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Abstract: Neuroblastoma is a pediatric tumor arising from the sympatho-adrenal lineage and a world-
wide leading cause of childhood cancer-related deaths. About half of high-risk patients die from
the disease while survivors suffer from multiple therapy-related side-effects. While neuroblastomas
present with a low mutational burden, focal and large segmental DNA copy number aberrations are
highly recurrent and associated with poor survival. It can be assumed that the affected chromosomal
regions contain critical genes implicated in neuroblastoma biology and behavior. More specifically,
evidence has emerged that several of these genes are implicated in tumor dependencies thus poten-
tially providing novel therapeutic entry points. In this review, we briefly review the current status of
recurrent DNA copy number aberrations in neuroblastoma and provide an overview of the genes
affected by these genomic variants for which a direct role in neuroblastoma has been established.
Several of these genes are implicated in networks that positively regulate MYCN expression or
stability as well as cell cycle control and apoptosis. Finally, we summarize alternative approaches to
identify and prioritize candidate copy-number driven dependency genes for neuroblastoma offering
novel therapeutic opportunities.

Keywords: neuroblastoma; DNA copy number gains; MYCN; dependency; drug targets

1. Introduction

Neuroblastoma (NB) is a pediatric tumor arising from the sympathetic neuronal
lineage with a remarkably variable clinical presentation. The majority of children diagnosed
with NB below the age of 18 months present with low or intermediate risk disease and
have an excellent prognosis (INRGSS stages L1,L2 and MS with favourable genomic
features) [1–3]. Older children with NB typically present with high-risk disease and require
multi-modal intensive therapy. Despite this aggressive treatment, half of these patients will
succumb to their disease. Those that do survive often have long-lasting negative health
effects. A special type of NB occurs at a very young age, but with a peculiar metastatic
pattern including skin, liver, and bone marrow metastases (Stage MS) but which regresses
or differentiates with minimal therapeutic intervention [3].

After decades of research insights are growing into the underlying genetic features
of the complex heterogeneous clinical behavior of this enigmatic tumor. Amplification
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of the MYCN oncogene was one of the first discovered genetic alterations in NB [4,5]. It
was rapidly recognized as an important prognostic indicator and critical determinant for
therapeutic patient stratification. Additionally, DNA content measurements revealed near
triploid DNA content in stage L1/2 and MS cases [6]. Following these early pioneering ob-
servations, additional chromosomal analyses, loss-of-heterozygosity studies, comparative
genomic hybridization, DNA arrays and most recently DNA sequencing have provided
a comprehensive view on NB genomes. The mutational landscape has been shown to be
relatively silent with ALK mutations being the only substantially mutated target in almost
10% of cases at diagnosis [7–11], while in relapsed cases increase of RAS/MAPK pathway
mutations was noted (including ALK mutations) [12–14]. In older NB patients (adolescents
and young adults with a more indolent or chronic form of NB), roughly 30% of cases
present with ATRX deletions (indels) or loss-of function missense mutations and in-frame
fusions in rare cases [15–18]. TERT rearrangements and enhancer hijacking is found in 25%
of NB patients [17,18].

In contrast to the overall paucity of mutations, low and high-risk NB presents with
highly recurrent whole chromosome or segmental imbalances and focal copy number aber-
rations (CNAs) respectively [19,20]. This remarkably consistent pattern of chromosomal
imbalances has led to the suggestion that dosage effects of genes residing on the affected
chromosomal regions contribute to tumor biology. This is obvious for the prototypical
MYCN oncogene which is amplified in 30% of the high-risk NB cases and which acts as a
strong dependency factor [21]. In addition to this frequent amplification event, additional
genes have been identified (described in more detail in this review) that are involved in rare
high-level amplifications or focal gains and which were subsequently shown to contribute
to tumor behavior and dependency. Interestingly, many of these rare amplicons affect loci
that map to the highly recurrent common large segmental gains such as 2p- and 17q gain
suggesting that these rare focal gains and amplifications may serve as “smoking guns” to
identify novel and potentially druggable NB genes.

In this review, we will first give a short historical overview on the detection of DNA
copy number abnormalities in NB. Next, we summarize and discuss the currently identified
genes with an established role in NB biology which are located on regions affected by
gains and/or amplifications and address their role in NB tumor dependency potential
for druggable interventions. While progress has been made in deciphering which copy
number affected genes could potentially contribute to NB tumor behavior, several impor-
tant questions remain unanswered. First, exactly how does a single extra copy of a large
chromosomal region which encompasses dozens or more gene loci impact on the NB tumor
phenotype? Second, are there any genes that enhance the effect of dosage genes through
additive or epistatic effects? Third, do large DNA copy number imbalances act as drivers
of early tumor formation, or do they predominantly contribute to tumor maintenance and
dependency at a later stage, or both? At least for the first question, we have additional
evidence that DNA copy number gains are unlikely to be innocent bystanders. Indeed, in
MYCN driven mouse tumors we also observed large segmental chromosome gains for a
region of mouse chromosome 11 which is syntenic to human chromosome 17 [22]. Also, re-
cent whole genome sequencing data indicate that the common imbalances are early events
preceding the occurrence of mutations [23]. However, this only provides partial insight
into how these copy number gains affect tumor behavior; to answer these questions new
experimental approaches are needed. The last section of this review proposes a number
of non-exhaustive experimental and analytical strategies that are currently emerging and
may allow us to answer these questions. Given the paucity of options for targeted therapy
based on mutations only, a better understanding of the critically involved copy number
driven genes and their putative epistatic interactions may provide important insights for
testing novel therapeutic strategies.
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2. Recurrent Focal and Large Segmental DNA Copy Number Alterations in NB

In addition to the existence of double minutes and homogeneously staining regions
resulting from high level MYCN amplification, the first cytogenetic studies also detected re-
current large distal 1p deletions [24]. Chromosome 1p deletions are usually associated with
MYCN amplification but also occur in MYCN non-amplified high-risk NB (Figure 1) [25].
Subsequent loss-of-heterozygosity studies defined a critical 1p36 segment commonly af-
fected by 1p deletions [26,27] as well as the discovery of additional recurrent deletions
affecting 3p, 4p and 11q [28]. Using comparative genomic hybridization (CGH) and DNA
arrays these 11q deletions were shown to predominantly occur in high-risk MYCN non-
amplified NBs [29,30] (Figure 1). These analyses also allowed a comprehensive mapping of
gains across the NB genomes [19,31–33]. Whole chromosome imbalances were invariably
present in low-risk L1/2 and MS NB while highly recurrent segmental gains mark stage M
NBs. The most frequently occurring segmental gain implicated a large distal section of the
long arm of chromosome 17 with breakpoints typically distal to 17q21 [34–37] (Figure 1).
Other recurrent gains affecting larger chromosome segments involve 1q, 2p, 7q, 11q13.3
and 12q of which some loci are also affected by higher level focal amplification [23]. Of
note, the typical deletions and gains of large chromosome arm segments often result from
one single unbalanced chromosomal translocation [34].
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Figure 1. Correlation between chromosome arm length and amount of gains and/or losses on the arm
in a dataset of 542 high-risk primary NB tumors [38] showing recurrent copy number imbalances in
MYCN non-amplified and MYCN-amplified tumors. Gains or losses that spanned both chromosomal
arms where not withhold. For every chromosomal arm the ratio of gains versus losses was analyzed
in a binomial test to establish whether either the number of gains was exceptional in respect to the
number of losses or the other way around. If a significant amount of gains was found for the total
number of gains and losses, the chromosomal arm is displayed in red, if the other way around in
blue, and if both losses and gains on the arm were on par (p-value binomial test ≥0.05) they are
displayed in green. The ‘green’ arms were used to calculate a linear regression between chromosomal
arm length and total number of combined losses and gains. The standard deviation on this linear
regression is depicted in a shaded green area to indicate where normal amounts of gains and losses
lie for the chromosome arms of different length. Outliers can now easily be identified in the two
MYCN groups and comprise the usual suspects.
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Segmental chromosomal gains in general, and chromosome 17q gain in particular,
were found to be associated with poor survival [19,35,39]. To identify genomic aberrations
associated with poor outcome in high-risk NB, we applied logistic and Cox proportional
hazard regression on CNAs from 556 high-risk NBs obtained at diagnosis [33,38]. Using
this approach, we identified two types of CNAs that are associated with an extremely poor
prognosis: (1) distal chromosome 6q losses detected in 5.9% of patients and associated with
a 10-year overall survival probability of only 3.4% and (2) amplifications of regions not
encompassing the MYCN locus detected in 18.1% of patients [(2p25.1 encompassing the
ODC1 locus (12 samples), 2p23.2 including ALK (5), 2p25.1 including GREB1/NTSR2 (4),
6q16.3 including LIN28B (3), 12q15 including MDM2(2), 12q13.3/14.1 including CDK4 (2),
11q13.2/13.3 including MYEOV and CCND1 (2), and 5p15.33 including TERT (2). Several
other amplicons, including 8q24.21 encompassing the MYC gene (1 sample)] and associated
with a 10-year overall survival probability of only 5.8% [38].

DNA arrays with increased resolution and ultimately whole genome sequencing
allowed reliable detection of smaller focal copy number alterations or indels and paved
the way for the identification of several novel genes critically involved in NB. Whole
genome sequencing unveiled chromothripsis as a mechanism driving complex multi-locus
rearrangements causing combined amplification, deletion, gain and structural variants
affecting particular loci [40]. Circle-sequencing further dissected the landscape of small
and large extra chromosomal DNA in NB (respectively eccDNA and ecDNA) [41,42]. Large
ecDNAs detectable as double minutes encompass entire genes and are associated with
elevated expression levels of amplified genes. A recent experimental study on DHFR ampli-
fication under methotrexate exposure revealed that chromothripsis not only drives ecDNA
formation but is also implicated in further ecDNA evolution [43]. In NB, chromosomal
circle integration was shown to preferentially affect tumor suppressor genes and thus may
further shape genomic evolution of these cancer cells [42].

3. DNA Copy Number Affected Genes Supporting MYCN Activity

In an early DNA copy number analyses, we identified several focal aberrations af-
fecting genes that were connected to MYCN regulation or activity [44]. Taken together, a
picture emerges where DNA copy number affected regions seem to be embedded within
the tumor genome under the selective pressure to increasingly support MYCN activity in
these cells. Here below we describe in more detail the key copy number driven genes with
an established role in regulating MYCN activity (Figures 2 and 3).

3.1. ALK

The anaplastic lymphoma kinase gene, typically present as fusion genes in anaplastic
large cell lymphoma and a subset of lung cancers, was also found to be implicated in NB
development. Activating ALK genetic alterations occur in 8–10% of all NB cases, and are
mostly missense mutations affecting the ATP-binding pocket, with ALK amplifications
found in a small subset of tumors. In addition, germline variants of ALK are found in famil-
ial NB cases supporting a bona fide oncogenic driver effect for activating ALK mutations
in humans [7–11,45]. In ALK amplified cases, MYCN is typically co-amplified [45]. Both
genes are located on the short arm of chromosome 2 which is often gained in high-risk NB
and MYCN/ALK co-amplification typically results from a chromothripsis event involving
the chromosome 2 short arm [40]. Remarkably, in mouse and zebrafish, ALK mutations
are not sufficient as a single lesion to drive NB formation but ALK activating mutations do
significantly accelerate MYCN driven NB formation [46–48]. Further support for functional
interaction between mutant ALK and MYCN was provided by neuroendocrine prostate can-
cer research where activated ALK was shown to cooperate with MYCN via Wnt/β-catenin
signaling [49].
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Figure 2. Table describing the copy number affected genes discussed in this review, their chromosomal location and
cytoband, their main function with references, in vivo modeling with references, and drugs on target with references.
Frequency of copy number gains/amplifications (red) and losses (blue) for chromosomes 1 to 22 in 542 high-risk NB samples
with segmental CNAs [38]. Copy number affected genes in NB that were discussed in this review are depicted on their chro-
mosome with the associated copy number frequency (chromosome 2, 6, 8, 11, 12, 13 and 17). Refs. [22,23,40,45–48,50–128]
are cited in Figure 2.
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Following knockdown or pharmacological inhibition of mutant ALK in NB, we per-
formed transcriptome profiling and found that downstream signaling is mediated through
the RAS/MAPK and PI3K/AKT pathways [129]. For each of these downstream signaling
axes we identified a key component that could explain the increased aggressiveness of
MYCN/ALK activated NB cells, i.e., (1) RAS/MAPK/ERK signaling activated the ETV5
transcription factor which controlled migration, invasion and colony formation in vitro and
proliferation in a murine xenograft model ([130], p. 5) and (2) the PI3K/AKT/FOXO3a reg-
ulated ‘HMG-box transcription factor 1′ (HBP1) which inhibits both the transcriptional ac-
tivating and repressing activity of MYCN. Of further interest, HBP1 itself is under negative
control of MYCN through miR-17~92. Combined targeting of HBP1 by PI3K antagonists
and MYCN signaling by BET- or HDAC-inhibitors blocks MYCN activity and significantly
reduces tumor growth, suggesting a novel targeted therapy option for high-risk NB ([131],
p. 1). Using a detailed proteomics analysis of the mutant ALK signaling components in
NB, the signaling adaptor protein ‘insulin receptor substrate 2′ (IRS2) was also identified
as a major ALK downstream target further controlling the PI3K/AKT/FOXO3a axis [132].
Finally, we also noted that mutant ALK upregulates RET and RET-driven sympathetic
neuronal markers of the cholinergic lineage [129] which is intriguing in the light of the
recent finding that malignant cells enriched in high-risk NB resemble a subtype of TRKB+
cholinergic progenitor population identified in the human post-natal gland [133].

At present, constitutive ALK activation through mutation or amplification is the most
accessible target for precision medicine in NB [7–11] with a recently initiated clinical trial
for the 3rd generation ALK inhibitor Lorlatinib [51–53]. Remarkably, the gene encoding
the ALK ligand ALKAL2 is located on the distal 2p segment (2p25.3). In view of the highly
recurrent distal 2p gains in high-risk NBs this suggests that, in addition to increased
expression levels of MYCN in cases of MYCN non-amplified tumors, an extra copy of the
ALK gene and the gene for its ligand could impact tumor formation. The Palmer team
recently investigated whether the ALKAL2 ligand could potentiate NB progression in the
absence of ALK mutation and showed that ALKAL2 overexpression in mice drives ALK TKI-
sensitive NB in the absence of ALK mutation. Consequently, both ALK mutated/amplified
as well as 2p-gain high-risk NBs with elevated ALK/ALKAL2 protein, may benefit from
ALK tyrosine kinase inhibitor-based therapeutic intervention [134].

3.2. LIN28B

The discovery of LIN28B involvement in NB was triggered through the finding of a
new amplified region on chromosome 6q21 in three high-risk NB tumors in a dataset of
263 tumors [54] as well as a GWAS study [54,55]. The smallest region of overlap (SRO) of
the discovered amplicons in the first study encompassed four genes, including LIN28B.
LIN28B overexpression was identified in three independent NB tumor series compared to
normal reference tissues and a series of tissues from other malignancies. Most importantly,
analysis of LIN28B expression showed pronounced overexpression in the tumors with
LIN28B amplification while Kaplan-Meier analyses showed that high expression of LIN28B
was significantly associated with poor overall survival in two cohorts of 88 and 283 patients
with NB [54]. LIN28B is a key regulator of developmental processes by modulating microR-
NAs (miRNAs) of the let-7 family. LIN28B represses the let-7 miRNAs which consequently
results in elevated MYCN protein expression in NB cells. Molenaar et al. further showed
that LIN28B–let-7–MYCN signaling blocked differentiation of normal neuroblasts and NB
cells. They recapitulated these findings in a mouse model in which LIN28B expression in the
sympathetic adrenergic lineage induced development of NBs marked by low let-7 miRNA
levels and high MYCN protein expression [54]. In a subsequent study, we performed a
comprehensive analysis of the regulation of LIN28B in NB, with a specific focus on the con-
tribution of miRNAs and showed that MYCN regulates LIN28B expression in NB tumors
via two parallel mechanisms. First, using an unbiased LIN28B-3′UTR reporter screen, we
found that miR-26a-5p and miR-26b-5p regulate LIN28B expression. We provided evidence
that MYCN indirectly regulates the expression of miR-26a-5p, which on its turn reduces
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LIN28B levels, therefore establishing an MYCN-miR-26a-5p-LIN28B regulatory axis [56].
Second we demonstrated that MYCN regulates LIN28B expression via interaction with the
LIN28B promoter, establishing a direct MYCN-LIN28B regulatory axis [56]. In addition, an-
other study revealed ‘PDZ Binding Kinase’ (PBK) as a novel LIN28B target with implication
in NB, repressed by let-7 and positively regulated by MYCN [57]. Further insights into the
role of LIN28B in NB was provided by the Diskin team who identified the oncogene RAN,
located on chromosome 12, as a LIN28B direct RNA target. They further showed that re-
gional gains of chromosome 12q24 as an additional somatic alteration resulted in increased
RAN expression. LIN28B influences RAN expression by promoting ‘RAN Binding Protein
2′ (RANBP2) expression in a let-7-dependent manner and by directly binding RAN mRNA.
Aurora kinase A (AURKA) was found to be activated by both RAN and LIN28B through
phosphorylation and let-7-mediated repression respectively [58]. Remarkably, the Look
team discovered a let-7 independent function for LIN28B in NB development through the
analysis of overexpression of wild-type (WT) LIN28B and a LIN28B mutant that is unable to
inhibit let-7 processing. Unexpectedly, both increase the penetrance of MYCN-induced NB,
potentiate the invasion and migration of transformed sympathetic neuroblasts, and drive
distant metastases in vivo in zebrafish. Genome-wide chromatin immunoprecipitation
coupled with DNA sequencing and co-immunoprecipitation experiments showed that
LIN28B is recruited to active gene promoters in NB cells through protein-protein interaction
with the sequence-specific zinc-finger transcription factor ZNF143 [59]. The activated
downstream targets include transcription factors forming the adrenergic core regulatory
circuitry that control the malignant cell state in NB [108,135,136] as well as GSK3B and
L1CAM that are involved in neuronal cell adhesion and migration [59].

3.3. MiR-17~92

The oncogenic miR-17~92 cluster consists of six individual miRNAs (miR-17, miR-18a,
miR-19a, miR-19b, miR-20a, and miR-92a) located within a polycistronic transcript on
human chromosome 13 and is widely implicated in cancer [60–62]. Overexpression can
result from amplification of the miR-17~92 locus [60] or direct miR-17~92 transactivation
by c-MYC/MYCN [63–65]. The oncogenic nature of miR-17~92 activation is supported by
the identification of miR-17~92 targets with key roles in cell-cycle control and cell death.
In particular, miR-17 and miR-20a target the cyclin-dependent kinase inhibitor CDKN1A
(p21), a negative regulator of the G1-S transition, and miR-17 targets the proapoptotic
BCL2L11 gene (Bim) [63]. The Ventura team performed a groundbreaking in vivo study
to further unravel the role of the individual members of this cluster and found, amongst
others, a role for miR-19 in Myc-driven tumorigenesis in two models of human cancer [66].
Investigation of a large series of NB cases revealed one tumor with a small focal gain of
the chromosome 13q31.3 region encompassing the miR-17~92 locus as only locus present
in this focal gain, further indicating a supportive role for enhanced expression levels of
one or more miRs from this cluster and selective pressure during the tumor formation
process for those cells carrying an extra copy of the locus [44]. Using combined SILAC
and quantitative mass spectrometry, the effects of activation of the miR-17~92 cluster on
global protein expression in NB cells were investigated showing cooperation between
individual miR-17~92 miRNAs and implicating miR-17~92 in multiple hallmarks of cancer,
including proliferation and cell adhesion [65]. In this study, miR-17~92 was found to act as
a potent inhibitor of TGF-β signaling through affecting both upstream and downstream
regulators of pSMAD2 thus triggering downregulation of multiple key effectors along the
TGF-β signaling cascade as well as direct inhibition of TGF-β-responsive genes. Of further
note, using an integrated approach including miRNA and messenger RNA (mRNA) gene
expression data it was shown that c-MYC/MYCN induced, in addition to the miR-17~92
cluster, a broader core set of miRNAs for cooperative repression of common transcriptional
programs related to disease aggressiveness [67].
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3.4. ALYREF

The Marshall team used a bioinformatic approach to identify critical genes on 17q in
high-risk NBs by evaluating frequency of gains distal to 17q21.31 using whole genome
sequencing data from NB tumors from the US TARGET database [68]. A total of 1044 tran-
scripts from the 17q21-ter locus were analyzed for differential gene expression in 17q21-ter-
gain patients (1) and MYCN-amplified patients (2) in the same cohort. Further correlation
with gene copy number (3) and MYCN expression (4) as well as association with poor NB
patient outcome (5) were taken into account. Using this approach, ALYREF was the only
gene to pass all five criteria among the 1044 17q21-ter genes, and suggests that MYCN
and ALYREF co-operate as tumorigenic factors in NB. Further functional studies revealed
that MYCN increases NB cell viability in an ALYREF-dependent manner and directly regu-
lates ALYREF transcription. The known role of ALYREF as a regulator of DNA binding
guided further analyses that uncovered ALYREF-MYCN interaction in a nuclear coactivator
complex which stimulates transcription of the ‘ubiquitin specific peptidase 3′ (USP3), con-
sequently reducing MYCN ubiquitination and degradation. This finding therefore opens
novel opportunities for targeting this deubiquitinase activity through the development of
USP3 inhibitors [68].

3.5. MYC

Given that MYC also drives expression of the miR-17~92 locus it would not be unex-
pected that MYC overexpression could also cause NB and that MYC could be a target for
amplification in a subset of NB. We first reported a bona fide NB cell line with evidence for
a chromothripsis event involving amongst others multiple chromosome 8q loci including
MYC [69]. More recently, the Look team reported amplification of critical enhancers con-
trolling MYC expression in a subset of NBs as well as structural rearrangements leading to
enhancer hijacking [70].
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4. DNA Copy Number Affected Genes Driving Cell Cycle Activity
4.1. CDK4/CCND1

Already in 1995, we found evidence for amplification of a region encompassing several
putative oncogenes on the long arm of chromosome 12 including SAS, MDM2, CDK4, GLI,
CHOP and CDK2 [71]. Decrease in Cdk2 abundance and loss of CDK4 activity was observed
in a mouse NB cell line upon neuronal differentiation in response to DMSO [72]. Gains and
amplification of the CDK4 regulatory subunit ‘cyclin D1′ (CCND1) were detected in early
DNA copy number profiling efforts of high-risk NBs. In most cases the CCND1 gains were
accompanying large 11q deletions in MYCN non-amplified tumors [30]. In a recent whole
genome profiling study of 205 high-risk cases Brady et al. confirmed the association of
11q13.3 copy number gains with the chromosome 11 deletions (resulting from unbalanced
translocations) resulting in significant increased CCND1 expression [23].

Dependency on CCND1 and CDK4 for NB survival and proliferation was demon-
strated and a functional dependency on overexpression of G1-regulating genes to maintain
the undifferentiated phenotype was shown [81]. In line with these findings, another study
investigated genome-wide copy number alterations and transcriptomes in 82 NB tumors
showing that nearly 30% of all tumors had genomic amplifications, gains, or losses with
shortest regions of overlap that suggested implication of a series of G1 cell cycle regulating
genes. This included the above mentioned CCND1 and CDK4 which were amplified or
gained and the chromosomal regions containing the CDKN2 (INK4) group of CDKIs which
were frequently deleted. Cluster analysis showed that tumors with genomic aberrations
in G1 regulating genes over-expressed E2F target genes, which regulate S and G2/M
phase progression [137]. This was further explored in the context of doxorubicin induced
DNA damage response. The altered CDK4/cyclin D-pRB axis in MYCN-amplified NB
cells allowed to evade a G1/S arrest after doxorubicin-induced DNA damage. Additional
chromosomal aberrations affecting the p53-p21 and CDK4-pRB axes further enhance the
effects of MYCN on the G1 checkpoint and reduce sensitivity to cell death after doxorubicin
treatment. CDK4 inhibition partly restores G1/S arrest and sensitizes cells to doxorubicin-
mediated cell death in MYCN-amplified cells with an intact p53 pathway [73]. Taken
together, these studies identified proteins controlling the critical G1/S restriction point as
putative therapeutic targets for high-risk NB [74]. Using an siRNA library for 131 cell cycle
regulators, we found CCND1 and PLK1 as top hits and further investigated the effects of
a small molecule compound palbociclib which is a potent and highly selective inhibitor
of CDK4 and CDK6. NB cell lines IMR-32, SH-SY5Y, and NGP responded in a time- and
dose-dependent manner with reduced proliferation while SK-N-SH and CLB-GA cells were
relatively resistant to the treatment and other cell lines such as SH-EP responded at rela-
tively high concentrations [75]. The Maris team evaluated the effect of dual CDK4/CDK6
inhibition on NB viability using the highly specific CDK4/6 inhibitor ribociclib (LEE011,
Novartis Oncology, Basel, Switserland) showing the expected reduction in proliferation in
12 of 17 human NB-derived cell lines through cell-cycle arrest and cellular senescence [76].
More recently, a phase I clinical trial was conducted with ribociclib in pediatric cancer
patients to test safety and pharmacokinetics with positive results [77]. Next, the combina-
tion of ribociclib and the ALK inhibitor ceritinib were tested showing a higher cytotoxicity
and synergy scores in cell lines with ALK mutations as compared with cell lines lacking
mutations or alterations in ALK. Combination therapy achieved complete sustained regres-
sions in NB xenografts with ALK-F1174L and F1245C de novo mutations and prevented
the emergence of resistance. Murine ribociclib and ceritinib plasma concentrations were
unaltered by the use of combination therapy [78]. Synergistic interaction with ribociclib
was also found for MEK1/2 inhibition [79]. In contrast, combined drugging of CDK4/6
and MDM2 activity did not show noticeable synergistic effects [80].

4.2. TRIM37

TRIM37, the centrosomal ubiquitin ligase on chromosome 17q, was identified as a top
hit in a genome-wide screen for genes whose inactivation enables sustained proliferation
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of PLK4 inhibitor (centrinone) treated retinal pigment epithelium (RPE1) cells. Loss of
TRIM37 rescued the delayed spindle assembly and chromosome-segregation failure seen
in cells that lack centrosomes treated with centrinone. Further analyses revealed that
TRIM37 is an essential determinant of mitotic vulnerability to PLK4 inhibition: low TRIM37
levels accelerate acentrosomal spindle assembly and improve proliferation following PLK4
inhibition, whereas high TRIM37 levels inhibit acentrosomal spindle assembly, leading
to mitotic failure and cessation of proliferation. NB and breast cancer cells with gain of
chr17q were found to be highly sensitive to PLK4 inhibition [82].

5. DNA Copy Number Affected Genes Involved in TP53 Pathway Control
5.1. MDM2

The first evidence for MDM2 amplification in NB was reported by Waber et al. [138]
in 1993 and later confirmed by several other studies [71,83–85]. As indicated above,
multiple other loci are often co-amplified and more complex amplification patterns affecting
distinct chromosome 12q chromosomal segments hint towards chromothripsis causing
events. The p53 function is inhibited by MDM2, and while TP53 mutations are rather
rare in NB, its occurrence is associated with relapse cases [86]. Mutations in the RAS or
p53 pathway increases tumor aggressiveness in the high-risk cases defined by telomere
maintenance, while this is not the case in low-risk tumors [139]. Multiple studies pointed
towards disruption of the TP53/MDM2/p14 signaling axis in wild-type p53 NB and
the functional consequences have been extensively investigated [87–90]. In addition to
its canonical function as p53 inhibitor, the MDM2 ubiquitin ligase also controls MYCN
protein stability which itself drives MDM2 expression through promotor binding and
transcriptional activation [91–95]. Importantly, MDM2 overexpression and dependency
offers a target for precision drugging given the potential to disrupt MDM2-p53 protein-
protein interaction in TP53 wild type NB cells. Using a low-molecular-weight compound
that competes with p53 for binding into a hydrophobic cleft on the surface of MDM2,
termed nutlin-3 [96], we have been able to elicit a robust and selective activation of the
p53 pathway in NB cells with wild-type p53, leading to G1 cell cycle arrest, apoptosis,
premature senescence and neuronal differentiation [97]. MDM2 inhibition by nutlin-3 also
dramatically sensitizes NB cells to chemotherapy-induced apoptotic cell death [98], and
nutlin-3 can reverse P-glycoprotein-mediated multidrug resistance of NB cells regardless
of TP53 mutation status [99]. These findings prompted further exploration of nutlin-3
derivatives for novel clinical trials in pediatric tumors including NB [100,101].

5.2. BIRC5

Survivin, encoded by the BIRC5 locus is an essential protein for cell division and can
inhibit cell death in most, if not all cancers including high-risk NBs. Of further interest,
the BIRC5 gene maps to the commonly gained 17q segment and thus could represent a
bona fide target affect by extra 17q copies [102,103]. Given that survivin is the fourth most
upregulated mRNA in the human cancer transcriptome [140] and its expression has been
correlated with increased tumour resistance to a broad range of chemotherapy agents,
radiation insensitivity and poor patient prognosis, it has been investigated as target for
therapeutic intervention. Currently, the best-studied survivin suppressor is YM155 (sepa-
ntronium bromide) which has been tested with variable results [104]. A recent paper has
validated the role of survivin in NB development and describes the potential of utilizing
survivin as drug target. It was shown that co-overexpression of BIRC5 in Tg(dβh:eGFP-
MYCN) transgenic zebrafish promotes the development and growth of MYCN-driven
NB (Dolman et al., in review) in keeping with data from Hipp et al. showing that sur-
vivin enhanced the tumorigenic functions of MYCN in Rat1 fibroblasts [105]. Recently,
Michaelis et al. found no difference in efficacy of response to sepantronium bromide
between MYCN non-amplified and MYCN-amplified in vitro NB model systems [106].
In vivo analyses in mice showed strong response to sepantronium bromide for KCNR NB
cells [107]. Further efforts to identify potent on-target surviving inhibitors are ongoing in-
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cluding the search for small molecule inhibitors of the survivin dimerisation interface [141],
or adjacent cavities [142], antibodies binding to a cell surface pool of survivin [143], and
short interfering RNA directing survivin which is encapsulated in nanoparticles [144].

6. DNA Copy Number Affected Genes Driving Transcriptional Addiction
6.1. TBX2

Given the established important role of super-enhancer marked transcription factor
encoding loci in several cancer entities we set out to identify such candidates residing on
chromosome 17q. The ‘T-box 2 transcription factor’ (TBX2), a gene with unknown function
in NB, was prioritized as transcription factor with top-ranked super-enhancer score in
NB cell lines and with expression levels highly correlated with survival outcome in NB
tumors [109]. Based on integrated analysis of the TBX2 genome-wide DNA binding pattern
and transcriptome analysis upon knockdown, we identified TBX2 as novel member of
the core regulatory circuitry that marks high-risk NBs. Similar findings were obtained
using an unbiased genome-scale CRISPR screen identifying 147 candidate essential genes
in MYCN-amplified NB cell lines, pinpointing TBX2 as member of the core regulatory
circuitry in MYCN-amplified NB [108]. Our data suggest a role for TBX2 in positive
control of E2F-FOXM1 signaling and proliferation. We propose that TBX2, as member
of the core regulatory circuit, further enhances MYCN driven proliferation. Combined
pharmacological targeting of transcriptional addiction using a BET (JQ1) and CDK7 (THZ1)
inhibitor, yielded synergistic effects on TBX2 downregulation leading to massive apoptosis.

6.2. JMJD6

To further identify transcriptional regulators affected by 17q gains, the Tao team
looked for candidates and identified the ‘Jumonji domain-containing 6′ (JMJD6) gene
which encodes a dual arginine demethylase and lysyl hydroxylase of histone and non-
histone proteins. As a histone arginine demethylase, JMJD6 modulates RNA polymerase
II release from promoter-proximal pause regions at target gene anti-pause enhancers by
forming a protein complex with BRD4 and demethylating histone H4 at arginine 3 (H4R3)
which consequently results in transcriptional activation. Whereas as a lysyl hydroxylase,
JMJD6 also forms a protein complex with p53 and catalyzes p53 protein hydroxylation,
which results in p53 inactivation. JMJD6 was shown to form protein complexes with
MYCN and BRD4, controlling E2F2 and MYCN transcription, supporting proliferation and
survival of NB cells. Combination therapy with the CDK7 (super-enhancer) inhibitor THZ1
and the histone deacetylase inhibitor panobinostat synergistically reduces JMJD6, E2F2
and MYCN expression, inducing apoptosis in vitro and causing NB tumor regression in
mice [110].

6.3. SOX11

Our team identified SOX11 as putative dependency gene through a search for focal
gains and/or amplifications of chromosomal segments encompassing transcription factors
with a putative or known role in normal (neuronal) development. Re-analysis of NB DNA
copy number profiling data revealed the sympatho-adrenal lineage specific SOX11 gene
in recurrent chromosome 2p focal gains and amplifications [111]. SOX11 is specifically
expressed in adrenergic NBs and absent in mesenchymal NBs [111,112], two distinct super-
enhancer associated subtypes in NB [135,136]. Indeed, SOX11 is regulated by multiple
adrenergic specific cis-acting (super-) enhancers, along with adrenergic NBs being strongly
dependent on high SOX11 expression levels for growth and proliferation [111]. SOX11
was also shown to be involved in nucleokinesis in adrenergic NB cells [112]. We identified
and validated functional SOX11 target genes through genome-wide DNA-binding and
transcriptome analysis and identified several genes which are implicated in chromatin
remodeling and epigenetic modification. Given the broad control of SOX11 on multiple
epigenetic regulatory complexes and its presumed pioneer factor function [145], we hy-
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pothesize that adrenergic NB cells have co-opted the normal role of SOX11 as a crucial
regulator of chromatin accessibility and cell identity [111].

6.4. SOX9

Large cohorts of NB patients have been studied using genome wide association
(GWAS) analysis to identify NB predisposing loci. One such locus on 6p22.3 was further in-
vestigated and shown to encode CASC15 and NBAT1 lncRNAs acting as tumor suppressors
with reduced expression in high-risk NBs. These lncRNAs were shown to repress SOX9
expression levels through CHD7 ([113], p. 9), a known regulator of neuronal differentiation
and (super-) enhancer activity [114]. Of further interest, SOX9 is shown to be regulated by
a mesenchymal-specific super-enhancer in NB [136], and plays a role in NB migration and
invasion [115]. Given the SOX9 location on 17q25 which is commonly gained in high-risk
NB, it is conceivable that dosage effects of SOX9 further enhance differentiation arrest
during NB formation. Interestingly, CHD7 protein stability is regulated by the CASC15
and NBAT1 interactor USP36 which is also located on the chr17q gained region [113].

7. DNA Copy Number Affected Genes Controlling DNA Damage and Replicative
Stress Response
7.1. PPM1D/WIP1

While for other chromosomal regions discussed above, rare but recurrent high-level
amplifications were found, for 17q gains recurrently affected amplified regions are ex-
tremely rare. Through DNA copy number analysis of a less commonly used NB cell line
M-PN-TS high level amplification of a small region encoding 15 genes (seven of which were
consistently overexpressed, including PPM1D (WIP1)) was delineated. Further functional
experiments revealed reduced proliferation and survival upon PPM1D knockdown [116].
In a recent analysis on 208 tumors with chromosome 17q gain, only three genes revealed to
be present in the smallest region of overlap including PPM1D, RAD51C and BRIP1, and
these chromosome 17q segmental gains were shown to further accumulate during clonal
evolution. Furthermore, a gene fusion of PPM1D and BCAS3 was also found to be present
in one NB tumor, subsequently resulting in accumulating PPM1D expression levels [117].
PPM1D is a negative regulator of p53 and positively regulates MDM2 thus further en-
hancing p53 inhibition (Figure 3, loop 6) [117,146]. Using a CRISPR screen, wild-type P53
cell lines were shown to be dependent on PPM1D expression and PPM1D knockdown
delayed tumor formation in vivo. PPM1D is also shown to be a critical regulator of DNA
damage response by dephosporylating and inactivating ATM, ATR, CHK1, CHK2 and
H2AX. A transgenic mouse model with PPM1D overexpression exposed to irradiation and
thus DNA-damaging stress was able to develop PHOX2B-expressing neural crest-derived
primary tumors of the adrenal gland phenotypically and genetically similar to NB [117].
Pharmacological inhibition of PPM1D selectively suppressed tumor growth of p53 wild-
type NB cell lines [146] and of established NB xenografts in nude mice indicating that
PPM1D might be a promising therapeutic target in p53 wild-type NBs [117].

7.2. BRCA1, BRIP1, CDK12

Three genes located on 17q are involved in the DNA repair pathway and upregulated
during TH-MYCN driven NB formation in mice [147], possibly playing a role in NB and/or
act as potential novel drug targets. CDK12 was shown to regulate DNA repair genes
(including BRCA1 and BRIP1) through intronic polyadenylation [119,120]. Several CDK12
inhibitors have been developed and are currently under evaluation for clinical trials for
other cancers, (p. 12 in [121–123]). Of further note, the Winter lab discovered a cyclin
K molecular glue degrader which also efficiently depletes CDK12 and which could also
represent a potentially important novel molecule for precision therapies [124].

Interestingly, the Eilers team attributed a novel function to the repertoire of the BRCA1
gene. MYCN was found to recruit BRCA1 to promoter-proximal regions preventing MYCN-
dependent accumulation of stalled RNAPII and enhancing transcriptional activation by
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MYCN. BRCA1 enables MYCN to suppress R-loop formation in promoter-proximal regions
by stabilizing mRNA decapping complexes. The critical signal in MYCN that enables
recruitment of BRCA1 is the dephosphorylation of Thr58, which allows binding of the
ubiquitin-specific protease USP11 and stabilizes MYCN and BRCA1 on chromatin, prevent-
ing proteasomal turnover of MYCN (Figure 3, loop 3) [118]. Mitoxantrone inhibits USP11
thus offering opportunities for targeting the BRCA1-MYCN interaction [148]. Because
BRCA1 is highly expressed in neuronal progenitor cells during early development and
MYC is less efficient than MYCN in recruiting BRCA1, the Eilers team suggests that a cell-
lineage-specific stress response enables MYCN-driven tumours to cope with deregulated
RNAPII function. BRIP1 (BRCA1-interacting protein or FANCJ) maps in close proximity
distal to PPM1D and TBX2 on 17q23.2 and has been implicated in unwinding of stable
G-quadruplex DNA structures and acting through multiple mechanisms to the replication
fork [116]. Our team is currently investigating the possible role of BRIP1 in further details
including its effects in MYCN driven NB formation in a MYCN- driven zebrafish model.

7.3. RRM2

We recently identified the RRM2 gene as target for focal gains and amplifications in
high-risk NBs, amongst others resulting from chromothripsis [125]. RRM2 encodes for the
‘ribonucleotide reductase regulatory subunit 2′ (RRM2) and together with RRM1 forms the
RNR ribonucleotide reductase enzyme that ensures dNTP production essential for DNA
replication and repair. RRM2 has been proposed as driver oncogene in prostate cancer [126]
and has been shown to play a critical role in melanoma [127] and Ewing sarcoma [128].
Based on its implication in focal amplifications and gains together with strong upregulation
in development of TH-MYCN driven NB in mice and inverse correlation with survival in
NB patients, our team further investigated the role of RRM2 through in vitro and in vivo
experiments [125]. NB cell lines were shown to strongly depend on RRM2 for survival.
Furthermore, a zebrafish MYCN/RRM2 co-overexpression model revealed a strong in-
crease in tumor penetrance compared to MYCN only overexpressing animals. Finally, we
demonstrated synergism for combined RRM2 and CHK1 inhibition thus pointing towards
this drug vulnerability as an important future angle for therapeutic exploration [125].

8. Evaluation of Gene Dependencies and Candidate Therapeutic Targets Using the
Cancer Dependency Map

In order to prioritize for essential genes and candidate therapeutic targets present on
copy number affected lesions, NB tumor dependency has been investigated both in vitro
and in vivo, as discussed above. However, public datasets can offer a first insight to
prioritize candidate genes based on their association with survival and risk groups, other
copy number affected genes, or tumor dependency. Using a recent public available CRISPR
screen across 1032 cancer cell lines including 31 NB cell lines, genes can be evaluated
for their NB dependency and specificity [149–151]. Figure 4 depicts the chromosomal
locations and dependency scores based on this CRISPR screen for all the copy-number
affected genes discussed in this review. For all of them, dependency is shown in NB.
Of further interest, ALK, LIN28B, CCND1, PPM1D, TBX2, SOX11, MYCN and BRIP1
are strongly selective for NB as compared to other tumor entities, further highlighting
these genes as potential drug targets (Figure 4). Recently, Dharia et al. created a first-
generation Pediatric Cancer Dependency Map for 13 pediatric solid and brain tumor
types, for which a full genomic characterization of 26 NB cell lines and 180 NB tumors
was performed amongst other cellular entities and matched with genome-scale CRISPR-
Cas9 loss-of-function screens. They showed that the number of selective dependencies
does not correlate with the number of mutations or copy number alterations. These data
could further be used to identify potential biomarkers for individual genetic dependencies,
e.g., selective MDM2 dependency in TP53 wild-type cells. The vulnerabilities seen in
childhood cancer were often different than what is observed in adult cancer, indicating that
adult oncology drugs will be most of the times insufficient to treat pediatric cancers [152].
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9. Current and Emerging In Vitro and In Vivo Models for Exploring the Role of DNA
Copy Number Driven NB Dependencies

Both mouse and zebrafish models have been established for MYCN-driven NB for-
mation [22,46–48,50,54,59]. In particular the zebrafish model has proven to be an efficient
tool for testing co-dependencies as illustrated by successful studies for multiple candidates
including mutant ALK [48], LMO1 [153], LIN28B [59], RRM2 ([125], p. 2), BIRC5 (Dolman
et al., in review) and BRIP1 (Vanhauwaert et al., in preparation). One particular advantage
of zebrafish models is access to early developing lesions that can be isolated by FACs
sorting [154] and which is currently under further investigation in our lab for deeper
exploration of early transforming events using single cell technologies. In addition to these
approaches, the Freeman team has followed a unique approach to isolate immature neural
crest cells from mouse embryos [155]. Subsequently, following transduction of these cells
with a MYCN overexpression construct and injection into nude mice, it was shown that in
most instances NB develop that recapitulate much of the molecular and cellular phenotype
of mouse and human NBs, including CNAs syntenic as those observed in human e.g., 17q
gain, 2p gain and 1p36 deletion. This model was also exploited to further study the role
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of ARID1A in the process of early tumor formation [156], a locus previously shown to be
affected by deletions and alterations in NB [157], by CRISPR mediated induction of dele-
tions encompassing the ARID1A locus [156]. In contrast to this model where the cells are
subcutaneously injected into the flank of mice, Cohen et al. developed a NB model system
by micro-injecting human pluripotent stem cell-derived NC cells with conditional MYCN
and ALK expression in utero into developing mouse embryos. These mouse-human neural
crest chimeras developed tumors resembling human NB upon activation of the oncogenes
by adding doxycycline to the drinking water [158]. So far, no one was able to engineer
cells or animals with large chromosomal segmental gains for in vivo evaluation. However,
using an in vitro embryonal stem cell model we could show that recurrent chromosomal
segmental gains, including chromosome 17q amongst others, provide a proliferative advan-
tage when cells are under increased replicative stress [159]. In vitro differentiation outside
the developmental context of the normal neural crest is challenging, particularly for cells
migrating during differentiation. Thus far, current in vitro models have been unable to
reliably generate sympatho-adrenergic precursors, from which NB is presumed to develop.
Our lab, in collaboration with the Studer laboratory at Memorial Sloan Kettering Cancer
Center, has optimized and characterised a pluripotent stem cell-derived in vitro differenti-
ation model to accurately generate the cells of interest. This allows us to study the normal
sympathetic as well as NB development in vitro, using any available stem cell line carrying
mutations of interest. We are currently utilizing this model to study MYCN-driven NB
formation, where we induce MYCN overexpression during in vitro development to analyse
the effect on development and malignant cell transformation. Using the 17q gained-stem
cell line available in our lab, we are also in the process of studying the role of the 17q gain
in MYCN driven NB. These state-of-the art experimental platforms are highly valuable to
study NB tumor initiation, progression, manifestation, tumor-immune-system interaction
and drug response in depth.

10. Future Perspectives to Mine CNAs for Novel Candidates and Deeper Exploration
of NB Dependency Genes

Computational approaches have been developed and applied to mine genome-wide
CNAs and gene expression profiles in order to identify novel tumor dependencies. One of
the first algorithms, ‘Copy Number and Expression In Cancer’ (CONEXIC), is a module
networks-based approach that integrates matched CNA and gene expression data from
tumor samples to identify and score the combination of CNAs that best explain the be-
havior of a gene co-expression module across tumor samples [160]. CONEXIC correctly
identified known drivers of melanoma and predicted multiple novel ones, some of which
could be empirically confirmed. Meanwhile, several related methods have been reported
that can integrate various multi-omics data and outperform CONEXIC both in compu-
tational runtime and ease of parameter setting, as well as in the prediction of consistent
and functionally coherent co-expression modules and associated driver genes i.e., the
regulators of the co-expression modules [161,162]. In this respect, Lemon-Tree is an inte-
grative multi-omics network inference algorithm where the learning of the co-expression
modules and the regulator assignment are decoupled and repeated multiple times in order
to construct a consensus solution for both. Based on a large dataset of somatic CNA and
gene expression profiles from The Cancer Genome Atlas, Lemon-Tree correctly identifies
known glioblastoma oncogenes and tumor suppressors as master regulators in the inferred
module network [161]. However, matching CNA and gene expression profiles are not
always available, and CNAs do not always translate proportionally into altered expression
levels due to transcriptional adaptive mechanisms and due to the fact that they exert effects
further downstream on core tumor pathways through densely connected gene regulatory
networks [163,164]. Therefore, several studies have shown that the effect of genomic alter-
ations in cancer and the search for novel tumor dependencies can be more readily assessed
by the inference of gene regulatory networks based on aggregated datasets of gene expres-
sion profiles that is specific for the cancer type under study [165–167]. Other information,
in the form of regulator binding (e.g., ChIP-sequencing data for transcription factors) or
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multi-omics can be integrated in the process, for a more causal inference of regulatory
interactions and a more significant identification of driver genes [168]. ModuleOmics is a
statistical framework that simultaneously integrates correlated expression, transcriptional
coregulation, protein-protein interactions and mutual exclusivity of mutations and CNAs
into highly functionally connected modules enriched with cancer driver genes, outper-
forming state-of-the-art single omics approaches [169]. Another recently developed tool,
Moonlight, also incorporates multi-omics data for the discovery of tumor suppressors,
oncogenes and dual role genes in the framework of gene regulatory networks using manu-
ally curated expert knowledge and/or machine learning on contrasting normal and tumor
samples. While gene expression data are used as the major source of information to detect
candidate driver genes, a second layer of evidence from another genome or epigenome
data modality e.g., hypermethylation is required to define the candidate drivers as critical
cancer driver genes [170].

The transcriptional network-based methods described above have already been suc-
cessfully applied to NB. Consensus clustering of the TARGET NB patient cohort revealed
three molecular subtypes of high-risk NB, consistent with genomic aberrations: MYCN-
amplified status and 1p36 deletion for cluster 1, 11q deletion for cluster 2 and a mesenchy-
mal signature without any strong genomic aberration association or cluster 3. Subsequently,
master regulators for each of the high-risk subtypes were inferred using the VIPER and
ARACNe-AP algorithms based on the enrichment of their transcriptional target genes in
the subtype specific gene expression signatures. As an example, a TEAD4-MYCN posi-
tive feedback loop emerged as a regulatory driver of the MYCN-amplified high-risk NB
subtype [171]. A similar approach was used on gene expression profiling data obtained
during murine TH-MYCN-driven NB tumor formation at different time points revealing
MEIS2 as candidate NB tumor-initiating factor [147]. In another study, weighted gene
co-expression network analysis on publicly available microarray data of 206 NB patients
and subsequently association of these modules to chromosomal alterations, indicated that
modules involved in nervous system development and cell cycle are highly associated with
MYCN amplification and 1p deletion, while modules responding to immune system pro-
cess are associated with MYCN amplification only. BUB1B and CD53, which serve as hub
genes in modules responding to cell cycle and immune system processes respectively, are
put forward as potential novel drivers. Also from this analysis, CADM1 emerges as a top
tumor suppressor gene candidate in 11q-deleted NB [172]. A deep learning auto-encoder
framework integrated CNAs and gene expression profiles from the TARGET and SEQC NB
cohorts and after filtering for survival dependent genes and/or CNAs, this was combined
with k-means clustering to detect two subtypes with significant survival differences [173].
In the context of NB, the gene regulatory networks of the developing neural crest are also
worth investigating. Using chromatin and transcriptional profiling of cranial neural crest
at population and single cell level, followed by network inference and data integration, the
gene regulatory networks of the neural crest was charted [174].

Currently, the potential for adding multiple additional omics layers to copy number,
gene expression and methylation is rapidly expanding such as chromatin accessibility
(using ATAC-seq), epigenetic status (using ChIP or CUT&RUN/TAG for chromatin marks)
and proteomics [175]. Moreover, single cell technologies are rapidly evolving and offering
further opportunities for deep data mining approaches towards more powerful detection
of tumor dependencies. Also, approaches are being developed to predict synthetic lethal
interactions which may also open further possibilities for target prioritization [176].

11. Conclusions

Insights into NB biology and behavior have come a long way ever since the discovery
of MYCN amplification. In this review, we have provided a summary of our current
insights into copy number driven dependencies. In view of the limited search space for
precision oncology drug targets due to the low mutation burden of NBs, further approaches
to identify novel druggable vulnerabilities are critically important if we want to increase
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survival rates significantly. Together with current developments of novel approaches to
target so-call undruggable targets such as protein degraders [177], we expect a significant
number of novel venues to open towards development of less toxic drugs with higher
efficacy to eradicate tumor cells. Finally, these developments can be expected to synergize
and integrate into emerging novel insights how NB escapes the host immune system and
strategies to transform the immunologically cold high-risk NBs into hot tumors that will
be more amenable to emerging and new immunotherapeutic treatment regimes.
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