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Potential molecular targets for Ewing’s sarcoma 
therapy

R E V I E W  A R T I C L E

A B S T R A C T

Ewing’s sarcoma (ES) is a highly malignant tumor of children and young adults. Modern 
therapy for Ewing’s sarcoma combines high-dose chemotherapy for systemic control of 
disease, with advanced surgical and/or radiation therapeutic approaches for local control. 
Despite optimal management, the cure rate for localized disease is only approximately 
70%, whereas the cure rate for metastatic disease at presentation is less than 30%. 
Patients who experience long-term disease-free survival are at risk for significant side-
effects of therapy, including infertility, limb dysfunction and an increased risk for second 
malignancies. The identification of new targets for innovative therapeutic approaches 
is, therefore, strongly needed for its treatment. Many new pharmaceutical agents have 
been tested in early phases of clinical trials in ES patients who have recurrent disease. 
While some agents led to partial response or stable disease, the percentages of drugs 
eliciting responses or causing an overall effect have been minimal. Furthermore, of the 
new pharmaceuticals being introduced to clinical practice, the most effective agents 
also have dose-limiting toxicities. Novel approaches are needed to minimize non-specific 
toxicity, both for patients with recurrence and at diagnosis. This report presents an 
overview of the potential molecular targets in ES and highlights the possibility that they 
may serve as therapeutic targets for the disease. Although additional investigations are 
required before most of these approaches can be assessed in the clinic, they provide 
a great deal of hope for patients with Ewing’s sarcoma.
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INTRODUCTION

Ewing’s sarcoma (ES) is a highly malignant bone and 
soft tissue tumor occurring in children and young adults. 
Because of  its aggressive nature and early systematic spread, 
its treatment is highly challenging.[1-5] On introduction of  
VACD-IE (vincristine, actinomycin D, cyclophosphamide, 
doxorubicin, etoposide and ifosfamide) chemotherapy 
regimens, the current 5-year survival rates for patients with 
localized disease are about 70%.[6-8] Nevertheless, ES still 
has the lowest survival rates of  any of  the musculoskeletal 
tumors, with minimal improvements to patient outcomes 
observed over the last decade.[9] Hence, there is an urgent 
need to develop targeted therapeutic approaches to 
improve the treatment.

EWS-FLI1 AS A POTENTIAL TARGET

More than 85% of  the ES patients present with a balanced 
t (11:22) (q24;q12) chromosomal translocation.[10,11] This 
reciprocal translocation generates a novel in-frame fusion 
gene between sequences that encode the N-terminus of  the 
RNA binding protein EWS from chromosome 22 and the 
C-terminus of  FLI1 transcription factor on chromosome 
11.[12,13] Several evidences have shown EWS-FLI1 as a 
well-described oncogene and with depletion of  this gene 
product resulting in inhibition of  Ewing’s sarcoma family 
of  tumor (ESFT) growth. EWS-FLI1 fusion protein 
therefore is a validated tumor target functioning as an 
aberrant transcription factor.[14-17] EWS-FLI1 is indisputably 
the central player in the pathogenesis of  ES.[18] EWS-FLI1 
has	only	been	 identified	 in	 tumor	cells	 thus	providing	a	
unique therapeutic target.

Strategies to target EWS-FLI1
EWS-FLI1 is not expressed in any cells except those 
of  ESFT. Therefore, EWS-FLI1 targeting would, in 
theory,	only	affect	ESFT	cells.	Despite	this	specific	tumor	
target, there is no treatment available that directly targets  
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EWS-FLI1 (EF).[17] However, ESFT research in recent 
years has been characterized by the development of  some 
encouraging new strategies that reduce the expression or 
function of  EF and are discussed below [Figure 1].

Using antisense/small interfering RNA (siRNA) 
technology
The main promise of  antisense technology is its potential 
for	 highly	 specific	 and	 safe	 targeting	 of 	 aberrant	 gene	
expression. It offers the possibilities to bypass resistance 
toward traditional chemotherapeutic drugs. Reduction of  
EWS-FLI1 by antisense oligodeoxynucleotides[19-21] antisense 
RNA expressed from a vector[21-23] and small interfering RNA 
(siRNA)delivered via nanoparticles[24] inhibit the proliferation 
of  ESFT cell lines and xenografted tumors. The lack of  
clinical translation of  these macromolecule-based strategies 
lies in the challenge of  pharmacologic delivery.[25] The 
problem in delivery includes both route of  administration 
and formulation of  the drug. Successful systemic delivery 
needs to achieve prolonged plasma circulation, appropriate 
biodistribution, cellular uptake and cytoplasmic release of  
the therapeutic agent in an active form.

In laboratory cell line models, antisense oligonucleotides 
are easy to administer. In general, they need to be 
chemically	modified	 to	 block	 their	 degradation.	 This	
is possible through encapsulation or conjugation to a 
suitable carrier. Nanotechnology offers some suitable 
encapsulation strategies like encapsulation of  siRNA 
into lipid bilayer stable-nucleic-acid-lipid particle.[26] 
The cyclodextrin-based delivery system consists of  
cyclodextrin-based polycation that self-assemble with 
siRNA to form particles that are stabilized by surface 
coating with poly ethylene glycol (PEG).[27] To achieve 
targeted delivery, some of  the PEGs on the surface are 
conjugated to a modular targeting ligand like transferrin 
in order to have a preferential binding to cancer cells 
that overexpress the transferrin receptor. Earlier in vivo 
studies on ES have shown marked inhibition in tumor 
growth and metastasis by intravenous administration 
of  transferring-linked EWS-FLI1-targeted siRNA 
nanoparticles.[28] Another study has shown the same effect 
by using a Type 1 junction-targeted siRNA, encapsulated 
in polyalkylcyanoacrylate nanocapsules and injected 
intratumourally.[29]

In conclusion, oligonucleotides targeting EWS-FLI1 RNA 
have shown interesting effects in cell culture and in animal 
preclinical models, and have the potential to be assayed 
as therapeutic agents either to keep residual disease at a 
low level or for enhancing the activity of  conventional 
anticancer agents. Therefore, antisense/siRNA strategies 
may	not	 provide	 an	 additional	 benefit	 at	 this	 time,	 but	
suggest promise in the future [Table 1].

Disrupting protein interactions
EWS-FLI1 interacts with other protein partners in various 
steps. These may include: (a) interaction with kinases and 
phosphatases	during	post-translational	modification	and	
(b) interaction with TATA box-binding protein, other 
cooperating proteins, RNA polymerase,[30] co activators like 
p300 protein[31] and other general transcription machinery 
factors. Therapeutic agents may be directed against any of  
these interactions.

EWS-FLI1 functions in a large multiprotein transcriptional 
complex and, like other transcription factors, it relies on 
direct protein–protein interaction as well. RNA helicase 
A	 (RHA)	was	 identified	 as	 a	 protein	 partner	 of 	EWS-
FLI1 using phage display.[32] Interaction of  RHA with 
EWS-FLI1 suggests that RHA is necessary for EWS-FLI1 
tumorigenic function. RHA was found to be present at 
promoters occupied by EWS-FLI1 and was required for 
optimal	transformation	of 	murine	fibroblasts.[32] Reduced 
EWS-FLI1 activity and tumorigenesis was observed after 
using mutation, peptide and small molecule approaches to 
disrupt RHA from binding to EWS-FLI1.[33] One possible 
way to disrupt this binding is to use small molecules 
specifically	designed	to	mimic	certain	functionally	active	
protein domains that can keep EWS-FLI1 apart from its 
interacting proteins. Recently, surface plasmon resonance 
screening revealed that YK-4-279, a lead compound with 
potent anti-ES activity, blocked RHA binding to EWS-
FLI1, induced apoptosis in ES cell lines and reduced 
growth in ES xenografts.[33] The small molecule, YK-4-279, 
which blocks RHA binding to EWS-FLI1 demonstrated 

Figure 1: Some of the potential molecular targets of Ewing’s sarcoma 
described in this review include: (a) EWS-FLI1 fusion protein, (b) its 
target genes, (c) growth factor receptor, cell-surface receptors and 
(d) molecules involved in cell survival, proliferation and anti-apoptotic 
pathways
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Table 1: Strategies to target EWS-FLI1 gene/
protein and their current status
Strategies/agents Current status

Antisense/si-RNA technology In vitro and in vivo study[26,27,29]

YK-4-279 Currently in preclinical study, expected 
to move quickly into clinical trials[33]

Peptide-pulsed vaccination Failed to reach clinical applicability[35]
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decreased cyclin D levels in ES cells.[33] Because this small 
molecule is hydrophobic, it should be orally bioavailable 
and may be suitable for continuous dosing, an important 
schedule for molecularly targeted agents [Table 1].

Other strategies for targeting EWS-FLI1
It was recently reported that recombinant antibody 
technology was used to successfully interfere with wild 
type EWS protein.[34] But, the described antibody does 
not have any impact on the EF chimeric protein. This may 
be a result of  the originally performed screening strategy 
and	the	difficulty	in	obtaining	structurally	unaltered	and	
functionally active native EF. However, single-chain 
antibodies are a theoretically promising strategy, worthy 
of  further investigation. In an attempt to immunologically 
target	 the	 breakpoint	 region	 of 	 tumor-specific	EWS-
FLI1 fusion proteins, a peptide-pulsed vaccination has 
been investigated. However, it failed to reach clinical 
applicability[35] [Table 1].

TARGETING INSULIN-LIKE GROWTH FACTOR 1 RECEPTOR

Although the insulin-like growth factor (IGF) system plays 
a key role in processes like embryogenesis and development, 
consistent evidence also indicates the involvement of  IGF 
signaling in tumorigenesis. Overexpression of  insulin-like 
growth factor-I receptor (IGF-IR) has been implicated 
in many tumor models as playing a role in cell growth 
and tumorigenesis.[36] The interaction of  IGF with 
IGF-IR initiates a cascade of  events that starts with the 
activation of  tyrosine kinase and results in divergent effects 
depending	on	specific	cell	types.[36] The IGF-IR-mediated 
loop is constantly present in cell lines and tissue samples 
of  ES, which suggests a role for this autocrine circuit in 
the pathogenesis of  ES.[37-39] Although the IGF pathway 
is often considered a “parallel” pathway to EWS-FLI1, 
recent work suggests that EWS-FLI1 may regulate IGF1 
itself.[40,41] Earlier researches (both in vitro and in vivo) have 
shown that antibodies targeting the receptor could slow 
cell growth and inhibit the migratory ability of  ES cells.[42,43] 
Both small molecule and antibody-mediated approaches 
to	IGF	pathway	blockade	have	shown	efficacy	in	patients	
in early phase clinical trials.[44-46]

Antibody-mediated approaches
Currently, more than 25 agents acting via IGF1R inhibition 
are in preclinical and clinical development. IGF1R-targeted 
monoclonal	 antibodies	 have	 a	 less-toxic	 safety	 profile	
and a higher patient acceptance than currently available 
cytotoxic chemotherapy regimens for ES.[46,47] IMC-A12 
(Cixutumumab) developed by imclone, is a fully human 
IgG1	monoclonal	antibody,	specifically	targeting	IGF-IR	
with	 high	 affinity	 and	 antagonizing	 IGF-I	 and	 IGF-II	
ligand binding and signaling. It inhibits the IGF-IR pathway 

by effecting internalization and degradation of  IGF-IR, 
leading to a reduction in surface receptors. In vitro and 
in vivo, Cixutumumab inhibits proliferation of  a variety 
of  human tumor cell lines.[48] Dalotuzumab (MK-0646), 
being developed by Merck and Co. Inc., is a recombinant 
humanized IgG1 mAb against the IGFR1 for the potential 
intravenous treatment of  cancer. Preclinical studies have 
demonstrated that dalotuzumab acts by inhibiting IGF-
1- and IGF-2-mediated tumor cell proliferation, IGFR1 
autophosphorylation and Akt phosphorylation. In 
multiple cancer cell lines and in mouse xenograft models, 
dalotuzumab displayed significant antitumor activity. 
Preliminary data from Phase I clinical trials suggest that 
dalotuzumab	 is	 safe	 and	well	 tolerated	 and	 significantly	
inhibits tumor proliferation. Although preliminary results 
appear promising, only future clinical and translational 
data will clarify the best clinical setting and treatment 
combinations for the optimal use of  dalotuzumab in 
clinical practice.[49] Monoclonal antibodies like BIIB022[50] 
and AVE-1642[51] have undergone Phase I clinical trials, 
showing promising results [Table 2].

Small-molecule inhibitors
Small-molecule inhibitors of  IGF1R are also in preclinical 
or clinical development. In addition to blocking IGF1R, 
some of  these IGF1R inhibitors may also inhibit insulin 
receptor A, and several have been shown to have promising 
preclinical ES activity. These molecules may act more 
proximal with regard to IGF1R signaling and thus enable 
oral dosing. On the downside, such agents may have more 
toxicity than IGF1R monoclonal antibodies.

OSI-906 showed in vivo and in vitro activity in ES and some 
activity in chondrosarcoma.[50,52] XL-228 is a multitargeted 
protein kinase inhibitor targeting IGF1R and few other 
kinases.[50,53] INSM-18 is an orally bioavailable small 
molecule tyrosine kinase inhibitor that has demonstrated 
selective inhibition of  IGF1R and human epidermal growth 
factor receptor (Her2/Neu).[54] Small-molecule inhibitors 
like BMS-554417, GSK1904529A and GSK1838705A have 
shown in vitro activity against ES.[55-57]

One potential concern is the effect of  IGFR inhibition on 
growth in children and adolescents. IGF-I levels increase 
during puberty and are a critical growth mediator during 

Table 2: Antibody-mediated approaches to 
target IGF1R and their current status
Antibody Current status Toxicity
IMC-A12[48] Phase I clinical trial Grade 1 or 2 toxicities 

such as lymphopenia and 
thrombocytopenia are commonly 
observed. Grade 3 (severe) and 
Grade 4 (life-threatening) toxicity 
have been seen in <10% patients

MK0646[49] Phase I clinical trial

BIIB022[50] Phase I clinical trial

AVE1642[51] Phase I clinical trial
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this time period. Thus, careful consideration will need 
to be given to this approach before it is brought into 
clinical trials involving children. The effects of  targeted 
therapies against IGF-IR were evaluated in combination 
with conventional chemotherapeutic agents to assess the 
best drug–drug interactions and treatment schedule. Toxic 
effects of  these tailored therapies were also considered to 
offer the necessary rationale for the application of  possible 
forthcoming clinical trials [Table 3].

TARGETING CD99

CD99 (also called MIC2) is an integral transmembrane 
glycoprotein that is highly expressed in ESs, and used as 
diagnostic marker.[58-60] ESFT express the CD99 antigen on 
their external cell membrane, but the function of  CD99 is 
cryptic. Recent data suggest that CD99 is not only a marker 
and therapeutic target for ES but may also contribute 
to the disease phenotype. Knockdown of  CD99 in ES 
cell lines resulted in decreased growth in tissue culture, 
diminished colony formation in soft agar assays, reduced 
cell motility and smaller tumors with less metastasis in 
xenograft models.[61] This study also suggested that CD99 
inhibits full neuronal differentiation by decreasing the 
activity of  the MAP kinase pathway. Engagement of  CD99 
with monoclonal antibodies can induce apoptosis through 
caspase-independent mechanisms in ES cell lines.[62] This 
finding	was	 extended	 to	 show	 that	CD99	 engagement	
slowed tumor formation in athymic mice and enhanced the 
growth inhibitory effects of  doxorubicin and vincristine 
in cell culture experiments.[63]

However, as the expression of  CD99 has been reported 
in a variety of  other human tissues, such as testis, prostate 
and gastric mucosa, we cannot completely exclude the 
hypothetical toxicity of  anti-CD99 MAb in human ES 
patients. In addition, in the clinical scenario, anti-CD99 
MAb will be used in combination with chemotherapeutic 
agents that have deleterious effects on the hematogenic 

progenitors. Therefore, this treatment modality needs 
further in vivo evaluation to assess its toxicity in an 
appropriate model, prior to human studies.

P53 PATHWAY AS A POTENTIAL TARGET

Earlier studies have shown that silencing of  the EWS-
FLI1 expression in ES cell lines increases p53 activity,[64,65] 
suggesting that the EWS-FLI1 fusion protein plays a role in 
the constitutive silencing of  p53 tumor suppressor activity. 
It appears that EWS-FLI1 can achieve this through either an 
indirect mechanism, involving the Notch signaling pathway,[64] 
or through the formation of  a protein complex involving 
EWS-FLI1and p53.[65] EWS-FLI1 attenuates p53 activity 
through physical sequestration facilitated by the EWS region 
of  the fusion protein.[65] However, it is unclear whether 
interaction between p53 and EWS-FLI1 occurs directly or is 
mediated through other oncogenic binding partners.

ESs provide a unique tumor type in which the majority of  
cases retain the functionally intact p53 pathways. At present, 
there is no evidence of  permanent suppression of  the 
p53	pathway	by	specific	mutation	of 	critical	components.	
Therefore, the most likely scenario involves abrogation of  
p53 function via a reversible, post-translational mechanism. 
This provides unique therapeutic opportunities through 
intervention with small molecules that directly stabilize 
and activate endogenous intracellular p53. Small molecules 
like Nutlin-3a and MI-219 antagonize the p53-MDM2 
interaction by blocking the p53-binding pocket of  MDM2 
and, as a consequence, there is a rapid stabilization 
and accumulation of  p53 protein levels.[66] MI-219 
showed high selectivity, less toxicity and highly desirable 
pharmacokinetic properties, and is currently in early-phase 
clinical trials. Another small molecule, Tenovins, a class of  
p53 activators that enhance the acetylation of  p53,[67] is 
under early-phase clinical trials. Actinomycin D, an FDA-
approved drug, mimics the action of  Nutlin-3a when 
administered	at	specific	dosages.[68]	Recent	 identification	
of  actinomycin D as a p53 activator has facilitated the 
translation of  these targeted therapies into current ESFT 
treatment regimens. Low-dose actinomycin D hold an 
exciting potential as a directed molecular-based approach 
to	 specifically	 activate	wild-type	 p53	 in	ESFTs	 and	 the	
organization of  clinical trials currently in progress to 
attest the potential of  this approach. Interestingly, ES cells 
are highly sensitive to actinomycin D in vitro, with potent 
antitumor activity observed within the ranges described 
as	“low	dose,”	specifically	in	ES	cell	lines	that	retain	wild	
type p53.[69] Further studies are warranted to evaluate the 
potential of  incorporation of  low-dose actinomycin D with 
the current standard of  care for the treatment of  patients 
with wild type p53 ESFTs [Table 4].

Table 3: Small-molecule inhibitors of IGF1R 
and their current status
Small molecule Current status Toxicity
OSI-906[50,52] In vivo and in vitro activity 

in Ewing’s sarcoma, some 
activity in chondrosarcoma

Grade 1 or 2 
toxicities such as 
lymphopenia and 
thrombocytopenia 
were observed. 
Grade 3 (severe) 
and Grade 4 
(life-threatening) 
toxicity were 
observed in very 
rare cases

XL-228[50,53] Phase I clinical trial

INSM-18[54] Phase I clinical trial

GSK1904529A[56] In vitro activity in Ewing’s 
sarcoma cell lines

GSK1838705A[57] In vitro activity in Ewing’s 
sarcoma cell lines

BMS-554417[55] In vitro activity against 
Ewing’s sarcoma
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MAMMALIAN TARGET OF RAPAMYCIN (M-TOR)

Rapamycin, which has been used for several years as an 
immune suppressor in organ transplantation patients, has 
been shown to inhibit tumor growth and is currently in 
Phase I–III clinical trials. Rapamycin is an inhibitor of  
the mammalian target of  rapamycin (mTOR). mTOR is a 
downstream effector of  the phosphatidylinositol 3-kinase 
(PI3K)-AKT signaling pathway, which mediates cell survival 
and proliferation.[70] The PI3K/AKT pathway is thought 
to be overactivated in many cancers, and may account for 
the response of  various cancers to mTOR inhibitors.[71] 
mTOR inhibitors block signaling to downstream pathways 
that control cell growth. ESFT cell lines carrying EWS-
FLI1 alleles of  different types expressed different levels 
of  total and phosphorylated mTOR protein.[72] Rapamycin, 
an	mTOR	inhibitor,	efficiently	blocks	the	proliferation	of 	
cell lines by promoting cell cycle arrest at the G1 phase. 
This is paralleled by the downregulation of  the levels 
of  the EWS-FLI1 proteins, regardless of  their fusion 
type, and the concomitant restoration of  the expression 
of 	the	transforming	growth	factor	beta	(TGF	β)	type	2	
receptor	 (TGF-βRII),	which	 is	 known	 to	 be	 repressed	
by several EWS-ETS fusion proteins.[72] mTOR signaling 
plays a central role in ES cell pathobiology and strongly 
suggests that the use of  rapamycin as a cytostatic agent 
may	be	an	efficient	tool	for	the	treatment	of 	patients	with	
ESFT tumors.[71,72] Concurrent administration of  EWS-
FLI1	antisense	oligonucleotides	and	rapamycin	efficiently	
induced the apoptotic death of  ES cells in culture through 
a	 process	 involving	 TGF-β.	 Preclinical	 experiments	
conclusively showed that the combined treatment with 
antisense oligonucleotides and rapamycin caused a 
significant	 inhibition	of 	tumor	growth	in	mice.	[73] These 
results encourage further exploration of  the potential of  
this combined therapeutic modality as a novel strategy for 
the treatment of  tumors of  the ESFT.

TARGETING BCL2 APOPTOTIC PATHWAY

Bcl-2, an antiapoptotic family member, contributes to 
neoplastic progression by enhancing cell survival through 
repression of  mitochondrial death signaling.[74-76] A 
spectrum of  pediatric solid tumor cell lines, including 

neuroblastoma,[77,78] ES,[79,80] Wilm’s tumor[81,82] and synovial 
sarcoma,[83] overexpress Bcl-2. Overexpression of  Bcl-2 
results in a resistance to apoptosis-inducing agents, including 
radiation and chemotherapy, and has been associated with 
poor clinical response and shorter survival.[76,84,85]

Targeted downregulation of  Bcl-2 expression by antisense 
oligodeoxynucleotide G3139 may result in apoptosis of  tumor 
cells, especially when coadministered with cytotoxic drugs. [86] 
Clinical trials using G3139 (genasense) in combination 
with doxorubicin and cyclophosphamide are ongoing in 
patients with ES. Thus, pharmacologic downregulation of  
Bcl-2 by G3139 may potentially enhance the chemotherapy 
responsiveness of  tumor cells to these drugs.

CONCLUSION

ESFT	is	a	rare	cancer,	afflicting	mostly	children.	Because	
it is one of  the rare diseases, pharmaceutical industries 
lack interest in investing funds in developing new drugs. 
The consistent characteristic chromosomal translocations 
of  the ESFT, which result in the fusion of  EWS-FLI1 
critical for the maintenance of  the tumor phenotype and 
the subsequent formation of  novel chimeric proteins, offer 
promising molecular targets for developing new therapies. 
The recent availability of  biologically active recombinant 
EWS-FLI1 makes it possible to screen potential small 
molecules	that	influence	the	EWS-FLI1	function.	Deeper	
understanding of  tumorigenicity pathways involved in 
ES will be able to enhance the progress in developing 
potential therapeutic agents. The challenge is how to 
harness these molecular targets for creating specific 
therapies. Knowledge of  this will lead to novel ways that 
specifically	and	effectively	treat	patients.	Progress	 in	the	
near future is aimed at combining small molecules with 
standard chemotherapy. This is expected to synergistically 
increase tumor death and to decrease the development of  
resistance by interfering with essential pathways for tumor 
growth. The parallel increase in technology, such as delivery 
systems,	will	likewise	benefit	future	patients.	Patients	with	
ESFT	will	benefit	 from	ongoing	 investigations	 that	will	
hopefully allow for more successful and less-toxic therapies.
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