the
intralaminar damages of Chassis 2 and Chassis 5 (but also Chassis 3) are greater. This can
be explained because in Chassis 4’s set-up, there is a greater thickness of the plastic core
that induces the dissipation of the impact energy mainly through plastic deformations.
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Chassis 2

Ax=4.65mm Ax=3.89 mm i D
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In Figure 16, the behaviour of a representative absorber of each shock-absorbing
system is compared in terms of deformed shape. The comparison allowed the investigation
of the deformation values in the X direction, which is the direction of the crash test, in order
to better understand the influence and the contribution of the plastic core in the energy
absorption capability of the different shock absorber configurations.

Chassis 3 Chassis 4 Chassis 5

x=

—_—— - PN g

Figure 16. Shock absorbers” deformed shape.

It should be noted that in the configuration with the largest amount of plastic material,
i.e., Chassis 4, the structure assumes the maximum deformation values in the X direction
(the direction of the crash test), which is equal to 9.60 mm. Meanwhile, in Chassis 2, Chassis
3, and Chassis 5, the maximum deformation is 4.65 mm, 3.89 mm, and 6.02 mm, respectively.
However, in terms of intralaminar damage mechanisms, the Chassis 4 configuration shows
smaller extensions in terms of both fibre and matrix breakages. This suggests that this type
of damping configuration has a lower stiffness than the other ones, but, at the same time,
it is the most efficient in terms of energy absorption. On the other hand, if we measure
the ratio between the total absorbed energy of the shock-absorbing system and its mass
(SEA index, Specific Energy Absorption [15]), it can be seen that the most efficient setups
are the ones of Chassis 2 and Chassis 5. Therefore, it can be affirmed that it is not easy
to identify a solution that is the most efficient one, because each of them exhibits specific
advantages, and the choice of the configuration should be based on the specific design
requirements. Finally, a summary table (Table 4) of the characteristics that emerged from
each configuration is provided in order to allow an easy trade-off between the results of
this analysis.

Table 4. Results summary.

i My ek
. . Mass Absorbed SEA Force
Configuration . Plane on the
[kgl Energy [J/kgl Reduction . .
[kJ] [kN] Displacement Chassis
[mm] [MPa]
Chassis 2 0.264 12.26 46.4 -7 4.65 720.0
Chassis 3 0.792 14.38 18.1 -30 3.89 652.9
Chassis 4 0.792 16.24 20.5 —29 9.60 604.1
Chassis 5 0.528 13.09 24.8 —18 6.02 670.6

5. Conclusions

This paper assesses the effectiveness, in terms of energy dissipation, of PP/CFRP compos-
ite shock absorbers designed for Additive Manufacturing, under realistic operating conditions.
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In particular, the effects on the maximum von Mises stress reached on the chassis of
minibuses subjected to a 50 km/h crash test, with and without the integration of different
damping systems, are compared. The work shows that the introduction of dampers can
reduce the maximum stress on the chassis by up to 24%. Despite in all damping system
configurations the stress fields exceed the allowable stress limit value, the employment of
the shock absorber devices is able to significantly reduce the area characterized by values
exceeding the maximum limit. Furthermore, the effectiveness of the energy dissipation
systems has been assessed by comparing the energy recorded in the safety cage, the force—
time graphs, and the damage mechanisms of the composite shock absorbers.

The comparison of the energy recorded in the safety cage demonstrated that the intro-
duction of the shock absorber devices can reduce the energy transferred in the safety cage
up to 25%. The performed analyses showed that the 90% of the total energy was transferred
to the safety cage in the case without shock absorber devices, while the employment of
only two shock absorbers in Chassis 2 configuration demonstrated the ability to reduce the
total transferred energy to 81%. A maximum reduction in the total energy transferred to
the safety cage to 75% has been achieved in the Chassis 4 configuration by means of four
thicker devices.

Moreover, the comparison of the curves on the force-time graph showed that the
introduction of the shock absorber devices allowed a reduction in the maximum peak of the
reaction force up to 30 kN. The ability of the damping systems to dissipate impact energy
by means of plastic deformation of the shock absorbers’ core and intralaminar cracking
of the composite skins significantly improves the crashworthiness of the structure and
passive safety of passengers, resulting in a reduced perception of impact acceleration by
the occupants. The comparisons of the equivalent plastic strains for the shock absorbers’
cores and of the intralaminar damages for the composite skins demonstrated that both
components effectively contribute to the dissipation of the impact energy.
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Appendix A

The theoretical background on the integration scheme and on the damage mechanisms
employed in this work are briefly introduced. In particular, the explicit finite element
formulation, needed to simulate the crash events, is introduced in Appendix A.1. The
Hashin’s damage criteria, used to investigate the initiation and evolution phase of the
intralaminar damage of the composite laminate, are described in Appendix A.2, the elasto-
plastic behaviour of the shock absorbers” polymeric region is reported in Appendix A.3,
and, finally, the numerical approach used to evaluate the ductile damage of the steel chassis
is introduced in Appendix A 4.

Appendix A.1. Explicit Integration Scheme Adopted for the Crash Simulations

The Finite Element method applied to dynamic structures is governed by non-linear
equations at partial differences in the time-domain. Hence, the problem is first discretization
in the space domain, exploiting a variational formulation in weak form; then, the second-
order differential problem in the time-domain is solved. Implicit numerical integration
techniques require an iterative process, where the residuals at each iteration step are
evaluated and minimized below a predefined threshold; on the other hand, in explicit
techniques, the solution at the current time is calculated as a function of information on the
previous times; thus, no iterative process is employed.
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Abaqus/Standard solver uses an implicit method based on the Hilbert-Hughes-Taylor
operator. This results that the corresponding stiffness matrix must be inverted for each
iteration step. Moreover, implicit methods, such as the one just mentioned, are uncondi-
tionally stable. On the other hand, for dynamic problems, the limited transients’ times,
the use of contact algorithms, the presence of materials with non-linear behaviour, and
the implementation of non-traditional elements make explicit methods considerably more
suitable. Indeed, despite the conditional stability, they are more robust and computationally
efficient than the implicit ones.

The conditional stability implies that the integration step is less than (or at least equal
to) the critical value defined by the Courant’s Criterion. This value is related to the mini-
mum time taken by a pressure wave to propagate inside an element. In Abaqus/Explicit,
the method is based on centred finite differences and allows to solve efficiently very general
and large three-dimensional problems.

The explicit operator solves the equilibrium equations at time ¢ by using the ac-
celeration u calculated at that instant to derive the velocity u at time f 4+ Af/2 and the
displacement at time ¢ 4+ At. Thus, the mathematical approach is as follows [18,19]:

. . Ab(iq) + Aty .
iy ) = g + %“% (A1)
. N
”?i’ﬂ) = ”?i]) + A1) (A2)

where u" is the considered degree of freedom, i is the time instant, and At is the integration
time step. This approach is particularly efficient if diagonal mass matrices are used. This
because the inversion of such matrices is computationally simple and requires only n
operations, where 7 is the problem dimension.

With this assumption, the equilibrium Equation (A3) completes the iterative scheme:

it = () (01, 11) o

In Equation (A3), MN/ is the mass matrix, P/ and I/ represents the external and
internal loads, respectively.

The timestep duration is a fundamental characteristic of this approach, and it is auto-
matically defined by the solver. However, in order to improve the detail of the numerical
investigation while avoiding instability problems, the numerical software allows the user
to reduce the timestep, according to the central difference scheme, by setting timestep At
lower than the characteristic limit value At,,.

The mathematical expression of At,,, is reported in Equation (A4). From this equa-
tion, the dependence of the timestep from the mass and stiffness of the finite element
is introduced by means of T;;, representative of the smallest vibration period of the n-

degree od freedom.

At < Aty = % (A4)

where T}, is determined according to Equation (A5).

27T

Wmax

Ty = (A5 )

In Equation (A5), wmax corresponds to the natural frequency of the element. Its
expression is introduced in Equation (A6)

c
Wnax = 27 (A6)
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In (A6), [ is le length of the element and c is the wave propagation in the material.
According to the Equation (A7), c depends from the Young’s modulus E and the mate-
rial density p.

c=]= (A7)

Appendix A.2. Intralaminar Damage Mechanisms

The onset and evolution of intralaminar damage of the composite components was
evaluated, adopting a formulation based on Continuous Damage Mechanics (CDM). This
damage mechanism identifies the breakage of fibres and matrix under tensile and compres-
sive loading.

According to the CDM, it is possible to separate the mechanical behaviour for each
failure mode. This can be displayed on the equivalent stress vs equivalent displacement
diagram in Figure A1 [20,21].

o s
o N
o) A ——INITIATION PHASE
0
fos ——DEGRADATION PHASE
. B
WS-~
W K= - apK
e & G
ol < >
— T T T e >
6rq 6“1 6
eq

Figure A1. Damage constitutive relation.

Segment OA of Figure 1, represents the linear mechanical behaviour up to the damage
onset threshold (point A) while the damage evolution up to the complete failure (point C)
is expressed by the AC segment.

The onset loading value for the different composites’ failure modes can be calculated,
by means of the Hashin failure indices [20-24]. Their mathematical expression is given in
the Equations (A8)—(A11)

Fibre tension (¢ 17 > 0) Fp= ‘f—lTl)Z—l—oc(%)z =1 (A8)
Fibre compression (¢ 11 <0) Fpe= ( ;(13 )2 =1 (A9)
Matrix Tension (¢ 2 > 0) Epi= ( ;ZTZ)Z + (@2)2 =1 (A10)
Matrix Compression (¢ 2, < 0) Fne= (fszsz)Z + [(ﬁ)z - 1} ‘Q%z + (‘fsiz)z =1 (A11)

where:

Fﬁ, FfC, Fyut, and Fyy¢ , called “Hashin's critical values”, are, respectively, the values of the crite-
rion associated to the fibre tensile, fibre compressive, matrix tensile, and matrix compressive
failure mode.

X1, Xc, Y1, Yc, S1, and St are, respectively, the fibre tensile, fibre compressive, matrix
tensile, matrix compressive, longitudinal, and transversal shear strengths;
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« is a coefficient (which has been set equal to 1 in this work) representative of the contribu-
tion of the shear stress to the fibre tensile initiation criterion;
011, O, and 073 are the components of the actual stress tensor ¢

To simulate the degradation in the finite element, a gradually reduction of the material
stiffness in the evolution phase is introduced. It can be calculated using Equation (A12):

Ky = (1—d;)K (A12)

In this equation, K represent the material stiffness in the undamaged condition while
d; is a damage coefficient [23], which can be expressed, for each failure mode, according to
Equation (A13).

8t (6; o0 — 00 )
1, el 1, eq 1, e .

= q . . =, o) eq < 0ieq < Of o 1€ (fe, ft, mc;my) (A13)
i eq( ieq Vi, eq)

where §; ¢, is the equivalent displacement for an applied strain referred to a characteristic

finite element length L¢, 67, g 18 the initial equivalent displacement at which the considered
failure criteria is met, and ¢! oq is the displacement at which the material is completely

damaged. The equivalent displacements can be evaluated with the following relation:

‘51’, eq = Lcsi, eq i€ (fc/ ft/ Me; mt) (A14)
Jf, eq 1 evaluated as a multiple of the equivalent displacement at failure initiation 53 e’
which can be evaluated with the following relation:

8 g = Let) oy 1 € (for fr, me;my) (A15)

where &) | g 1 the equivalent strain at failure initiation for the failure mode i.

When the completely damaged material condition is fulfilled for the i-th mode
(point C), then d; = 1.

Appendix A.3. Elasto-Plastic Constitutive Law for the Simulation of Polymers Damage Onset and
Evolution

Based on the material properties, Figure A2 introduces the stress-strain law, represen-
tative of the elasto-plastic behaviour of the shock absorber’s polymeric part. Exploring this
graph, it is possible to identify a linear region, highlighted with a green background, and a
plastic region, with a red background.

The Young’s Modulus E and the yield stress 0y, define the linear-elastic region. The
yield point A separates the elastic and the plastic regions.

The plastic phase has been defined by setting yield stress values in equally spaced
intervals of plastic strain. In particular, the first data set provided defines the initial yield
stress of the material and, therefore, the value of the plastic deformation is zero.

Then, for each value of ¢, it is possible to calculate eipl as [25,26]:

i

spl

= ¢l — gy (A16)
where ei is the tabulated deformation value at 0; and ¢,; is the deformation value in the
linear-elastic phase and can be calculated as:

Ty
€l = T (A17)
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Figure A2. PP stress-strain relationship.

Appendix A.4. Damage Assessment Criteria for the Steel Chassis

During impact (or general dynamic) events with ductile material structures, it is nec-
essary to take into account the effects of deformation, strain rate, and temperature in the
numerical evaluation of the material response. In this work, Johnson—-Cook (J-C) failure
model (which take these effects into account) has been used. It consists in a mathematical
implementation of the von Mises flow stress 0 as a function of the temperature T, equiv-

-pl
alent plastic strain &', and equivalent plastic strain rate e Equation (A18) express this
relation [27-29]:

-pl

7= (A+B(§Pl)") 14Cln (1— T (A18)

-l

€
In Equation (A18), the coefficients A, B, C and m identify the yield stress of the material,

the strain hardening constant, the strengthemng coefficient of strain rate, and the thermal

softening coefficient, respectively. The ratio &; o1 represents the normalized equivalent plastic
50

strain rate (set equal to 1.0 s 1), n identifies the strain hardening exponent, and T* is the

homologous temperature. The ratio in Equation (A19) defines it as:

T - Troom

TH = room
Tmelt — Troom

(A19)
where T corresponds to the material temperature, T,.j; to the melting temperature, and
Troom to the room temperature.

For high-velocity deformation events, adiabatic conditions are generally assumed
in which 90-100% of the plastic work is dissipated as heat. This is not the case in the
present work. Indeed, since the influence on the results of the effect of adiabatic heat (e.g.,
deformation and plastic deformation) is less than 1%, it may not be evaluated.

In this work the initiation and the evolution of the dynamic progressive damage
was evaluated by means of two separate Johnson Cook criteria. Thus, according to J-C
mathematical model, Equation (A20) expresses the equivalent plastic strain at the onset of
damage as:

-pl
& = [dy +dyexp(—ds )] [1+dgIn| = || (1+dsT") (A20)

€0
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where terms dy, dy, d3, d4 and, ds are the damage model constants, while 7 is the stress
triaxiality and, as indicated in Equation (A21), corresponds to the ratio between the pressure
to the von Mises stress o

_r
n=-= (A21)

The J-C criterion that assesses the initiation of the damage mechanism states that
failure starts when the D parameter, expressed as in Equation (A22), is equal to 1.

D=Y = (A22)

Once the damage has been triggered, the material stiffness is progressively degraded,
following the specified damage evolution relationship. The progressive damage evolution
is based on fracture energy approach provided by Abaqus/Explicit. It was employed to
describe the evolution of damage with a progressive degradation of material stiffness that
leads to material failure when the global damage variable D, expressed in (A23), is 1.

=pl — ;Pl
€ U'y &

D=1—exp| - / Lt (A23)
0 c

This method guarantees that the energy dissipated during the damage evolution is
equal to the critical strain energy release rate, G.. When the maximum degradation of the
element stiffness was achieved, the element was eliminated and removed from the model.

References

1. Lulu, L;; Zhenhua, Z.; Wei, C.; Gang, L. Ballistic impact behaviour of stiffened aluminium plates for gas turbine engine
containment system. Int. J. Crashworth. 2017, 22, 467-478.

2. Guntur, H.-L.; Hendrowati, W.; Budiarto, T. Modeling and Analysis of Hybrid Shock Absorber for Military Vehicle Suspension.
Appl. Mech. Mater. 2014, 493, 315-320. [CrossRef]

3. Tao, X,; Xiaoming, S.; Tianyi, Z.; Huan, L.; Xiao, L.; Ao, D. Development and Validation of Dummies and Human Models Used in
Crash Test. Appl. Bionics Biomech. 2018, 2018, 3832850.

4. Daehn, G.S. Sustainable Design and Manufacture of Lightweight Vehicle Structures. Richard, F.,, Ed.; Woodhead Publishing;
Sawston, UK, 2014.

5. Guida, M.; Marulo, E; Montesarchio, B.; Bruno, M. Innovative Anti Crash Absorber for a Crashworthy Landing Gear. Appl.
Compos. Mater. 2013, 21, 483-494. [CrossRef]

6. Li, M, Deng, Z; Liu, R.; Guo, H. Crashworthiness design optimisation of metal honeycomb energy absorber used in lunar lander.
Int. J. Crashworth. 2011, 16, 411-419. [CrossRef]

7. Paz Mendez, ].; Diaz Garcia, J.; Romera Rodriguez, L.E.; Teixeira-Dias, F. Crashworthiness study on hybrid energy absorbers as
vertical struts in civil aircraft fuselage designs. Int. J. Crashworth. 2020, 25, 430-446. [CrossRef]

8.  Astori, P; Zanella, M.; Bernardini, M. Validation of numerical models of a rotorcraft crashworthy seat and subfloor. Aerospace
2020, 7, 174. [CrossRef]

9. Acanfora, V.; Corvino, C.; Saputo, S.; Sellitto, A.; Riccio, A. Application of an Additive Manufactured Hybrid Metal/Composite
Shock Absorber Panel to a Military Seat Ejection System. Appl. Sci. 2021, 11, 6473. [CrossRef]

10. Li, M,; Deng, Z.-Q.; Guo, H.-W,; Liu, R.-Q.; Ding, B.-C.; Li, M.; Deng, Z.-Q.; Guo, H.-W.; Liu, R.-Q.; Ding, B.-C. Optimizing
crashworthiness design of square honeycomb structure. J. Cent. South Univ. 2014, 21, 912-919. [CrossRef]

11. Kladovasilakis, N.; Charalampous, P.; Tsongas, K.; Kostavelis, I.; Tzetzis, D.; Tzovaras, D. Experimental and Computational
Investigation of Lattice Sandwich Structures Constructed by Additive Manufacturing Technologies. ]. Manuf. Mater. Process. 2021,
5,95. [CrossRef]

12.  Boonkong, T.; Shen, Y.; Guan, Z.; Cantwell, W.; Boonkong, T.; Shen, Y.; Guan, Z.; Cantwell, W. The low velocity impact response
of curvilinear-core sandwich structures. Int. ]. Impact Eng. 2016, 93, 28-38. [CrossRef]

13. Acanfora, V.; Saputo, S.; Russo, A.; Riccio, A. A feasibility study on additive manufactured hybrid metal/composite shock
absorbers. Compos. Struct. 2021, 268, 113958. [CrossRef]

14. Ozen, I; Cava, K.; Gedikli, H.; Alver, U.; Aslan, M. Low-energy impact response of composite sandwich panels with thermoplastic
honeycomb and reentrant cores. Thin-Walled Struct. 2020, 156, 106989. [CrossRef]

15. Acanfora, V.; Zarrelli, M.; Riccio, A. Experimental and numerical assessment of the impact behaviour of a composite sandwich

panel with a polymeric honeycomb core. Int. |. Impact Eng. 2022, 171, 104392. [CrossRef]


http://doi.org/10.4028/www.scientific.net/AMM.493.315
http://doi.org/10.1007/s10443-013-9351-6
http://doi.org/10.1080/13588265.2011.596677
http://doi.org/10.1080/13588265.2019.1605723
http://doi.org/10.3390/aerospace7120174
http://doi.org/10.3390/app11146473
http://doi.org/10.1007/s11771-014-2018-0
http://doi.org/10.3390/jmmp5030095
http://doi.org/10.1016/j.ijimpeng.2016.01.012
http://doi.org/10.1016/j.compstruct.2021.113958
http://doi.org/10.1016/j.tws.2020.106989
http://doi.org/10.1016/j.ijimpeng.2022.104392

Polymers 2022, 14, 4163 23 of 23

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.
27.

28.
29.

Acanfora, V;; Rossana, C.; Aniello, R. On the effects of core microstructure on energy absorbing capabilities of sandwich panels
intended for additive manufacturing. Materials 2022, 15, 1291. [CrossRef]

Roboze, P.P. Technical Datasheet. Available online: https://rimas3d.com/wp-content/uploads/2021/07/TDS-PP.pdf (accessed
on 20 September 2022).

Sun, J.S.; Lee, K.H.; Lee, H.P. Comparison of implicit and explicit finite element methods for dynamic problems. J. Mater. Process.
Technol. 2000, 105, 110-118. [CrossRef]

Zhang, B.; Yang, Z.; Sun, X.; Tang, Z. A virtual experimental approach to estimate composite mechanical properties: Modeling
with an explicit finite element method. Comput. Mater. Sci. 2010, 49, 645-651. [CrossRef]

Sellitto, A.; Saputo, S.; Di Caprio, F; Riccio, A.; Russo, A.; Acanfora, V. Numerical-experimental correlation of impact-induced
damages in cfrp laminates. Appl. Sci. 2019, 9, 2372. [CrossRef]

Riccio, A.; De Luca, A.; Di Felice, G.; Caputo, F. Modelling the simulation of impact induced damage onset and evolution in
composites. Compos. Part B Eng. 2014, 66, 340-347. [CrossRef]

Di Caprio, E; Sellitto, A.; Riccio, A.; Acanfora, V. Experimental and numerical study of composite omega stringer-skin debonding
under flexural loading conditions. Multiscale Multidiscip. Model. Exp. Des. 2019, 2, 105-118. [CrossRef]

Riccio, A.; Palumbo, C.; Acanfora, V.; Sellitto, A.; Russo, A. Influence of Failure Criteria and Intralaminar Damage Progression
Numerical Models on the Prediction of the Mechanical Behavior of Composite Laminates. J. Compos. Sci. 2021, 5, 310. [CrossRef]
Dassault System Abaqus 2016 User’s Manual; Dassault Systemes Simulia Corp.: Providence, RI, USA, 2016.

Genikomsou, A.S.; Polak, M.A. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in
ABAQUS. Eng. Struct. 2015, 98, 38—48. [CrossRef]

Stimer, Y.; Aktas, M. Defining parameters for concrete damage plasticity model. Chall. J. Struct. Mech. 2015, 1, 149-155.
Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and
pressures. Eng. Fract. Mech. 1985, 21, 31-48. [CrossRef]

Abaqus Analysis User’s Manual, version 6.10. 2010.

Wang, X.; Shi, J. Validation of Johnson-Cook plasticity and damage model using impact experiment. Int. J. Impact Eng. 2013,
60, 67-75. [CrossRef]


http://doi.org/10.3390/ma15041291
https://rimas3d.com/wp-content/uploads/2021/07/TDS-PP.pdf
http://doi.org/10.1016/S0924-0136(00)00580-X
http://doi.org/10.1016/j.commatsci.2010.06.007
http://doi.org/10.3390/app9112372
http://doi.org/10.1016/j.compositesb.2014.05.024
http://doi.org/10.1007/s41939-018-0039-3
http://doi.org/10.3390/jcs5120310
http://doi.org/10.1016/j.engstruct.2015.04.016
http://doi.org/10.1016/0013-7944(85)90052-9
http://doi.org/10.1016/j.ijimpeng.2013.04.010

	Introduction 
	Theoretical Remarks and Materials 
	FE Model 
	Structure Geometry 
	Sensitivity Analysis 
	Crash Test Set-Up 

	Numerical Results 
	Conclusions 
	Appendix A
	Explicit Integration Scheme Adopted for the Crash Simulations 
	Intralaminar Damage Mechanisms 
	Elasto-Plastic Constitutive Law for the Simulation of Polymers Damage Onset and Evolution 
	Damage Assessment Criteria for the Steel Chassis 

	References

