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Abstract

Three-dimensional protein localization intricately determines the
functional coordination of cellular processes. The complex spatial
context of protein landscape has been assessed by multiplexed
immunofluorescent staining or mass spectrometry, applied to 2D
cell culture with limited physiological relevance or tissue sections.
Here, we present 3D SPECS, an automated technology for 3D Spatial
characterization of Protein Expression Changes by microscopic
Screening. This workflow comprises iterative antibody staining,
high-content 3D imaging, and machine learning for detection of
mitoses. This is followed by mapping of spatial protein localization
into a spherical, cellular coordinate system, a basis for model-based
prediction of spatially resolved affinities of proteins. As a proof-of-
concept, we mapped twelve epitopes in 3D-cultured spheroids and
investigated the network effects of twelve mitotic cancer drugs.
Our approach reveals novel insights into spindle fragility and chro-
matin stress, and predicts unknown interactions between proteins
in specific mitotic pathways. 3D SPECS’s ability to map potential
drug targets by multiplexed immunofluorescence in 3D cell culture
combined with our automated high-content assay will inspire
future functional protein expression and drug assays.
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Introduction

Cellular processes are inherently linked to changes in spatial distri-

butions of proteins. These alterations of distribution patterns are a

result of dynamic interactions between proteins, affinities to cellular

compartments, or the formation of functional protein complexes.

Multiplexed immunostaining (Gerdes et al, 2013; Lin, 2017), in

combination with 3D microscopy, extends the amount of informa-

tion about spatial protein distributions that can be extracted for

studying cellular systems. In particular in complex cellular events,

simultaneously measuring distributions of different proteins in the

same cell allows studying functional relations between proteins, or

even functional complexes of several proteins. Potentially, all

components of whole signaling pathways can be simultaneously

studied. However, integrated methods for automation, segmenta-

tion, and efficient multichannel evaluation are not presently

combined or available. Moreover, obstacles for systematically inves-

tigating the architecture of cellular processes result from topological

cell-to-cell variability, whereas cells self-organize, re-structure, and

are differently orientated, hampering a direct comparative analysis

of different data sets containing groups of individual cells or

spheroids.

Here, we present an automated technology for 3D Spatial charac-

terization of Protein Expression Changes by microscopic Screening

(3D SPECS) which facilitates sequential immunostaining using a

pipetting robot, automated high-content image acquisition, and

multichannel analysis. For evaluating 3D image data of topographi-

cally structured cellular events in standardized maps, we estab-

lished a novel segmentation-free representation named SpheriCell

that makes use of a protein-specific landmark-based registration.

This multichannel registration is the prerequisite for systematic

comparisons between groups of cells in different states or for evalu-

ating effects of drugs on the intracellular topography analysis. It is

subsequently linked to mathematical models of intracellular

biochemical processes. Hence, our approach allows to assess co-

localization affinities of proteins and their preferred localizations

within intracellular maps consisting of spherical ROIs.

Establishing this workflow was initially motivated by the goal

of applying multiplexed staining to drug screening, to add an addi-

tional information-rich layer of inhibitory processes in mitotic

pathways, as several drug compounds targeting cell division unex-

pectedly failed in clinical trials (Chan et al, 2012; Marques et al,
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2015; Otto & Sicinski, 2017). Conventionally, drug screens only

account for measures as IC50 values in monolayer or, more

recently, in 3D cell cultures (Jabs et al, 2017). We applied our 3D

SPECS workflow to quantitatively study the differential topography

of mitosis in tumorigenic MCF10CA and non-tumorigenic MCF10A

cells. Experiments were performed in a 3D cell culture system

regarded as physiologically more relevant than a planar cell

culture because several features of these cells as differentiation,

growth arrest, or formation of acinar structures depend on 3D

growth (Imbalzano et al, 2009). To capture the most critical

events, we distinguished between cells in metaphase or cells

during segregation (anaphase and telophase combined). We chose

this well-established model of a non-malignant progenitor and

in vitro-derived malignant cells to sensitively characterize pheno-

typic changes in the cellular architecture during mitosis related to

malignant transformation. Especially, we probed drug effects, in a

multiplexed manner, on mitotic spindle organization, spindle

assembly checkpoint (SAC), and complementary cell fate indica-

tors. The SAC control includes the chromosome passenger complex

(CPC) comprising BIRC5, Borealin, INCENP, and Aurora B

(Carmena et al, 2012), which inhibit the segregating anaphase

promoting complex (APC/C) most efficiently through mitotic

checkpoint complex (MCC) containing among others BUB1b
(BUBR1; London & Biggins, 2014). Failures in these specific mitotic

checkpoints can lead to disruption and catastrophe of mitosis

followed by autophagic or necrotic events and therefore are inves-

tigated as potential anti-cancer drugs.

The success of future mitotic checkpoint-targeted cancer thera-

pies will depend on such complex 3D cell culture-based screens to

uncover synthetic lethal interaction or resistance of potent

compounds in vulnerable mitotic cancer cells (Chan et al, 2012;

Otto & Sicinski, 2017).

Results

Applying 3D SPECS for mapping protein distributions in
topographically ordered cellular events

Iterative antibody labeling overcomes the spectral limit of total

number of fluorescent antibodies that can be applied simultane-

ously to individual cells (Gerdes et al, 2013; Lin, 2017). We

extended this technique of chemically bleached fluorescently

labeled antibodies, to 3D cell cultured spheroids in Matrigel

(Petersen et al, 1992), combined with twelve different drug treat-

ments (see Appendix Table S1). Our setup (Fig 1A) uses confocal

laser scanning microscopy together with automated detection of

mitoses by machine learning, and a motorized in-built micropipet-

ting robot to comprehensively stain mitotic phases.

Usually, mitotic cells in culture divide into different orientations,

which complicates comparisons between different sets of single-cell

data. To investigate mitosis as an example for a topographically

ordered cellular process, we applied a novel representation named

SpheriCell that facilitates spatial alignment of subcellular events by

registration of a spherical coordinate to cellular landmarks. Within

the defined spherical coordinate systems of the cellular space,

protein concentrations are then measured in a standardized set of

3D partitions.

For cells in metaphase, the spindle axis perpendicular to the

metaphase plate was used as landmark (Fig 1B). The mitotic axis

was defined by the shortest half axis of an ellipsoid fitted to the

nuclear DAPI signal. Next, three sectors were delineated relative to

the mitotic axis, either parallel (polar), diagonal, or in the division

plane (equatorial). Six shells with equal radius intervals were

centered to the nuclear ellipsoid in a way that the fourth shell was

scaled to the longest half axis of the ellipsoid (Fig EV1A). For cells

during segregation, the mitotic axis was specified by the line

between two ellipsoids fitted to the daughter nuclei (Fig EV1B). Six

equally spaced shells were defined by centering the fourth shell to

the centers of the two ellipsoids. Following this procedure for cells

in metaphase and segregation, outlines of cells growing in spheroids

were approximated. We chose the size of the SpheriCell maps to

fully cover intracellular protein distributions of the observed

proteins involved in mitosis. Finally, a system of 18 spherical ROIs

was created by intersecting sectors and shells. SpheriCell maps were

projected on 2D planes for enhanced visualization (Fig 1B).

Maps of spherical ROIs were created for 12 proteins involved in

mitosis, measured by iterative staining, and the DAPI signal, either

in MCF10A or in MCF10CA cells. Measurements were recorded in

cells treated with one of 12 different inhibitors or in untreated cells.

In total, we screened 6,272 confocal image stacks and recorded

1,217 mitotic events resulting in 284,778 mean intensity values of

3D partitions.

The applied human epithelial MCF10 breast cancer progression

model compares the near-diploid non-malignant cell line MCF10A

forming polarized spheroids (Debnath & Brugge, 2005) with the

tumorigenic invasively growing line MCF10CA, which bear activat-

ing mutations of HRAS and PIK3CA, and amplified MYC (Maguire

et al, 2016). At first, we confirmed known localizations of cellular

proteins and known mitotic checkpoints for untreated cells as

described before including b- and c-tubulin, c-H2AX, Aurora

kinases, SAC, and CPC complexes (Nogales et al, 1998; Rogakou

et al, 1998; Carmena et al, 2012), supporting the utility of 3D SPECS

(Figs 1C and 2A).

MCF10CA staining patterns resembled those of MCF10A showing

a slightly reduced average DAPI signal due to increased size of

MCF10CA nuclei (Fig 2B). Highest protein concentration increases

were observed for c-H2AX and Aurora A, contrasted by a reduction

strongest for c-tubulin. Increased levels of c-H2AX (Paull et al,

2000), a marker for double-strand breaks, most likely reflect higher

chromosomal stress in MCF10CA. Higher intensity levels of Aurora

A, which is upregulated during mitosis and localizes mostly toward

centrosomes (Carmena & Earnshaw, 2003), are consistent with

previously described effects upon activation of Raf-1, downstream

of the oncogenic RAS pathway (D’Assoro et al, 2014).

Taken together, the 3D SPECS approach was established to

quantitatively study intracellular protein distributions during topo-

graphically structured cellular processes by 3D registration and fit-

ting a spherical coordinate system to microscopy data of an ordered

cellular event. Subsequently, the spherical coordinate system is

subdivided into sectors and shells, and projected to a two-dimen-

sional map. We quantitatively studied localization patterns of

proteins involved in mitosis and observed distinctive differences

between malignant and non-malignant cells, which serves as basis

for characterizing the influences of drugs on intracellular protein

distributions.
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Studying effects of chemotherapeutic drugs on intracellular
spatial distributions of proteins

Next, we applied the 3D SPECS approach for quantitatively studying

effects of cancer drugs on the topography of mitotic phases. We

analyzed the effects of twelve targeted inhibitors on mitotic kinases

or effector proteins of dividing MCF10A and MCF10CA cells (Fig 3),

specifically on protein concentrations and preferred localizations.

To compare spatial distribution patterns of protein intensities, in

each cell, 18 subcellular spherical ROIs were defined by a combina-

tion of six eccentricity shells with three orientations relative to the

division plane, scaled per cell to a sphere volume. In analogy to

calculating a center of mass, we specified measures of spatial inten-

sity distributions (see Materials and Methods). We visualized signif-

icant concentration fold changes and spatial changes in eccentricity

and orientation compared between cell lines, mitotic phases, and for

inhibitors relative to controls (Fig 3A and B). All visualized

measures, 95% confidence intervals, P-values, and numbers of

mitotic events are available in Dataset EV1. Strikingly, changes in

eccentricity and orientation of the localization pattern could be

observed in MCF10CA relative to MCF10A cells mostly during

metaphase, whereas almost no differences in spatial distributions

were observed during segregation (Fig 3A, MCF10CA vs. MCF10A).

Obviously, as indicated for the comparison between segregation and

metaphase, the mitotic phase strongly influenced the spatial distri-

butions of most observed proteins (Fig 3A, seg. vs. meta). Changes

in the distribution pattern for DAPI and c-H2AX reflect the move-

ment of the nucleus toward the cell division axis and to higher

eccentricity, while the other proteins move closer to the cell division

plane. During segregation, relative to metaphase, both cell lines

showed an expected decrease in CDC20 concentration (Sullivan &

Morgan, 2007) and elevated BIRC5 concentrations, whereas CENP-A

was only increased in MCF10A cells.

Notably, inhibitor treatments resulted in more pronounced

effects on concentration fold changes (Fig 3B) than on spatial distri-

butions (Fig EV2), only Haspin, Aurora B (eccentricity), and PLK1

(orientation) being notable exceptions. For these inhibitors, exem-

plary SpheriCell maps visualizing significant fold changes in ROIs

are shown in Fig 3C, while SpheriCell maps of effects for all inhibi-

tors and all measured species are presented in Figs EV3 and EV4.

To facilitate comparisons, Fig 3D summarizes significant concentra-

tion fold changes, visualized in Fig 3B, that were exclusively

A C

B

Figure 1. Workflow of iterative antibody labeling.

A After 48 h of drug treatment, MCF10A and MCF10CA cells were fixed and DAPI stained. Pre-screening comprised 196 image stacks per well to automatically select 30
spheroids that each showed at least one mitosis. At each round, selected positions for three drug treatments plus control were stained, imaged, and bleached in six
iterations with two antibodies each. Within 24 days, we acquired 3D stacks of 12 antibodies on 12 drug treatments and two cell lines. ABs, antibodies.

B SpheriCell visualization: Stacks were 3D registered and a sphere was fitted to each cell division area, which was partitioned into three symmetrical sets of spherical
sectors (equatorial, diagonal, polar) and six equidistant shells. Spherical 3D localization can be visualized by a longitudinal cut resulting in a 2D polar grid that
contains projected mean values of 3D partitions. Moreover, cell poles are not distinguishable, so the results are centrically symmetric. Localization of mitotic proteins
can be intuitively determined from the 2D projected partitions as exemplified by tubulin, chromatin, and centrosomal regions. Color intensities reflect normalized,
mean protein concentrations in each bin.

C Example images and DAPI binning. Distinguished between MCF10A and MCF10CA, and metaphase and segregation spanning ana- and telophase. DAPI (cyan),
c-tubulin (magenta), and b-tubulin (yellow). For visualization, images were rotated to vertically align mitotic axes. N, number of mitoses contributing to mean values
(scale bars: 10 lm).
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observed in MCF10A or MCF10CA cells, or in both cell lines. Here,

the inhibition of master regulator Aurora kinase B, and also inhibi-

tion of Haspin known to be implicated in Aurora B positioning

(Carmena et al, 2012), showed a prominent effect across nearly all

proteins in MCF10A as well as MCF10CA cells. Moreover, we

detected broad effects of increased DNA damage by Topoisomerase

II poisoning (Nitiss, 2009a). Interestingly, MCF10CA cells appeared

to be more sensitive to mitotic spindle interference, reflected by

effects on inhibitors of Aurora A or PLK1, and the microtubule inhi-

bitor paclitaxel (Fig 3D). Furthermore, inhibition of CHK1 affected

only proteins in MCF10CA spheroids. Contrarily, although KIF11

(Eg5) and KIFC1 (HSET) facilitate separation and clustering of

centrosomes (Rath & Kozielski, 2012), the effects due to inhibition

of KIF11 were restricted to MCF10A cells. High natural levels of

c-H2AX intensity in MCF10CA were not increased by treatments as

observed in MCF10A cells, and similarly, BIRC5 concentration was

only affected in MCF10A. Analogous evaluations were conducted

with regard to measures of abundances, obtained by weighting ROI

intensities according to their volumes (Appendix Fig S1, see Materi-

als and Methods). Only one inhibitor, Haspin, had slight effects on

cell volume estimates. For all other inhibitors, observations with

regard to fold changes of abundances or concentrations were

similar.

We conclude that applying the established 3D SPECs approach

on mitotic cells resulted in a detailed and differentiated picture of

effects dependent on cell lines, mitotic phases, and inhibitor effects.

Modeling intracellular distribution maps of proteins involved
in mitosis

To gain a mechanistic explanation for the measured intracellular

distributions, we developed a non-linear model that was calibrated

A

B

Figure 2. Localization and intensity changes in untreated MCF10A and MCF10CA cells.

A Localization of epitopes of twelve antibodies, besides DAPI staining, during metaphase and segregation (comprising ana- and telophase). SpheriCell plots depict mean
intensity values across all imaging rounds. Stainings of proteins were ordered by decreasing difference between MCF10CA and MCF10A cells. Intensity ranges were
specific to the antibody and are shown normalized between 0 and 1, effectively across all values of a column in the figure. Distribution patterns generally reflect the
localization of individual proteins described before. Dashed lines connect SpheriCell plots with example images of antibody stainings (magenta), DAPI (cyan), and
b-tubulin (yellow) (scale bars: 10 lm). LC3A: microtubule-associated proteins 1A/1B light chain 3A.

B MCF10CA shows altered intensity patterns compared to MCF10A. SpheriCell plots depict differences of log2 transformed fluorescence intensity of MCF10CA and
MCF10A [log2(CA) – log2(A)] for metaphase and segregation, in decreasing order. Black framed partitions indicate intensity distributions in untreated control images.
LC3A, microtubule-associated proteins 1A/1B light chain 3A.
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with our dataset of spatially resolved fluorescence intensity

measurements of proteins involved in mitosis in combination with

DAPI fluorescence. The model describes concentrations for mono-

mers, homo-, and heterodimers of all measured species in spherical

ROIs, defined by SpheriCell maps. In the following, we will give an

overview about the model implementation and calibration (see

Materials and Methods for details). The model explains the recruit-

ment of i = 1. . .13 measured species to j = 1. . .18 mitotic ROIs by

first-order reactions with affinity parameters ail. In mitotic ROIs, all

stained species can form homo- or heterodimers, described by

second-order reactions with affinity parameters bij (Fig 4A). Affinity

parameters were defined as the inverse of dissociation constants for

recruitment to mitotic ROIs or for dimerization reactions. Of note,

affinities between species were taken only into account for explain-

ing the local enrichment of proteins but do not necessarily imply

biochemical interactions between proteins. Reactions were assumed

A B

C D

Figure 3. Topographical effects of cell line, mitotic phase, and inhibitors.

A Concentration fold changes and localization changes, quantified as changes in eccentricity and orientation of localization patterns for comparisons between cell lines
(MCF10CA vs. MCF10A), mitotic phases (segregation vs. metaphase). Effects related to cell line were indicated separately for metaphase (upper left triangles) and
segregation (lower right triangles). The upper panel shows color-coded fold changes in average concentrations (total intensities normalized by cell volumes) for DAPI
and antibody stainings, together with fold changes of the cell volume, on a logarithmic scale. In the panel below, eccentricity changes for intensity distributions in
spherical ROIs were visualized. Positive values describe a movement to the periphery, while negative values represent a movement to the center of the cell. Similarly,
in the bottom panel, changes in angular orientation of intensity distributions were visualized. Positive values describe a movement toward the plane perpendicular to
the cell division axis, while negative values describe a movement toward the cell division axis. In cases of significant differences to negative controls (Welch’s t-test
with P < 0.05, Bonferroni multiple testing correction for 52 comparisons in each measured species), fold changes relative to negative controls are indicated by colors
(n.s., not significant; seg., segregation).

B Fold changes for inhibitor treatments (inhibitor vs. control) for MCF10A (left) and MCF10CA cells (right) as in (A). Analogous measures in eccentricity and orientation
changes are shown in Fig EV2 (MT, microtubule inhibitor; Pa, paclitaxel; V, vinblastine).

C Exemplary SpheriCell plots showing fold changes in ROIs for inhibitor treatments relative to controls. A significant decrease in the eccentricity of distribution patterns
Dr, due to pronounced concentration increase in central ROIs, was observed for c-H2AX upon Haspin inhibitor treatment and for INCENP upon Aurora B inhibitor
treatment (n.s., no significant change in Dr). A significant decrease in the measure of the distribution pattern orientation D/, equivalent to an arrangement toward
the cell division axis, was observed for BUB1b and b-tubulin upon treatment with PLK1 inhibitor. All SpheriCell plots for fold changes in response to inhibitor
treatments are shown in Figs EV3 and EV4.

D Overlay of significant inhibitor effects in MCF10A cells, MCF10CA cells, or MCF10A and MCF10CA cells. Color highlighted proteins denote predominant effects per row
(inhibitors) or column (measured species).
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in steady state in agreement with the observation that diffusion,

association, and dissociation reactions of the measured species are

typically fast compared to the timescale of biochemical reactions

involved in mitosis (Wachsmuth et al, 2015). At first, affinities of

every protein to mitotic ROIs and affinities between proteins were

estimated by model fitting to fluorescence intensity measurements

in spherical ROIs of untreated cells.

To predict new affinities between proteins, we fitted a model of

interactions from literature in Ingenuity Pathway Analysis (IPA;

Krämer et al, 2014) regarded as ground truth. This initial model

was fitted to our untreated control cells. Then, by sequential

forward selection, new mutual affinities between proteins were

additionally included in the model and pertained if model fits were

significantly improved, based on likelihood-ratio testing. Fig 4B

visualizes the 19 known interactions overlaid with all 16 addition-

ally predicted mutual affinities. For example, we identified known

association of c-tubulin with CDC20 (Müller et al, 2006) as well as

known DNA-binding of BIRC5 (Carmena et al, 2012). While we trig-

gered DNA damage pathways with Topoisomerase II poisoning and

inhibition of CHK1 (Nitiss, 2009b), activation of DNA repair mecha-

nisms could be inferred from double-strand break marker c-H2AX
(Paull et al, 2000), necrosis-associated HMGB1 (Pallier et al, 2003),

and autophagic vesicle marker MAP1LC3A (LC3A). BIRC5 was

predicted by the model to interact with LC3A, which links mitotic

surveillance and autophagy pathways (Mariño et al, 2014). The

model predicted interactions of c-H2AX, c-tubulin, and b-tubulin
with several other proteins, which might indicate indirect interac-

tions with the mitotic spindle or the cytoskeleton. Further coeffi-

cients describing mutual affinities between proteins are shown in

Fig 4C, and estimated affinities to mitotic ROIs in Appendix Fig S2.

Importantly, the fraction of a protein that is localized to a mitotic

bin due to mutual interactions with other proteins does not only

depend on affinity coefficients, but may represent high affinities of

interacting species to the respective mitotic bin. The highest values

of mutual affinities with other proteins were found between CENP-

E molecules as described earlier (Chan et al, 1998) and for the

newly predicted binding of b-tubulin to HMGB1. We further tested,

which affinities according to reported interactions between species

significantly contributed to explaining the experimental dataset. To

this end, affinity parameters were withdrawn and the model was

refitted to determine the difference in v² (Appendix Fig S3).

Thereby, we found that only four affinities according to literature

interactions significantly contributed to explaining the measured

intensity distributions (marked by squares in Fig 4B). Notably, if an

affinity parameter did not contribute to explaining the dataset, this

does not imply the absence of binding between these species but is

likely due to non-identifiability. Erroneously rejecting an affinity

parameter that might have been determined by other experimental

techniques rather results from insufficient discrimination between

linear and second-order terms when fitting to measurements in

single-cell ROIs.

We next inspected changes in affinity parameter estimates

between mitotic proteins and their affinities to mitotic ROIs upon

drug treatment. To this end, the model with known and additionally

predicted interactions was fitted to datasets from cells treated with

inhibitors to estimate mutual affinities between proteins and to

mitotic ROIs. We observed that inhibitors generally affected mutual

affinity coefficients indicated by differences between coefficient

estimates for untreated cells and average estimates for inhibitor

treatments (Fig 4C and Appendix Fig S4). In comparison with effects

from other inhibitor treatments, inhibition of PLK1 affected the

localization patterns of several proteins and caused a strong specific

shift in mutual affinities among several studied proteins in compar-

ison with untreated cells (Fig 4D). Contrarily, affinities to mitotic

ROIs during metaphase and segregation showed almost no dif-

ferences to untreated cells (Appendix Fig S2E–H). It is tempting to

speculate that effects of PLK1 inhibition are mediated through its

involvement in spindle network formation (Zitouni et al, 2014).

Specifically, predicted affinity of b-tubulin to c-H2AX, HMGB1, and

INCENP decreased, and chromosome affinity of BIRC5 appears to be

reduced by inhibition of PLK1, whereas the predicted affinity of

INCENP to HMGB1 is increased (Fig 4D). Reduced chromosome

affinity of BIRC5 after PLK1 inhibition is in accordance with the

finding that phosphorylation of BIRC5 by PLK1 is required for a

proper chromosome alignment during mitosis (Carmena et al,

2012).

Taken together, we established a simple mathematical model

that describes the recruitment of stained species to spherical ROIs as

well as homo- and heterodimerization between species to explain

observed intracellular distributions of proteins involved in mitosis.

Sequential model extension could be used to extend a set of known

interactions. Predictions of mutual affinities between the observed

proteins involved in mitosis can be used to guide further experi-

ments for investigating functional relations and protein complexes

that are linked to cellular processes.

Discussion

We developed 3D SPECS, a high-content screening assay employing

automated iterative antibody labeling in 3D cell cultures. It allowed

us to compare system-wide interactions between 12 proteins of two

cell lines in two mitotic phases, upon 12 individual treatments. High

automation comprises detection of mitoses, iterative staining and

imaging, 3D partitioning, modeling, and visualization using Spheri-

Cell, a novel approach that does not require image segmentation.

Morphometric image processing operations as elastic registration

are not necessary because spherical ROIs are defined individually

for each cell based on automatically detected mitotic axes and

spherical fits. This explorative approach recapitulated prior knowl-

edge on proteins involved in mitosis and allowed the generation of

novel hypotheses in mitotic pathway signaling.

Most prominently, we discovered upregulation of c-H2AX in

tumorigenic MCF10CA cells compared to MCF10A. Further, c-H2AX
was stronger affected by inhibitor treatments in MCF10A, which in

turn appears to have a more robust spindle apparatus. Our novel

combined imaging and mathematical modeling approach allowed

us to disentangle inhibitor-mediated protein localization and bind-

ing affinity changes. It showed that changes in affinities between

proteins due to inhibitor treatments were more pronounced than

changes in individual protein localizations (Appendix Figs S2E–H),

which can be interpreted as robustness of the architecture of cellu-

lar processes. In one specific example, we focused on the measured

inhibitions of PLK1 activity, responsible for establishing the mitotic

spindle and that is frequently hyper-activated in cancer (Kumar

et al, 2017). Subsequent reduction in chromatin affinity of BIRC5
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could be explained by its dependency on PLK1 phosphorylation

(Carmena et al, 2012), most likely intertwined with its CPC

function.

In cases, in which associations of proteins were predicted, espe-

cially in those involving c-H2AX, b-tubulin, or c-tubulin, it is likely

that these proteins were present in larger multi-protein complexes.

In such cases, associations might be undetectable with established

biophysical techniques as FRET or FCCS because distances between

proteins will exceed the required proximity. In the future, such asso-

ciations in larger protein complexes might be determined by in vivo

super-resolution microscopy.

We did not analyze effects of inhibitors on fractions of cells in

different mitotic phases since we did not select mitotic cells in a

randomized manner. It would be, however, interesting to link

effects of inhibitors on intracellular distributions of proteins

involved in mitosis with effects on the duration of mitotic phases.

Moreover, it might be interesting to further study model refine-

ments related to treatment groups or investigate patterns of effects

from inhibitor treatments. Our method can be readily extended to

determine the activity of proteins by phospho-specific antibodies.

For a more fine-grained assessment of protein localization, addi-

tional nuclear or membrane labels can be integrated into 3D SPECS.

The SpheriCell approach that delivers intuitively simple and

comprehensive visualization of protein localization in cell division

can also be amended by including cell polarity landmarks, e.g.,

Golgi apparatus or ciliation of non-dividing cells. Taken together,

we have demonstrated 3D SPECS as a novel workflow unraveling

thus unprecedented levels of details in changes of protein localiza-

tion and interaction upon drug treatment of three-dimensional cell

cultures.

A B

C D

Figure 4. Mathematical modeling of affinities between measured species.

A Schematic graph of the mathematical model describing concentration distributions of measured species in mitotic ROIs. Spatial distributions are explained by
affinities of species to cellular structures contained in mitotic ROIs ail as well as homo- or heterodimeric interactions in ROIs described by affinities bij. Affinities are
defined as the inverse of dissociation constants (~xi , unbound species i; xil, bound species i in ROI l, xil:xjl, heterodimer of species i and j in ROI l; see Materials and
Methods for details).

B Affinities related to known protein–protein interactions from Ingenuity Pathway Analysis overlaid with additional predicted mutual affinities between measured
proteins. Known affinities that significantly contributed to explaining the measured intensity distributions were marked by black squares. For affinities to mitotic
ROIs, see Appendix Fig S2.

C Estimates of mutual affinities between measured proteins for untreated cells.
D Estimated mutual affinities between measured proteins after treatment with PLK1 inhibitor.

ª 2018 The Authors Molecular Systems Biology 14: e8238 | 2018 7 of 15

Lorenz J Maier et al 3D SPECS Molecular Systems Biology



Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog Number

Experimental Models

MCF10A pBabePuro (Homo sapiens) Zev Gartner Lab n/a

MCF10CA1d.cl1 (H. sapiens) Barbara Ann Karmanos Cancer Institute n/a

Antibodies

CENP-E (1:400, mouse monoclonal, clone 1H12) Abnova MAB1924

BubR1 (1:600, mouse monoclonal, clone 8G1) Thermo Fisher MA5-16036

beta-Tubulin (1:5,000, mouse monoclonal, clone TUB 2.1) Abcam ab11309

CDC20 (1:400, rabbit polyclonal) Bethyl A301-179A

gamma-Tubulin (1:12,000, rabbit polyclonal) Abcam ab176404

LC3A (1:400, rabbit polyclonal) Novus NB100-2331

Survivin (1:1,000, rabbit monoclonal, clone EP2880Y) Abcam ab176402

INCENP (1:1,000, mouse monoclonal, clone 3D2) Thermo Fisher MA5-17100

Aurora A (1:6,000, rabbit monoclonal, clone EPR5026) Abcam ab176375

CENP-A (1:500, rabbit polyclonal) Abnova PAB18324

HMGB1 (1:3,000, rabbit monoclonal, clone EPR3507) Abcam ab176398

c-H2AX (1:2,500, rabbit monoclonal, clone 20E3) Cell Signaling 9718BF

Chemicals, enzymes and other reagents

Matrigel

Matrigel, growth factor reduced, phenol red-free Corning 356231

Antibody conjugation

DyLight 550 Microscale labeling kit Thermo Fisher 84531

DyLight 650 Microscale labeling kit Thermo Fisher 84536

Medium

DMEM/F12, no phenol red Gibco 21041-33

Horse Serum Gibco 16050-122

EGF Sigma E9644-.2MG

Hydrocortisone Sigma H0888-1g

Cholera Toxin Sigma C8052-1MG

Insulin Life Technologies 12585014

Drugs

Barasertib (1.11 nM) SelleckChem S1147

CHR-6494 (500 nM) MedChem Express HY-15217

CW069 (25.0 lM) SelleckChem S7336

Etoposide (333 nM) SelleckChem S1225

GSK461364 (2.20 nM) SelleckChem S2193

GSK923295 (3.20 nM) SelleckChem S7090

Ispinesib (1.70 nM) SelleckChem S1452

MK-5108 (0.576 nM) SelleckChem S2770

MK-8776 (9.00 nM) SelleckChem S2735

Paclitaxel (2.67 nM) SelleckChem S1150

Vinblastine (2.40 nM) Sigma V1377

YM155 (0.540 nM) SelleckChem S1130
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Methods and Protocols

Iterative staining and imaging
Mitotic proteins were assessed after 48-h drug treatment by iterative

immunofluorescence labeling. The antibodies were either labeled

with one of DyLight 550/Cy3 or DyLight 650/Cy5. Both types of

dyes could be used interchangeably in terms of excitation and emis-

sion spectra.

While Matrigel is essential for acinar growth of spheroids

(Debnath & Brugge, 2005), it also dissolves quickly when the

bleaching solution is applied. Therefore, we have used DyLight

instead of Cy or Alexa (Lin et al, 2015) labeled antibodies, as

they bleach much faster and have a very strong fluorescence

signal nevertheless. Applying the bleaching solution significantly

longer than 5 min at a time typically dissolved the Matrigel

carrying the spheroids.

All treatments were imaged at 30 spheroids that showed at least

one mitosis each. A total of 196 stacks per well, eight wells per

round, and four rounds resulted in 6,272 image stacks with 21 slices

each that were automatically pre-screened for mitotic events. Itera-

tive high-resolution images of 30 positions per well in eight wells in

each of four rounds totaled in 960 identified spheroids that were

imaged each with 31 slices, after staining and after bleaching in six

iterations.

For analysis and visualization, every mitosis was aligned along

its division plane for a spherical neighborhood that contains the cell

division in equatorial axis (see Fig 1B).

3D cell culture and drug treatment
Human mammary epithelial MCF10A pBabePuro cells were

kindly obtained from Zev Gartner Lab; MCF10CA1d.cl1

(MCF10CA) cells from Karmanos Cancer Institute. Eight well Lab-

Tek Chambered Coverglass slides (Sigma 155411) were treated

with 2 M NaOH for 20 min and rinsed twice for 10 min with

MilliQ water. Ten ll Matrigel (growth factor reduced, phenol red-

free, Corning 356231) per well was added on ice with pipette tips

pre-cooled to �20°C. MCF10A and CA cells were seeded with

2% Matrigel in Growth Medium overnight. Growth Medium was

Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

Software

R https://r-project.org 3.3.3

Knime https://www.knime.com 3.2.1

Python https://python.org 3.4

Zeiss Zen blue http://zeiss.com 2012

Zeiss Zen black http://zeiss.com 2012

LabView http://ni.com 2013 SP1

Fiji/ImageJ https://fiji.sc fiji-latest, timestamp 20160902160412

MATLAB https://www.mathworks.com/ 2015a

IPA https://www.qiagenbioinformatics.com/produc
ts/ingenuity-pathway-analysis/

Other

Axio Observer.Z1 Carl Zeiss Microscopy 431007 9901 000

Scan Module LSM 710 Base Unit Carl Zeiss Microscopy 000000 1410 052

Spectral Detection Unit LSM 780 + 2 PMT Carl Zeiss Microscopy 000000 1670 619

Objective Plan-Apochromat 20×/0.8 M27 Carl Zeiss Microscopy 420650 9901 000

Laser diode 405 nm CW 30 mW Carl Zeiss Microscopy 000000 1410 119

Laser 561 nm Carl Zeiss Microscopy 000000 1410 117

Master Beam Splitter Wheel for
Laser 633, 561, 514, 488, 458 nm

Carl Zeiss Microscopy 000000 1583 982

Beam path NLO+405/445
Axio Observer/Axio Imager

Carl Zeiss Microscopy 000000 1741 731

Spinning Disc Unit CSU-X1A 5000 Carl Zeiss Microscopy 423638 9090 000

Spinning Disc Laser Unit 405 nm Carl Zeiss Microscopy 000000 1514 464

Rolera EM-C2 Bio-Imaging Microscopy
Camera, Mono, 14-bit

Carl Zeiss Microscopy 000000 1915 668

PROcellcare 5030 + Peristaltic Pump Extension Unit PROdesign n/a

Energenie EG-PM2 Energenie EG-PM2

4× LabTek holder EMBLEM LTT-01 and LTT-02
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adapted from Debnath et al (2003) and is based on DMEM/F12

(no phenol red, Gibco 21041-33), with 5% Horse Serum (Gibco

16050-122), 20 ng/ml EGF (Sigma E9644-.2MG), 0.5 mg/ml

Hydrocortisone (Sigma H0888-1g), 100 ng/ml Cholera Toxin

(Sigma C8052-1MG), and 10 lg/ml Insulin (Life Technologies

12585014). For the inhibition experiments, the cells were treated

for 48 h at 1 day after seeding.

Inhibitors
Drugs, suppliers, and concentrations used were Barasertib (Aurora

B inhibitor; alternative name AZD1152-HQPS; SelleckChem S1147;

1.11 nM); CHR-6494 (Haspin inhibitor; MedChem Express HY-

15217; 500 nM); CW069 (HSET inhibitor; SelleckChem S7336;

25.0 lM); Etoposide (Topoisomerase II inhibitor; SelleckChem

S1225; 333 nM); GSK461364 (PLK1 inhibitor; SelleckChem S2193;

2.20 nM); GSK923295 (CENP-E inhibitor; SelleckChem S7090;

3.20 nM); Ispinesib (KIF11 inhibitor; alternative name SB-715992;

SelleckChem S1452; 1.70 nM); MK-5108 (Aurora A inhibitor; alter-

native name VX-689; SelleckChem S2770; 0.576 nM); MK-8776

(CHK1 inhibitor; alternative name SCH 900776; SelleckChem S2735;

9.00 nM); Paclitaxel (microtubule inhibitor; SelleckChem S1150;

2.67 nM); Vinblastine (microtubule inhibitor; Sigma V1377;

2.40 nM); and YM155 (BIRC5 inhibitor; SelleckChem S1130;

0.540 nM).

Antibodies and labeling kits
Antibodies were conjugated with DyLight 550 and 650 Microscale

labeling kits per supplier reference manual (Sigma, 84531 and

84536, respectively) unless otherwise stated. Antibody targets, dilu-

tions, supplier, and conjugation method in iterative staining order

were CENP-E (1:400; Abnova MAB1924; conjugated DyLight 550);

BubR1 (1:600; Thermo Fisher MA5-16036; pre-conjugated with

DyLight 650); beta-tubulin (1:5,000; Abcam ab11309; pre-conju-

gated with Cy3); CDC20 (1:400; Bethyl A301-179A; conjugated

DyLight 550); gamma-tubulin (1:12,000; Abcam ab176404; pre-

conjugated with Cy3); LC3A, microtubule-associated proteins 1A/1B

light chain 3A (1:400; Novus NB100-2331; conjugated DyLight 650);

BIRC5 (1:1,000; Abcam ab176402; pre-conjugated with Cy3)

INCENP (1:1,000; Thermo Fisher MA5-17100; conjugated DyLight

650); Aurora A (1:6,000; Abcam ab176375; pre-conjugated with

Cy3); CENP-A (1:500; Abnova PAB18324; conjugated DyLight 650);

HMGB1 (1:3,000; Abcam ab176398; pre-conjugated with Cy3);

H2AX (1:2,500; Cell Signaling 9718BF; conjugated DyLight 650).

Iterative antibody labeling
Cell fixation was based on a protocol from Debnath et al (2003),

with 1.85% formaldehyde solution (Sigma 252549) added to the

medium for 10 min. Cells were rinsed twice with PBS and perme-

abilized for 10 min at RT with 0.5% TX-100 pre-chilled to 8°C,

washed three times with PBS-glycine (130 mM NaCl, 7 mM

Na2HPO4, 3.5 mM NaH2PO4, 100 mM glycine) for 10 min, and

blocked overnight at RT in a blocking solution consisting of IF-wash

solution (Muthuswamy et al, 2001; 130 mM NaCl, 7 mM Na2HPO4,

3.5 mM NaH2PO4, 7.7 mM NaN3, 0.1% BSA, 0.2% Triton X-100,

0.05% Tween-20) with 10% goat serum (Sigma G9023-10ML) and

1:1,000 DAPI (Sigma D8417-1MG), inside an opaque EMBL micro-

scope incubation chamber. For each iteration, two antibodies were

diluted in freshly prepared blocking solution and stored in a slide

within a 4× Lab-Tek holder (EMBLEM LTT-01 and LTT-02). They

were automatically pipetted into the wells by a peristaltic pump of

the ProCellcare 5030 system (ProDesign) and incubated for 3 h,

washed twice with IF-wash for 5 min and three times with PBS for

5 min. After imaging, freshly prepared H2O2 bleaching solution

(Gerdes et al, 2010) containing 3% H2O2 (AppliChem, Cat. No.

121076) and 0.1 M Na2CO3/NaHCO3 buffer at pH � 10 was stored

in another Lab-Tek. It was automatically applied for 5 min and

washed twice with PBS for 5 min. Standard incubator light source

was switched on during bleaching with Energenie EG-PM2. Pipet-

ting positions were planned with Zeiss Zen blue (www.zeiss.com/

zen), and pipetting workflow was implemented in LabView (www.

ni.com/labview).

Pre-screen
During blocking, slides were imaged with a Yokogawa CSU-X1 spin-

ning disk unit attached to a Zeiss Observer Z1 inside an EMBL incu-

bation chamber; 196 image stacks of 401.6 × 400 × 60 lm were

taken per well with a plan-apochromat 20×/0.8 NA objective. Stack

slices had 1,004 × 1,002 pixels, step size was 3 lm, and exposure

40 ms. Candidate mitotic positions were detected via their DAPI

signal by a custom KNIME workflow and selected or expanded

manually if necessary. The automatic selection excludes monolayer

slices and uses a supervised tree ensemble classifier (comparable to

a random forest). For each treatment and cell line, 30 positions of

spheroids with at least one mitosis each were selected for imaging

during the iterative staining workflow.

Acquisition of iterative staining images
After each round of bleaching or staining, spheroids were

automatically imaged with a laser scanning confocal Zeiss LSM 780

connected to the same Axio Observer as the spinning disk

unit. Stack dimensions were 106.07 × 106.07 × 60 lm, with

512 × 512 pixels per slice and 2 lm Z steps. Objective was plan-

apochromat 20×/0.8 NA, pixel dwell time 3.15 ls, and pinhole

32 lm. Emission spectra were taken at 410–489 nm (DAPI), 560–

586 nm, 586–612 nm, and 612–630 nm (three parts of Cy3/DyLight

550), and 638–758 nm (Cy5/DyLight 650). Visible light beam

splitter was MBS 488/561/633, and invisible light beam splitter

MBS 405.

Image processing
Splitting the emission spectrum from 560 to 630 nm in three parts

allowed for post-acquisition exposure correction. Only for BIRC5, it

was necessary to exclude the strongest emission channel from

the labeling image. All remaining split channels were averaged.

All image processing steps were embedded in KNIME workflows

(Berthold et al, 2008). To detect positions of cells, an Otsu threshold

segmentation method was used to detect nucleus regions in the

DAPI signal. The KNIME nodes Global Thresholder and Image

Segment Features were used to extract all available image

features. Based on these features, nucleus regions were classified as

mitoses by applying a machine learning algorithm. For this purpose,

the KNIME node Tree Ensemble Predictor was used after train-

ing the node Tree Ensemble Learner on a ground truth dataset

of manually assigned mitoses. Thereby, mitoses were detected in

196 stacks per inhibitor with 60 slides per stack. The next steps are

provided as protocol to apply the image processing workflows
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provided in Dataset EV2 on a sample dataset available in the BioS-

tudies database (https://www.ebi.ac.uk/biostudies/) with identifier

S-BSST176.

• Segment DAPI signal in 3D with 1 - 3d segmentation over-

view + storage workflow. It employs a region growing algo-

rithm (Berthold et al, 2008).
o Manually set seeds within mitotic positions either in 2D projec-

tions or in case of overlaps, in 3D images.
o Add borders to closely neighboring nuclei, especially in

z-direction.
o Annotate segmented areas with their mitotic phase. The work-

flow then joins ana-/telophases to collect cells in segregation.
o Verify assignment of segregating split chromatin regions to a

single dividing cell was verified with b-tubulin staining.

• Register consecutive stacks per imaging position with 2 - 3dReg-

WithCleanup.
o This workflow provides a batch compatible subpixel alignment

using Fiji (Schindelin et al, 2012), its plugin Correct 3D

Drift (Parslow et al, 2014) including multi time scale,

subpixel, and edge enhancements, and plugin MultiStackReg

(Thevenaz et al, 1998) with scaled rotation.

• Verify registration and annotate mitoses. If you want to create

your own annotations, follow workflows 3a through 3d. Other-

wise, proceed with workflow 3d to use our annotations.
o Exclude multiple mitoses per sphere (“overfilling”), and

indistinct mitotic phases (“unclear”). Very early anaphases that

started to segregate very recently are also to be skipped, as they

would require an own class between metaphase and segregation.
o 3a - registration tester uses a custom virtual autofocus

on DAPI that selects physically highest local maximum of vari-

ance. It antibody channels and allows to check for b-tubulin
staining strength. Exclude missing cells due to loss of Matrigel

or failed registration from further analysis.
o Refine the selection with 3b – verify registration. It

shows the central slice of the image stacks and slices 40 and 20

interpolated steps above and below.
o Annotate indistinct mitotic phases based on their DAPI signal

and antibodies against Aurora A and b-tubulin using 3c -

annotate mito areas. Assign to metaphase or segregation if

two centrosomes can be detected which are connected via b-
tubulin to the chromatin regions.

o Collect all single annotations of registration, staining strength,

and telophase pairing with 3d – combine annotations.

• Calculate SpheriCell partitioning with workflow 4 - spheri-

calAnalysis.
o In preparation of this workflow, generate spherical segment

angles with Recursive Zonal Equal Area Sphere Partitioning

Toolbox (EQSP; Leopardi, 2006) for 180 areas, or use our

precomputed file bins_180.oct.
o For the spherical neighborhood, the main workflow interpolates

images linearly in Z to match the X/Y pixel dimensions.
o Orientation of mitoses is identified with 3D ellipsoid fits. To this

end, the KNIME workflow calls 3d_ellipsoid_fit-

ting.ijm, a batch compatible wrapper for calculation of ellip-

soid fits using the 3D ImageJ suite (Ollion et al, 2013).
o A custom embedded R script joins the EQSP areas to segments

and to fits them in size and orientation to the individual

mitoses. Metaphases could use those values as is, but the size of

segregating cells is overestimated by the ellipsoid fit and

replaced by the centroid distances of their individual chromatin

regions. Their 3D orientation uses the average of the first two

eigenvectors and the normalized centroid to centroid vector as

third. Subsequently, 3D segments were binned in three spherical

intervals (equatorial [�30°, 30°] and [150°, 210°]; diagonal

[30°, 60°], [120°, 150°], [210°, 240°], and [300°, 330°]; polar

[60°, 120°] and [240°, 300°]; see Fig 1B). The six spherical

neighborhood shells grow linearly in their radius from

the mitotic center, and the inner four span the identified nucleus

area.

• Combine 3D bin intensities and annotations to an R (R Core Team,

2017) representation using multiSphere.R, which employs R

packages data.table (Dowle & Srinivasan, 2016), plyr (Wick-

ham, 2011), and stringr (Wickham, 2017).

• Generate SpheriCell plots for drug and antibody effects with

makePlots.R. This script makes use of R packages ggplot2

(Wickham, 2009), RColorBrewer (Neuwirth, 2014), and Cairo

(Urbanek & Horner, 2015).

• Complete output image data with a total size of about 150GB

can be inspected via Shiny (Chang et al, 2016) web applica-

tion in ui.R that shows SpheriCell plots in a responsive web

interface. It can be accessed at https://ibios.dkfz-heidelberg.de/

iterstain.
o Upon selection of a SpheriCell plot, microscopy images of corre-

sponding treated and untreated cells are shown side-by-side,

each with three layers around the central slice. Uses RBioFor-

mats (Oles, 2017), EBImage (Pau et al, 2010), and devtools

(Wickham & Chang, 2016).

Visualization
Antibody intensities are depicted as color-coded mean values

for SpheriCell ROIs (Fig 1B). To avoid an artificial increase in

background signal of antibodies, DAPI intensities below a mini-

mum threshold were excluded. Highlighting of partitions was

determined by the control intensity over all rounds. Data were

visualized with the packages ggplot2 (Wickham, 2009),

EBImage (Pau et al, 2010), and shiny (shiny.rstudio.com) for R

(www.r-project.org).

Evaluations of fluorescence measurements in SpheriCell ROIs
In each SpheriCell ROI, measured fluorescence values of associated

voxels were averaged. These average intensities were assumed to be

proportional to protein concentrations in these ROIs in accordance

with basic assumptions for quantitative immunohistochemistry and

quantitative fluorescence microscopy (True, 1988; Waters, 2009).

To eliminate influences resulting from differences of antibody affi-

nities and dye coupling efficiencies, effects of mitotic phases, cell

lines, and inhibitors were analyzed based on scale-free magnitudes

of fold changes and measures of eccentricity and orientation of

protein distribution.

We compared DAPI and antibody staining fluorescence intensi-

ties between cell lines, mitotic phases, and for inhibitor treatments

relative to controls. To analyze effects of protein intensities between

cell lines, mitotic phases, and inhibitor treatments, we defined

measures proportional to concentrations or abundances. Further-

more, to compare spatial protein distributions, we defined charac-

teristic measures of eccentricity and orientation. For each cell, 18
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ROIs were defined as intersections between six eccentricity shells

with indices l = 1. . .6 and three orientations relative to the division

plane (equatorial [�30°, 30°]; diagonal [30°, 60°]; polar [60°, 120°])

with indices v = 1. . .3. Measures proportional to single-cell concen-

trations c were defined by weighting fluorescence intensities Ilv with

mitotic ROI volumes Vlv

c ¼

P6
l¼1

P3
v¼1

IlvVlv

P6
l¼1

P3
v¼1

Vlv

: (1)

Analogously, measures proportional to abundances a of proteins

were defined by

a ¼
X6
l¼1

X3
v¼1

IlvVlv: (2)

Moreover, we introduced a measure that describes the eccentric-

ity of a protein distribution pattern. It was denoted as center of

eccentricity r and defined by a sum of eccentricities rl weighted by

fluorescence intensities Ilv

r ¼

P6
l¼1

P3
v¼1

Ilvrl

Ic
; (3)

with the total sum of intensities Ic ¼
P6

l¼1

P3
v¼1 Ilv. Similarly, the

center of orientation φ of a protein distribution pattern was defined

by

u ¼

P6
l¼1

P3
v¼1

Ilvuv

Ic
: (4)

In Figs 3A and B, and EV4, significant changes of r and φ dependent

on cell lines, mitosis phases, and inhibitor treatments were visualized.

Protein concentrations in cells are typically log-normally distrib-

uted. For this reason, we log-transformed measures before statistical

testing (Zhou & Gao, 1997; Choi, 2016). Assuming samples with

unequal variances, we performed Welch’s t-tests to statistically test

for differences between conditions. From applying (Bonferroni)

correction for multiple testing for a total of 52 comparisons based

on measurements for each stained species, significance was defined

by P < 0.05/52 � 9.62 × 10�4. Confidence intervals for fold

changes, eccentricity changes, and orientation changes were esti-

mated by bootstrapping. We determined 95% confidence intervals

from 1,000 bootstrap samples (see Dataset EV1 including data

shown in Figs 3A and B, and EV4).

Mathematical model of protein affinities to mitotic ROIs and
mutual affinities between proteins
To describe binding of proteins to mitotic ROIs and mutual binding

of proteins within mitotic ROIs, we constructed a mathematical

model derived from ordinary differential equations (ODEs). Here,

we describe the concept and the implementation of this model.

In the simplest case, we consider binding of two proteins A1 and

A2. Concentrations of free species are denoted by A1 and A2

(Appendix Fig S5). Binding to cellular structures contained in

mitotic ROI l, results in A1l and A2l with concentrations A1l and A2l.

Kinetic parameters describing A1 binding and unbinding to this

compartment are k1l and k�1l, while A2 binding and unbinding is

described by k2l and k�2l. We assume that binding sites for proteins

in a compartment are not limiting. The equation describing the

concentration of free A1 thus reads

dA1

dt
¼ �k1lA1 þ k�1lA1l: (5)

Dissociation constants K1l = k�1l/k1l and K2l = k�2l/k2l are thus

dimensionless parameters. In steady state, the concentrations for A1

and A2 bound in mitotic ROI l equal A1l = Al/K1l and A2l = A2/K2l.

In mitotic ROI l, A1l can reversibly bind to A2l, resulting in

A1l:A2l with concentration A1l:A2l. We assume that binding between

A1l and A2l depends only on the interaction between the proteins

but not on the mitotic ROI. Their binding and unbinding is described

by parameters j12 and j�12, and the dissociation constant

h12 = j�12/j12. ODEs for A1l and A1l:A2l read

dA1l

dt
¼ k1lA1 � k�1lA1l � j12A1lA2l þ j�12A1l : A2l; (6)

dA1l : A2l

dt
¼ j12A1lA2l � j�12A1l : A2l: (7)

Solving at steady state for the concentration of A1l:A2l results in

A1l : A2l ¼ A1A2

K1lK2lh12
: (8)

After immunofluorescence staining for A1, the fluorescence

intensity in mitotic ROI l is therefore given by

I1l ¼ c1 A1l þ A1l : A2lð Þ ¼ c1
A1

K1l
þ A1A2

K1lK2lh12

� �
: (9)

In this equation, the scaling factor c1 relates concentrations to

fluorescence intensity values. The measured intensity thus depends

linearly on the concentration of A1 and further contains the product

of concentrations A1 and A2. This resembles that A1 and A2 are

either recruited to mitotic ROI l due to their affinity to this compart-

ment or due to their mutual affinity.

To generalize this model, we describe binding of proteins Ai with

i = 1. . .n to mitotic ROIs l = 1. . .m. Affinities of proteins Ai to a

mitotic ROI are described by the n-by-m matrix ail = 1/Kil, whereas

affinities between proteins are given by the n-by-n matrix bij = 1/hij.
Then, intensities of all species in all mitotic ROIs of a cell are given

by

Iil ¼ ci
Ai

Kil
þ
Xn
j¼1

AiAj

KilKjlhij

 !
¼ ci ailAi þ

Xn
j¼1

ailajlbijAiAj

 !
: (10)

For parameter estimations, we made the simplifying assumption

that the concentrations of free proteins Ai were approximately

proportional to the average cellular concentrations Ai,t = siAi, with

the proportionality factor si ≥ 1. This assumption holds true if the

proteins are recruited to mitotic ROIs due to their direct affinities to

the cellular structures contained in these ROIs rather than their affi-

nities to the other observed proteins, which will be justified below.
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Average cellular intensities were calculated by weighting intensities

to mitotic ROIs Iil with ROI volumes Vl, given by

Ii;t ¼

Pm
l¼1

IilVl

Pm
l¼1

Vl

: (11)

For model fitting, we calculated fold changes relative to medians

of average concentrations for the population of cells, Îi;t, for intensi-

ties in mitotic ROIs, ~Iil ¼ Iil=Îi;t, and for average cellular concentra-

tions, ~Ii;t ¼ Ii;t=Îi;t. Then, experimental measurements could be

related to model variables Ai by

~Ii;t ¼ Ii;t

Îi;t
¼ sici

Îi;t
Ai: (12)

Thereby, equation (10) was rescaled to

~Iil¼ ci

Îi;t

ail Îi;t
sici

~Ii;tþ
Xn
j¼1

ail Îi;t
sici

ajl Îj;t
sjcj

bij~Ii;t~Ij;t

 !
�di~ail~Ii;t 1þ

Xn
j¼1

~ajlbij~Ij;t

 !
:

(13)

Therein, the rescaled parameter di ¼ ci=Îi;t was equal to the

inverse of the median average cellular concentration, and ~ail ¼ ail Îi;t
sici

was equal to the median concentration of species Ai that was bound

in mitotic ROI l.

To account for different affinities of proteins to mitotic ROIs

during metaphase and segregation, ~ameta;il and ~asegr;il, as well as scal-

ing factors dmeta,i and dsegr,i, intensity measurements during these

cell cycle phases were separately described by

~Imeta;il ¼ dmeta;i~ameta;il
~Imeta;i;t 1þ

Xn
j¼1

~ameta;jlbij~Imeta;j;t

 !
; (14)

and

~Isegr;il ¼ dsegr;i~asegr;il~Isegr;i;t 1þ
Xn
j¼1

~asegr;jlbij~Isegr;j;t

 !
: (15)

Thereby, we assume that rescaled affinities to mitotic ROIs, but

not mutual affinities between proteins bij, were dependent on the cell

cycle phase. We simultaneously fitted equations (14) and (15) to

experimental data for estimating dmeta,i, dsegr,i, ~ameta;il, ~asegr;il, and bij.
The interaction model was implemented in MATLAB (The Math-

Works, Natick, MA, USA). For model calibration, we applied the

solver lsqnonlin using the trust-region-reflective algorithm. To

analyze relevant interactions between proteins, we first used experi-

mental data from controls (cells not treated with inhibitors). Data

from MCF10A and MCF10CA cells were fitted together, assuming

that differences between cell lines were only dependent on different

average cellular concentrations of all proteins but not on affinities to

mitotic ROIs or affinities between proteins. A total of 513 to 529

parameters were estimated by model fitting to 50,635 data points

(47,970 intensity measurements for mitotic ROIs and 2,665 average

intensity values) from control experiments in 205 cells. To equally

weight residuals for data points ~Iil of different magnitudes, we

assumed the error model

e ~Iil
� � ¼ 0:05 � ~Iil þ 0:05 �max ~Iil

� �
; (16)

assuming that for each measurement the experimental error is

given by 5% of the measurement value plus 5% of the maximal

value of all included cells. This procedure is commonly recom-

mended if repeated measurements in the same objects as single

cells are not available (Kreutz et al, 2007; Maiwald & Timmer,

2008). For model fitting, residuals between measurements and

observables

r ¼
~Iil;data � ~Iil

e ~Iil;data
� �

 !2

; (17)

for all cells were minimized. Initially, for all estimated parameters,

large intervals between 10�7 and 102 were allowed. Since none of

the parameters ~ameta;il, ~asegr;il, dmeta,i, and dsegr,i touched the lower

interval boundary and all of these parameters were larger than

10�3, we restricted these parameters to the interval between 10�3

and 102 to accelerate convergence in model fitting. Because esti-

mates of several entries in bij had smaller values, intervals between

10�7 and 102 were pertained for these parameters. To accelerate

convergence of model fits, parameters were fitted on a log-scale.

First, we started with fitting a model that only accounts for

known literature interactions that were extracted from the Ingenuity

pathway knowledge (IPA) database (Krämer et al, 2014). To this

end, bij was reduced to entries according to this set of literature

interactions regarded as ground truth. Then, by sequential feature

selection, additional affinities between proteins were further

included if they could significantly improve the squared sum of

residuals of the model fit. For each selection step of testing whether

an additional interaction should be included, we performed 50

multi-start local optimizations by sampling initial conditions from

allowed parameter intervals. We assured that after optimizations,

differences between the best fits were below the residuals for single

data points. Additional entries in bij were selected based on likeli-

hood-ratio testing, assuming that the likelihood-ratio for a model

including an additional variable compared to a model without the

additional parameter follows a one-dimensional v2 distribution. An

additional affinity between proteins was included in bij if the

increase in log-likelihood exceeded the 95% confidence interval of

the cumulative one-dimensional v2 distribution. Following this

forward selection procedure, 16 additional affinities between

proteins were included. The reduction of the residual sum of

squares is shown in Appendix Fig S6.

These additional entries in bij represent hypotheses about mutual

binding between proteins. Notably, this predicted mutual binding

may be distinct from possible functional interactions between

proteins. Mutual affinity does not necessarily imply a functional

interaction, whereas a functional interaction may not require high

binding affinity. Nevertheless, predictions of mutual affinities

between the observed proteins involved in mitosis can be used to

guide further experiments for investigating functional relations and

protein complexes that are linked to cellular processes.

After identifying an optimal set of additionally included affinities

from model fitting to the control dataset, the model was fitted to

data from inhibitor treatments. For every inhibitor treatment, the
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parameters dmeta,i, dsegr,i, ~ameta;il, ~asegr;il, and the extended bij were

estimated by model fitting.

Finally, to estimate effects from inhibitor treatments on compart-

ment affinities and on mutual affinities between proteins, we again

fitted the model to the control dataset from untreated cells and to

datasets from inhibitor treatments. We performed in each case 1,000

multi-start local optimizations by sampling initial conditions from

allowed parameter intervals. Appendix Fig S7A shows the ordered

sum of squared residual values for 1,000 multi-start local optimiza-

tion runs for fitting the control dataset. In Appendix Fig S7B, model

simulations for the best model fit to the control dataset were plotted

against experimental data. It is evident that the model fit is highly

consistent with experimental measurements. Known and addition-

ally predicted entries of bij, and estimated affinity values for the

control dataset were shown in Fig 4B and C. Estimated affinity

values for an exemplary inhibitor (PLK1) were visualized in Fig 4D.

Furthermore, the average affinities for all inhibitors were shown in

Appendix Fig S2. Appendix Fig S2C shows estimates ~ameta;il, ~asegr;il
for estimated affinities to mitotic ROIs, whereas Appendix Fig S2D

shows estimates ameta;il=si and asegr;il=si that were obtained by multi-

plying with scaling factors dmeta,i and dsegr,i.

Interpretation
Known interactions from literature were generated through the use

of QIAGEN’s Ingenuity� Pathway Analysis (IPA�, QIAGEN

Redwood City, https://www.qiagenbioinformatics.com/products/in

genuity-pathway-analysis/). They are supported by at least one

reference from the literature, from a textbook, or from canonical

information stored in the Ingenuity Pathways Knowledge Base

(Krämer et al, 2014).

Data availability

The sample microscopy dataset from this publication has been

deposited to the BioStudies database (https://www.ebi.ac.uk/bios

tudies/) and assigned the identifier S-BSST176. Custom software

code for the 3D SPECS image processing pipeline that can be applied

on the exemplary microscopy dataset is available in Dataset EV2.

Spherical neighborhoods and their image sources can be directly

inspected online at https://ibios.dkfz.de/iterstain.

Expanded View for this article is available online.
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