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Abstract

Single-cell-resolved measurements reveal heterogeneous distributions of clathrin-dependent (CD) and -independent (CLIC/
GEEC: CG) endocytic activity in Drosophila cell populations. dsRNA-mediated knockdown of core versus peripheral endocytic
machinery induces strong changes in the mean, or subtle changes in the shapes of these distributions, respectively. By
quantifying these subtle shape changes for 27 single-cell features which report on endocytic activity and cell morphology,
we organize 1072 Drosophila genes into a tree-like hierarchy. We find that tree nodes contain gene sets enriched in
functional classes and protein complexes, providing a portrait of core and peripheral control of CD and CG endocytosis. For
470 genes we obtain additional features from separate assays and classify them into early- or late-acting genes of the
endocytic pathways. Detailed analyses of specific genes at intermediate levels of the tree suggest that Vacuolar ATPase and
lysosomal genes involved in vacuolar biogenesis play an evolutionarily conserved role in CG endocytosis.
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Introduction

Endocytosis occurs by multiple means at the cell surface [1,2].

In addition to the clathrin-dependent (CD) endocytic pathway,

numerous clathrin-independent endocytic mechanisms continue to

be discovered [3]. These include a pinocytic pathway called the

CLIC/GEEC (CG) pathway [4], which is responsible for

internalizing a large fraction of the fluid phase, many GPI-

anchored proteins, and some specific cell surface proteins such as

CD44 and G-protein coupled receptors [4–6]. The CG system is a

high capacity pathway evolutionarily conserved throughout

metazoa [7,8], implicated in plasma membrane homeostasis and

the regulation of signaling [4,5]. Many viruses and toxins have

been shown to use the CG pathway for their productive entry into

cells [3]. Ultrastructural analyses show that this endocytic process

is initiated by a pleomorphic set of clathrin-independent endocytic

carriers (CLICs; [9]) that eventually fuse with distinct early

endosomal compartments called GEECs (GPI-anchored protein

enriched endosomes) [10,11]. Membrane and volume components

of these endosomal compartments are recycled to the cell surface

[12,13], or addressed to a variety of cargo-specific locations [4]

including the sorting endosome, which is the major recipient of

cargo from the CD endocytic pathway [11].

Recent experiments suggest that the CG pathway involves a

specific type of actin polymerization controlled via the regulated

cycling of a Rho family GTPase, Cdc42 [10,12]. Endocytosis is

initiated by the recruitment of Arf1 and an Arf1-binding RhoGAP
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protein called ARHGAP10 [14]. The activity of Arf1 itself appears

to be regulated by a GEF called GBF1 at the cell surface [8]. The

Bar-domain protein GRAF1 participates in the post-endocytic

dynamics of the GEECs [15]. It is clear that a host of other core

and peripheral molecules must drive the trafficking of these

compartments and their cargo to specific destinations inside the

cell. Here we exploit a powerful analytic approach, based on the

phenomenon of cellular heterogeneity, to detect the strong

contributions of core machinery as well as the subtle contributions

of peripheral components. Using this approach, we build a

comprehensive molecular portrait of CD and CG endocytic

pathways acting in concert in single cells.

We recently demonstrated the ease of RNAi-based gene

perturbation in Drosophila S2R+ cells to identify new components

of the CG pathway [8]. We have adapted this assay to an array

format employing millimeter-scale wells printed on borosilicate

slides, allowing us to image hundreds of cells per well and screen

hundreds of genes per slide. Cell arrays increase throughput at the

cost of introducing systematic measurement artifacts of unknown

origin, in the form of edge effects and column or row biases

[16,17]. Standard analyses adopt a conservative approach in

which only strong perturbations are selected as hits – for example

RNAi knockdowns which produce factors of two or greater

changes in the population-averaged value of some feature of

interest. We eliminate this problem by studying the entire

population distribution of measured features. Broad population

distributions are hallmarks of cellular heterogeneity, manifest in

any single-cell-resolved measurement. Studies in bacteria, yeast,

and metazoan cell lines have shown this heterogeneity to arise

partly through intrinsic stochastic mechanisms – for example,

Figure 1. Quantitative profiling of two endocytic routes at single cell resolution. (A) Experimental workflow outline for cell seeding,
transfection and multiplex endocytic assays to obtain multifeature data across 7131 gene depletions. The entire procedure was performed on a cell
array (see Figure S1A; details in SOM) and the positions of negative and positive (dsRNA against sec23, arf1, shi) controls are highlighted in their
respective colours. (B) Table grouping the 27 quantitative features into categories. The top half of the table contains direct measurements of
intensity, while the lower half contains geometric parameters of the cell, endosomes and nucleus. Various measurements are made from each
fluorescent channel, including those utilizing different pixel radii for local background subtraction while detecting endosomes. (C) Representative
brightfield (bf) and fluorescent micrographs of a field of view of individual cells (zoomed in insets) labeled with four different fluorescent probes:
Hoechst; FITC-Dextran (Fdex); Alexa568-Tf (Tf); Alexa647-aOkt9 (Okt9); (see Methods S1 for details). The psuedocolour merge image is a composite of
the Fdex (green), TfR (red) and Okt9 (blue) channels. Scale bar = 15 mm; inset = 36. (D) Grayscale heatmap representing the fraction of four control
genes (arf1 (arf79f); shi; sec23; chc) picked up as hits (above a Z-score threshold of 3) across all 27 features in the entire dataset. Higher values on the
grayscale bar denote higher pick-up rates. The features with higher pick-up rates correspond to the known endocytic roles of these genes.
doi:10.1371/journal.pone.0100554.g001
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population-wide variations in endocytic rates have been traced to

stochastic fluctuations in gene expression, and to inter-cell

interactions [18–20]. Population distributions therefore contain

information about the underlying biology, and our assay is

designed to exploit this fact: we measure single-cell-resolved

population distributions of a range of features related to endocytic

activity, and quantify changes to these distributions under RNAi

knockdowns to identify strong as well as subtle hits.

We have examined over half the Drosophila genome – 7131

genes that share significant homology with their mammalian

counterparts – and quantified their contributions to various

aspects of CD and CG endocytosis. We report a large number of

hits (1072 genes), over half of which are statistically demonstrated

to be true positives. These hits survive validation in independent

assays, and their effects in S2R+ cells are recapitulated in Drosophila

mutants as well as mammalian cell lines. A tree-based analysis of

all the hits provides a rich portrait of core and peripheral control

of parallel endocytic processes, while follow-up studies on a subset

of candidate genes reveal new molecular details on their mode of

action.

Results

Tracking endocytic activity in single cells
Our cell array platform (Figure 1A; Figure S1A) provides single-

cell-resolved population distributions of multiple endocytic fea-

tures under thousands of dsRNA-mediated gene knockdowns.

RNAi was performed in triplicate on a 10630 array of millimeter-

scale wells printed on borosilicate slides: 30 wells were negative

controls; 8 were positive controls; and the remainder contained

dsRNA targeting individual genes. We targeted a set of 7131

Drosophila genes enriched in phylogenetically conserved ‘meta-

genes’ (.80% coverage; [21]; Figure S1E). A few genes were

tested multiple times as internal technical controls (Table S1);

throughout our analysis these are treated as if they were distinct

genes, giving a total of 7216 knockdowns tested in triplicate.

The CD and CG pathways are simultaneously active in

Drosophila S2R+ cells [7,8], which detectably express most of our

candidate genes (Figure S1F). We used a pulse-labeling protocol,

fluorescence microscopy and image-analysis to follow the simul-

taneous activity of parallel endocytic pathways in this cell line. We

pulsed fluorophore-labeled dextran (Fdex) and Transferrin (Tf) to

track the CG pathway and the Transferrin receptor (TfR)-

mediated CD pathway, respectively (Figure 1A).Our high-resolu-

tion images allowed us to extract multiple quantitative features for

each cell (Collinet et al., 2010). We computed 27 features as

follows: five quantified cell and nuclear geometry; eight quantified

aspects of endosomal intensity (F/T int1– int4), morphology or

geometry (F/T mph1–mph3), and number (F/T num) for each

pathway separately; two quantified the co-localization of the two

probes (F/T clc); and finally, four were related to externalized TfR

levels (Okt9, Rto1 – Rto3) (Figure 1B and Table S1).

Population distribution shapes are information rich
To screen for hits we require a summary statistic – a

compression of the entire population distribution into a single

number that can clearly distinguish positive from negative

controls. We found that means and variances – popular summary

statistics – suffered from systematic slide-positional artifacts, and

even differed significantly between negative control wells on the

same slide. However, geometric features were typically more

robust and less susceptible to artifacts than intensity features.

Importantly, we noticed that differences in the shapes of feature

distributions between positive and negative control wells were

visible even after normalizing out mean and variance, suggesting

that distribution shapes alone were sufficient to detect perturba-

tions due to RNAi [22].

A summary statistic based on distribution shapes
The idea of extracting information from distribution shapes has

a distinguished pedigree ([19]). For example, landmark studies in

the early 1940s on photon counting in the human eye [23] and on

spontaneous mutations in bacteria [24] relied on the shape of the

Poisson distribution. More recently, protein expression distribu-

tions have been used to study transcriptional regulation mecha-

nisms in bacteria and yeast [25]; and intrinsic morphological

variability has revealed molecular determinants of metazoan cell

shape [26,27]. What distinguishes our approach from all these is

that we have no prior model-based expectation of what the

distribution shapes should be; we only look for shape changes

upon RNAi knockdown.

Skewness and kurtosis report on distribution shapes, but are

difficult to estimate for small cell populations. Instead, we calculate

a Z-score for each gene based on a modified Kolmogorov-Smirnov

(KS) statistic (derived from the maximum vertical deviation

between two cumulative distribution functions [28]). This Z-score

serves as a quantitative measure of the distribution shape changes

between test and negative control wells. Importantly, we only use a

subset of negative wells to calculate the Z-score, and use the

remaining negative wells to evaluate its performance. Figure S2A
shows the cumulative distribution functions (cdfs) of all the

negative wells for a single feature, Fint 3. We see that positive

controls can be easily distinguished from negative controls; and

though most target genes resemble negative controls, some show

high Z-scores and are likely to represent ‘hits’ [22].

We calculated three Z-scores for every gene (the entire screen

was carried out in triplicate) and pooled these data over all genes

tested. The number of hits selected from the screen was compared

to the number of hits selected from randomly permuted genes as

the Z-score threshold was varied. For each threshold value, a gene

was considered a hit if two or more of the replicates produced Z-

scores above the threshold. The study revealed the presence of

reproducible hits in the dataset at a threshold of 3 across all

features. Statistical analysis demonstrates that our assay is

characterized by a single false positive (FP) rate (a property of

the negative controls) but a broad range of true positive (TP) rates

(related to the varying degrees of influence different genes can

have on the phenotype of interest). Across features, a Z-score

threshold of 3 corresponds to FP,0.1 and TP ,0.5 for single

measurements; the FP rate is lower and the TP rate higher if we

use triplicate data with a 2/3 rule (Figure S2B; [22]). Thus, our

analysis is clearly able to detect weak hits, those with lower TP

rates than strong ones, but which might nevertheless be

biologically relevant.

Using this strategy we obtain a set of 1072 reliable hits(1072

unique CG identifiers, 1070 unique gene symbols) affecting one or

more of the 27 measured features (Table S1; also listed at RNAi

Data Base http://rnai.ncbs.res.in/endosite). These genes span the

entire range of a traditional Z-score derived from measuring the

mean and standard deviations of triplicates of the RNAi-treated

cell populations compared to their respective negative and positive

controls [22]. Meta analysis of the hit set indicates that there is no

specific enrichment of putative ‘off targets’ and that metagenes are

enriched in this assay (Figure S1E), consistent with the perturba-

tion of an evolutionarily conserved pathway.
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Genes affect multiple features simultaneously
Each hit is characterized by a set of 27 Z-scores (in triplicate)

which we will refer to as the gene’s perturbation vector (PV).

Examination of PVs across hits allows us to assess how gene

knockdowns can affect multiple aspects of endocytosis simulta-

neously. For example, the PVs of our positive controls, Arf1 and

Sec23 for the CG pathway, and dynamin (encoded by shibire) for

the CD pathway summarize the perturbation spectrum of these

genes (Figure 1D). The PV for Arf1 (a known regulator of the CG

pathway), shows that this gene significantly and specifically affects

7 of the 27 features across a wide range of thresholds: Fdex-

marked endosomal intensity (Fint1–3), and endosomal geometry

(Fmph1–3); and a Tf geometry feature. This is in perfect

agreement with the known roles of Arf1 in regulating the size

and number of pinocytic early endosomes, as well as its role in Tf

recycling, but not Tf uptake [8,14]. Similar to Arf1, the depletion

of Sec23 (a previously unknown regulator of the CG pathway

identified in our laboratory) affects primarily Fdex features, with

some influence on Tf geometry features. The effect of Sec23 on

the CG pathway is evolutionarily conserved (as has been shown for

Arf1 [8]), as demonstrated by assaying the knockdown of human

SEC23 in human AGS cells (Figure S3). The PV for Drosophila

dynamin (encoded by shibire) deviates primarily in intensity and

geometry features for Tf, according to its expected role in

regulating the internalization of the Tf receptor. In addition it

affects the geometry of endosomal features for the CG pathway,

but not the extent of fluid uptake, consistent with our previous

studies [7,8,10]. Comparably, the Drosophila gene encoding

Clathrin heavy chain (chc) affects largely the quantitative uptake

of Tf, which is revealed by measuring the ratio of internalized Tf

to the external levels of available TfR for each cell.

Hits can be organized hierarchically based on the
features they perturb

We compressed the triplicate PVs of each gene into a 27-

dimensional binary feature vector (FV) as follows: an entry is ‘1’ if

the gene is a hit for that parameter (at least two out of three Z-

scores is above threshold) and ‘0’ otherwise. Across 7131 dsRNAs

there were 1072 hits: 470 influenced fluid-phase uptake, 602

influenced TfR uptake, 267 influenced nuclear morphology, and

26 influenced cell size (Tables S1, S2).

It is expected that the FVs of genes with closely related roles in

cellular processes would strongly overlap, and conversely, features

that are similar or share genetic control would have more genes in

common. Strikingly, we saw that gene knockdowns seemed to

affect nested sets of features. Motivated by this, we used a

parsimony approach to organize features into a tree (Figure 2A;

Experimental Procedures), formalizing the idea of a hierarchical or

nested structure. The 27 leaves of the tree correspond to the 27

measured features. These features are collected into nested groups,

each corresponding to an internal node of the tree, all the way to

the root. Each node contains a set of genes that affect all the

features in the corresponding group; a gene influencing more than

one feature is placed higher up the hierarchy. Thus, perturbations

in specific features can be examined in the context of the entire

dataset. This method of clustering of FVs does not require any

prior input or training sets as guides for automated classification,

and therefore provides an unbiased description of the dataset.

We have seen that individual genes can affect multiple features

simultaneously; the tree allows such genes to migrate upwards, to

the internal nodes. Thus any pair of features might have a number

of genes in common, but the leaves of the tree are expected to have

very little overlap. The overlap statistics prior to, and post, making

the tree are highlighted in the lower and upper triangles of the

Figure 2C, respectively. It is very clear from the heat-map that the

nuclear feature hits segregate into a separate set even prior to

making the tree; but there is a clear structure to the way genes

affect endocytic features. In the context of the tree, this structure is

visible as connected nodes and leaves, termed fluid (10–15; the F-

features) and Transferrin (16–24; the T- and Okt-features) nodes,

the endo-common node (3–9), and the nuclear node (1,2, 25, 26;

Nuc-features). These nodes have high bootstrap support, and

represent robust aspects of the underlying data (Figure S5).

Independent support for the tree structure
The tree by definition organizes genes and features into a

hierarchy. However, there are several independent lines of

evidence supporting this hierarchical organization: 1) Pairs of

leaves are significantly depleted in the number of overlapping

genes. This would not happen if genes affected features at random;

for example, a gene affecting a single fluid feature and a single Tf

feature would not migrate up the tree, but rather would remain

stuck at the two leaves. There is one interesting exception: the

Fdex and Tf colocalization leaves (Fclc and Tclc) share a high

proportion of genes, as would be expected since two-way

colocalization between endosomal probes is highly correlated

(Figure 2C). 2) Several nodes are populated by genes that have

similar predicted function, and a certain subset of nodes are

enriched for protein-protein interactions within themselves (Figure

S4A) (as assigned by STRING, http://string-db.org/ [29]); a

complete set of interactions for the nodes enriched for within-node

interactions is listed in Figure S4B). 3) Genes with previously

established functions in endocytosis are found in nodes consistent

with the endocytic features they are expected to affect. For

instance, genes known to affect CD endocytosis remain in the

nodes of the tree that represent Tf uptake features (Table S2).

Node 3 (the root node; Figure 2A) is the shared bifurcation point

above three main branches – and corresponds to genes potentially

affecting endocytic pathways, cell size and nuclear morphology

features. This node has only one gene (Table S2; CG12498 or

zasp52), which influences cell size and endocytic features but not

nuclear features. This indicates a clear segregation of genetic

control among the three branches. Interestingly, genes that affect

nuclear morphology are significantly correlated with higher cell

proliferation, while those that affect endocytosis typically reduce

cell number [22].

The tree structure also provides evidence for two categories of

genes that affect endocytic processes: 1) Genes that constitute a

common machinery between the two pathways populating the

nodes 4–8 (Figure 2A: Table S2). 2) Genes that separately affect

the fluid-phase (nodes 10–15) and Tf (nodes 16–22) pathways.

Notably, genes involved in proteasome, ribosome and spliceosome

function are almost all located at nodes 4–7 (see Table S2). It is

probable that these housekeeping genes are represented here due

to their pleiotropic nature, resulting from the broad range of

proteins and mRNAs that could be affected by their perturbation.

However, their presence is nevertheless significant since genes at

nodes 4–7 do not affect nuclear morphology features, and may

represent a more general layer of control of endocytic processes.

GO annotation of the tree nodes
We have statistically established that our screen has a high false

negative rate (,30%, Figure S2B). This means that some genes

might be missed when examining any individual feature.

However, it is unlikely that a protein complex of many

components will be missed in its entirety. To explore this, we

replaced the gene IDs with their Gene Ontology (GO) ‘cellular

component’ annotation at the tree leaves (Table S3). The analysis
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was then repeated as before, except that it was GO annotations

rather than individual genes which were allowed to migrate to

higher nodes of the tree. This process was useful for two distinct

reasons.

First, as expected, protein complexes became visible even when

some of their components might have been missed at individual

leaves. For example, components of clathrin adaptors and vesicle

coats were individually close to the leaves of the original tree, but

the clathrin and coat complexes themselves rose to nodes 17 and

22, which head the genes influencing the CD pathway (Figure 2B).

Second: common cellular machinery such as the proteosome,

splicesome and ribosome rose to nodes close to the tree root (node

4 and 6), indicating that these protein complexes had pleiotropic

effects across almost all features (Figure 2B; Table S3). This

enabled us to objectively separate housekeeping genes from genes

of specific interest in endocytosis.

Of particular interest to us was the observation that genes

affecting several Tf intensity and morphology features converged

at certain nodes. The umbrella node for the CG-specific

annotations is node 10, and is populated by, amongst other genes,

the phosphoinositide-3-kinase (PI3K): pi3k68d (Figure 2B). The

closest human homolog of pi3k68d– PI3KC2a– was recently

confirmed to be a key regulator of dynamin independent

endocytosis [30]. Node 10 also contains two genes likely to

Figure 2. A hierarchical organization of endocytic hits. (A) Maximum parsimony dendogram constructed by binarizing and clustering the
perturbation vectors (PV) which show which features each gene is known to perturb. The root node (node 3) is the shared bifurcation point above
three main branches – these correspond to genes affecting endocytic pathways, cell size and nuclear morphology PV features. Housekeeping genes
such as RNA polymerase and proteasomal subunits populate the stem of the endocytic branch (nodes 4–7) – these affect endocytic processes as a
whole. The lower endocytic nodes are further split into CG and CD specific nodes at node 9. (B) Gene Ontology (GO) annotation terms were overlaid
onto the tree structure, and GO terms that were present in more than one node were allowed to rise if these nodes were connected. The highest
node at which a GO term was found at is shown as a GO ‘Pull-up’ category. For instance, highest node at which the clathrin adaptor complex and
clathrin vesicle coat GO terms rise to is node 22, which is the central node specific for CD endocytosis. (C) Grayscale heatmap representing extent of
overlaps between all pairs of leaves (colorbar depicts the fraction of overlapping genes) of the leaves prior to (lower diagonal), and post (upper
diagonal) tree construction. Most genes which overlapped prior to tree construction have risen to internal nodes. Post the tree construction,
significant overlap is seen only between Fclc and Tclc nodes (circled in yellow).
doi:10.1371/journal.pone.0100554.g002
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function in endosomal pathways: dVps26 (homolog of a component

of the retromer complex important for endosome to Golgi

trafficking [31]); and cg1515, (a Ykt6 like SNAP receptor protein

implicated in multiple fusion steps at the Golgi and endomem-

branes [32]).

A secondary classification assay
The gene PVs provide detailed information across our assayed

features, and the tree-based clustering allowed broad segregation

of genetic modules according to the features they affect. To isolate

endocytic gene modules with higher resolution, selected genes with

significant PVs were assayed for the CD and CG pathways in a

modified cell array format. Three RNAi test wells were

surrounded by positive and negative controls to mitigate positional

artifacts, and assayed at different pulse points (Figure 3A, B, C).

Though this is a low-density format, it allows us to avoid the

normalization procedure, and therefore to find the direction of any

effect induced by RNAi.

We selected 316 genes that affected Tf features and tested them

with a short pulse of Alexa 568-Tf/Fdex for 5 minutes (Figure 3A).

245 (,80%) of these genes were observed to influence Tf uptake.

For all the 470 genes that influenced CG features in the primary,

we pulsed F-Dex for 5 minutes followed by a chase of 12 minutes

and a second pulse of another fluid-phase probe (TMR-Dex) for

an additional 3 minutes (Figure 3A; upper scheme). This would

allow classification of genes according to an early (pulse) or late

(chase) effect in the pathway. Of the 470 genes tested at higher

time resolution, 431 (92%) showed phenotypes in the secondary

characterization for fluid features. For both pathways, genes were

observed to influence individual features in the secondary assay as

predicted by the primary assay (Figure 3D). This provided strong

evidence of the power of our shape-based strategy to detect hits.

The additional information provided by the secondary assay

(intensity/morphology values combined with pulse up/down and

chase up/down) were useful in segregating genes within the CG

specific nodes (Figure 4A). Interestingly, when placed into a

quadrant plot, the majority of genes fell into quadrants

corresponding to two broad categories – those that either

increased pulse and increased chase (quadrant 1; 142, or decreased

pulse and decreased chase (quadrant 3; 185), with a minority

showing differing effects on pulse vs. chase (quadrants 2 and 4; 28

and 64, respectively).

Quadrant 1 contains the genes in the CG pathway whose

absence causes accumulation of both pulse and chase probes in the

cell. Based on predicted (from homology) or known interactions,

several quadrant 1 genes form a network that is enriched in actin-

related functions such as cell adhesion and cytoskeleton-mem-

brane linkage. Prominent members include chickadee (profilin),

actin related protein 8 (arp8) and Abelson interacting protein (abi).

The presence of focal adhesion regulators integrin linked kinase

(ilk) and, p130Cas [33] in this quadrant suggest that this network,

acting to regulate membrane-cytoskeletal linkages or tension,

negatively regulates endocytosis [34–36].

Quadrant 2 contains genes that affect the chase portion of the

fluid uptake route, but not the early short pulse, thus placing them

later in the pathway. This quadrant contains drab5, which is

required for homotypic and heterotypic fusion between early and

late endosomes; Table S4). Since Drab5 is not found on GEECs

[8,11], and it regulates cargo trafficking from early endosomes, its

absence leads to an accumulation of pulse and reduces the fraction

of cargo reaching late endosomes (chase), resulting in a high

pulse:chase intensity ratio per cell (Figure 3E). Similarly, other

components required for routing to the lysosome such as drab7 and

CG7158 (the fly homolog of the Rab5GEF ALS2), as well as three

conserved ESCRT III complex proteins (Dvps4 (CG6842;

Figure 3E), Dvps2 (CG14542) and Dvps32 (CG8055), whose

homologs are required for multivesicular body (MVB) sorting and

membrane deformation [37,38]) all appear in this quadrant (Table

S4).

Quadrant 3 consists of genes whose absence causes a reduction

in both pulse and chase signal, and these may be most directly

involved in the CG pathway. It is the largest quadrant, and

consists of three main predicted GO classes: a prominent group

representing proteasomal machinery; a subgroup of genes that

affect mitotic spindle organization; and a third group of genes

whose GO terms predict functions in endocytosis and phagocy-

tosis. Notably, most of the genes from the proteasomal and mitotic

spindle groups also affect the CD pathway, so are not exclusive to

the CG pathway (Table S4). Within the third group, there is a

specific cluster of genes that encode the vesicle coat proteins a-

COP, b-COP, Arf1, and Sec23, which also affect Tf features. Just

peripheral to this latter cluster are genes such as pi3k68d, the

vacuolar ATPase E subunit, vha26, and the fly homolog of

VPS33A, carnation (an SM protein), which specifically block only

the CG pathway (see below).

In the context of the CD pathway (Figure 4B), genes in

quadrants 3 and 4 (genes required for normal levels of Tf uptake)

include expected components of the clathrin coat such as dap160

(dynamin associated protein 160), lap (like AP-180), alpha-adaptin

and ap-47. Other members of these quadrants include several beta

tubulin genes (56D, 85D and 97EF), pp2A-29B (protein phosphatase

2 subunit A) and canA1 (Calcineurin A1 subunit). These were also

identified recently as important for TfR uptake in mammalian

cells [39].

Since the tree structure indicated the presence of common

machinery for the CD and CG pathways, we examined the

intersection of the two gene sets obtained from the classification

assay. We found ,100 genes whose absence causes a reduction

(short pulse) in CG pathway uptake and also affects CD

endocytosis negatively. This set is enriched in components of the

proteasomal machinery, genes required for cell proliferation, and

those required for response to cell stress (Figure S6A).These

processes are likely to comprise the basic peripheral cellular

requirements for these two major endocytic routes to operate

efficiently.

Interestingly, it was only a small fraction (,1%) of genes with

phenotypes in the classification assay whose absence was found to

increase the output of both pathways (Table S4; Figure 4A,

quadrant1). An interesting candidate here is integrin linked kinase

(ilk), which negatively regulates both CD and CG endocytosis, and

is known to link the cytoskeleton to the plasma membrane during

matrix adhesion [40]. ilk was different from other cortical actin

regulators such as abi and chickadee, which were required to

augment solely the CG pathway. Notably the depletion of Ilk

caused a reduction in cell size, and this was also seen in the cortical

actin/linkage regulators such as dTalin (rhea) and Formin like

protein (CG32138). Both of the latter two genes are known to

affect cell shape/size [41], but do not affect endocytosis; they

populate the ‘cell size’ node in the tree structure. Hence Ilk-

mediated matrix adhesion may have a distinct role as negative

regulator of both CD and CG endocytosis.

Finally, there is a group of genes were those whose depletion

had opposing effects on CG versus CD uptake (Table S4, Fluid

Intensity Quadrants, Quadrant 2). The depletion of dRab7, and

the Rho GTPases, RhoBTB and RhoGAP102A, as well as the

actin-nucleating formin Diaphanous, caused reduced CG uptake

while increasing CD endocytosis. We decided to examine more

closely the role of genes annotated broadly to the cytoskeletal sub-
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group by utilizing the pulse chase classification assay in Figure 4A
(Table S7, Figure S6B). The presence of proteins that form a

subset of actin filament remodeling activities (Slingshot, activates

cofilin; [42]), Coronin (Arp2/3 regulatory activity [43]), Arpc1

(suppressor of Profilin), Twinfilin, Capping protein [44]) again

implicates a central role for a dynamic actin remodeling pathway

in CG endocytosis. We also note here that the depletion of dFak,

the Drosophila ortholog of the focal adhesion kinase FAK [45],

affected the CG pathway similarly to the focal adhesion regulators

previously discussed (p130Cas, Ilk). Further links between the CG

pathway and cell adhesion were revealed by a subset of laminin-

related genes whose depletion specifically affected CG endocytosis

Figure 3. Primary hits validated in a secondary classification assay. (A–B) Schema (A) and positional patterning (B) on cell arrays of
secondary endocytic classification assays carried out for all CG features (upper schema) or a subset of CD features (lower schema).All the test genes
were surrounded with local positive controls, and negative controls (see legend in (B)). With this patterning, each gene was tested in triplicate, with
three local positive controls and six local negative controls. (C) Heatmap representing raw mean fluorescence intensities (in the pulse channel) across
a test cell array used to validate the CG secondary endocytic assay described in (A). Only the means of control wells are shown in the top panel and
the inter-control variation in means is representative of a typical experiment. For comparison, the lower panel depicts the mean fluorescence
intensities of test genes. (D) The green bars show the fraction of genes predicted as hits for each feature in the primary screen that were also picked
up as hits for that feature in the secondary. The gray bars show the fraction of genes not predicted as a hit for each feature in the primary screen that
were nevertheless picked up as hits for that feature in the secondary. With a single exception (Tnum) we find that the green bars exceed the gray (p-
value 561026 for 22 fair coin flips) demonstrating the selectivity and reproducibility of our primary assay. (E) Psuedocoloured fluorescence
micrographs of representative control and drab5- and dvps4- dsRNA treated populations of cells that were subjected to the CG pulse-chase assay
from (A). Both Drab5 and Dvps4 depleted cells were affected in the chase (with Fdex, green) portion of the assay, while the pulse portion (with Rdex,
red) was unaffected (see quantitation in bar graphs on the right, normalized to control). Scale bar = 10 mm.
doi:10.1371/journal.pone.0100554.g003
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– the netrin receptors fra (Frazzled), sli (Slit), unc-5 (dUnc5), and the

netrin ligand NetB (NetB) (Figure S6B). Netrins and their receptors

modulate cell-matrix interactions in diverse cell types and thereby

affect focal adhesion pathways [46].

Comparison of RNAi perturbations and fly mutants
We next tested endocytosis in primary cells derived from fly

lines carrying mutations in each of a set of 13 genes (Table S5).

Four of these mutations resulted in lethality before the third instar

larval stage, suggesting important roles in development, while 10

gave viable third instar larvae from which we could culture

hemocytes. We compared the fold change in uptake in the

hemocyte and S2R+ pulse-chase assay for these mutants and their

corresponding gene depletions with dsRNAs (Figure 5A, B). For

the hemocyte assays, we used primary cells from wild type CS flies

and from known late endosomal mutants (dor4, car1; [47]) as chase

controls (Figure S7C). Overall, in 11 out of the 12 genes tested in

the chase assay, we found a similar pattern in the perturbation of

CG endocytosis in hemocytes (Figure 5D) compared to those

determined in S2R+ cells when depleted of the respective gene

products. Similarly, 8 of 10 genes gave similar trends in the pulse

assay between S2R+ and hemocyte experiments (Figure 5D). We

also tested endocytic uptake in hemocytes from two fly lines

carrying mutations in genes that did not score in the primary

dsRNA screen; mutants of drp and flotillin did not show any

measurable defects in endocytosis of the fluid phase (Figure S7A,
B). These results support the idea that our dsRNA-based analysis

provides a reliable and robust method and resource for

exploration of specific gene targets involved in endocytic

pathways.

New gene functions in the CG pathway
We explored two components whose identities could not have

been predicted from available knowledge of the genes involved in

endocytosis. These are located in quadrant 3, a Sec/Munc

protein, Carnation, and the Vacuolar ATPase subunits, identified

as specific regulators of endocytosis via the CG pathway.

Role of a Sec/Munc protein complex in CG

pathway. Carnation (Vps33) is a component of the HOPS

tethering complex, a downstream effector of Rab7 required for

late endosomal delivery of Golgi proteins and lysosomal biogenesis

[48]. While Car is known to affect a late trafficking step in

endocytosis of fluid-phase or receptor cargo (together with Dor

[47]), a role in early uptake via the CG pathway was unexpected.

We explored the effect of depleting Car on the CD pathway.

There was no change in normalized Tf uptake (Figure S8A)

despite strong inhibition of the CG pathway in the same cells

(Figure 6C). Furthermore, in hemocytes derived from car1

mutants, a decrease in fluid phase uptake was observed compared

to the wild type control (CS) (Figure 6C) while endocytosis via the

CD-pathway (as monitored by a Cy3-labeled maleylated BSA, a

ligand for CD uptake in hemocytes; [7]) was unaffected (Figure

S8B). While Car has been previously localized to late endosomes

[47], here we show that Car also localizes to fluid-phase

endosomes much before they fuse with cargo from the CD

pathway (Figure 6B).

Car belongs to the Sec1p/Munc18 (SM) family of proteins [49],

which regulate the efficiency and specificity of membrane fusion

events through their interactions with SNAREs [50]. Car has been

shown to interact with the lysosomal SNARE, syntaxin 16 [51]

and regulate fusion of late endosomes with lysosomes [47]. We

reasoned that its function at early fluid endosomes is also likely to

be mediated via regulation of SNAREs. Since Car does not

interact with a characterized early endosome SNARE [51], we

explored if Car might interact with the plasma membrane

SNARE, Syntaxin1A (Syx1), and whether this interaction was

important for CG endocytosis. We find that Car and Syx1 do

interact genetically: a hetero-allelic combination (where 1 copy

each of Car and Syx1 are mutated) caused a decrease in fluid

uptake (Figure 6D), although single-copy mutations of either one

alone did not inhibit fluid phase uptake (Figure 6D). Furthermore,

depletion of Syx1 by RNAi causes a specific decrease in fluid

Figure 4. An interpretive summary of classified genes. (A)
Normalized ratios (with respect to local controls) of the fluid-phase
pulse intensity vs. chase intensity features for all test genes from the
classification assay. See inset axes for quadrant numbering. Quadrant
color map:green, genes with only chase features increased or
decreased; red, genes with only pulse features increased or decreased;
blue, genes with both pulse and chase features increased or decreased;
gray, genes that did not significantly perturb these features. A selection
of GO categories and genes from quadrants 1 and 3 have been
highlighted for the fluid pulse vs chase features; the remaining GO
categories and genes populating all quadrants are listed in Table S4.
Similar quadrant analyses (not shown) were performed for chase
intensity vs. pulse-to-chase ratio (Table S4). Genes involved in lysosomal
routing, multivesicular body (MVB) sorting and membrane deformation
emerged in quadrant 2 (C2, P/C+). (B) Normalized ratios (with respect
to local controls) of the TfR ratio vs fluid intensity features for all test
genes from the classification assay. Quadrant color map: red, genes with
only fluid features increased or decreased; green, genes with only TfR
features increased or decreased; blue, genes with both fluid or TfR
features increased or decreased; gray, genes that did not significantly
perturb these features. Transport genes collected from quadrants 3 and
4 are highlighted (right), and the rest of the GO categories and genes
populating populating all the quadrants are listed in Table S4.
doi:10.1371/journal.pone.0100554.g004
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uptake (Figure 6C), but does not affect normalized Tf uptake

(Figure S8C).Thus, using mutants as well as RNAi-based depletion

we show that both Car and Syx1 specifically affect the CG

pathway in Drosophila cells. We then examined how Car modulates

Syx1. We found that the level of Syx1A was significantly decreased

in Car-depleted cells compared to control cells (Figure S8D,E).

Thus Car, like the SM protein family member Munc18-1 [52],

could directly regulate Syx1A stability in these cells.

We next tested if these newly identified components are

conserved in their function in vertebrates. We find that depleting

the human homologs of Car and Syx1 i.e., hVps33a and hSyx1,

also results in inhibition of CG but not CD endocytosis in a human

cell line (AGS; Figure 6E and Figure S8F). While Vps33a

specifically affects the process, depletion of Vps33b did not perturb

fluid uptake. Thus, we have identified novel, conserved functions

in CG endocytosis for two genes with no previously characterized

link to the pathway.

Role of Vacuolar ATPase (V-ATPase) complex. The V-

ATPase annotation at node 9 (the bifurcation point for the two

pathways; Table S1), and the locations of the individual V-ATPase

Figure 5. Endocytic phenotypes in mutant primary hemocytes from Drosophila. (A–D) dsRNA treated S2R+ cells phenocopy corresponding
allelic mutants in primary hemocyte cultures in a secondary assay. Scatter plots (A, B) show normalized fold change in fluorescence intensity of
dextran that was pulsed (A) or chased (B) in S2R+ cells treated with different dsRNAs (y axis) or in hemocytes (x axis) from the corresponding mutant
flies. In all cases, representative values were normalized to those from negative controls (CS hemocytes or zeo dsRNA treated S2R+ cells) and are
plotted as mean6 SEM. (n.30 for hemocyte assays, n.200 for S2R+ assays in all cases). For the chase assay in (B), we utilized dor4 and car1 mutant
hemocytes as positive controls (shown in light blue; Sriram et al., 2003). (C) Representative micrographs of hemocyte cultures from flies carrying
hypomorphic alleles of vps35, epac, a-cop and CG1418 assayed as in (B). (D) Summary of the experiment in (A–B) displaying statistically significant
(Student’s T-test, p,0.05) changes in uptake/retention of mutant hemocytes or gene-depleted S2R+ cells as colour coded maps. Scale bar in
(C) = 5 mm.
doi:10.1371/journal.pone.0100554.g005
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Figure 6. Role of lysosomal genes. (A) Network map depicting known and predicted interactions (green lines: genetic; blue lines: physical; brown
lines: predicted based on conserved data) between the ‘Granule group’ set of eye colour mutants (pink) and selected hits (gray). In this network,
genes encoding Carnation (car; the fly homolog of VPS33), Deep orange (dor), Carmine (cm) and Rab7 were identified with roles in CG endocytosis in
this study (denoted by black asterisks), while White (w) depletion affected at least one Tf pathway feature (white asterisk). (B) Localization of
Carnation on early fluid endosomes. Drosophila S2R+ cells were pulsed with TMR-Dextran for two minutes and fixed and labeled with antibodies to
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subunits in the common CG and CD pathway nodes, suggest an

important role for the V-ATPase in both the endocytic pathways.

While acidification and its role in the CD endocytic pathway is

well established during later stages of endocytosis in ligand

dissociation as well as in traffic through the early and late

endosomal pathway [53,54], its role in CG endocytosis is unclear.

Notably, GEECs achieve a very low pH (,6), within minutes after

formation [11], and since we identified the V-ATPase E subunit

(fly ortholog vha26) as an early regulator of fluid phase uptake, we

examined other selected components of the V1 V-ATPase

complex for a similar effect (Figure 7A). Depletion of subunits F

(Vha14; DVma7), B (Vha55; DVma2) and H (VhaSFD; DVma13)

inhibited CG, but did not affect CD endocytosis (measured as the

ratio of Tf internalized to TfR surface levels, although surface

levels of TfR and Tf uptake are also affected; Figure 7B).

To rule out indirect effects of the chronic inhibition of V-

ATPase, we used an inhibitor of the Na+/H+ anti-porter,

Monensin [55] as well as Bafilomycin A1, a specific V-ATPase

inhibitor [56] to rapidly alter pH in the endolysosomal system in

mammalian cells. In both cases, treatment with 50 mM Monensin

or 250 nM Bafilomycin A caused a significant decrease in fluid-

phase dextran uptake in CHO (Figure 7C) and S2R+ (data not

shown) cells within minutes of application. This effect was

independent of secretory pathway function in mammalian cells;

both Monensin and Bafilomycin reversed the surge of fluid phase

uptake observed after addition of Brefeldin A (Figure 7C), which is

a potent inhibitor of secretion and generates excess available Arf1

after release from Golgi membranes for CG endocytosis [8,14].

To address the issue whether the role of vacuolar ATPases in

CG endocytosis is a general requirement of CG endocytosis, we

assessed whether Bafilomycin affected the endocytosis of both

fluid-phase and membrane cargo in a mammalian cell line.

Bafilomycin significantly affects the uptake of HRP (Figure 7D),

and notably CD44 (Figure 7E), as well as causing a drastic

reduction in the generation of early tubular CLICs, while leaving

the later, more vesicular carriers unaffected (Figure 7D; [9,13]).

These results support a conserved requirement of V-ATPase

function in endocytosis via the CG pathway.

Discussion

Exploiting cell-to-cell variation to screen for genes
involved in endocytosis

The single cell approach that we have outlined here is likely to

be generally applicable for investigating cellular processes that are

by nature prone to inter-cell variability. We have demonstrated

the viability of this approach in the context of a systematic

examination of the conserved Drosophila genome to identify genes

involved in CG and CD endocytosis. Many of the genes that we

have identified segregate to distinct endocytic or morphological

classes, and several classes contain functionally related proteins

which show high connectivity. These classes potentially link

diverse processes, such as protein synthesis and degradation, cell

proliferation, membrane trafficking, focal adhesion and cortical

actin dynamics with CG endocytosis. Based on the design of our

study, many identified components with roles in endocytosis are

also likely to be highly conserved across species.

Quantitative assessment of the false positive and negative rates

of the screening methodology, based on a statistical analysis of the

distribution of Z-scores of the individual genes, makes the results of

this genome-wide screen a reliable resource for further studies. In

particular, the low (,10%) false positive rate implies that about

half the genes we report as hits are true positives (,700 genes of

the total 7109 will emerge as false positives for any given feature).

At the same time, it should be highlighted that the screening

methodology adopted here has a relatively high overall false

negative rate for a given feature (,30%; Figure S2B). False

negative rates are rarely estimated in genome-wide studies, partly

because most primary screens are carried out without multiple

biological replicates, and without a large number of positive and

negative controls. It is in fact quite likely that false negative rates in

many primary screens are fairly high, given that independent

screens targeting the same signaling pathway often identify very

different gene sets [57,58].This is highly reminiscent of the poor

overlaps between multiple mass spectrometric screens for identi-

fication of specific protein complexes, an effect now attributed to

different means of preparing samples as well as a lack of an

empirical framework for their analysis of false negatives [59].

Endocytic modules
Building trees to represent multi-feature biological data is likely

to be a generally useful approach over traditional distance-based

hierarchical clustering methods [60–62]. The tree-based method

provides a direct way of identifying functional modules and their

molecular basis. The genes identified here with roles in CG and

CD pathways show different degrees of overlap with genes

identified for other cellular processes in other genome-wide screens

(Figure 8A; Table S8).Intriguingly, members of the root nodes 2–3

and the endocytic nodes 6–9 (but not the more pathway-specific

nodes) are commonly identified in bacterial entry/infection

screens (Table S6). These general observations reflect a tendency

for bacteria to hijack internalization routes into the cell in an

opportunistic fashion. Furthermore, genes from the common

endocytic nodes are also highly represented in screens that assay

cell proliferation and metabolic pathways, and those that involve

cell signaling (Figure 8A). These pathways require genes that affect

endosome number and morphology features, and to a lesser

extent, endosomal intensity. This is internally consistent with our

own assays, which indicate a dependence on the same features for

cell proliferation [22].The overall low level of overlap with genes

that affect viral infection and entry is also interesting, and may

Carnation (aCar). Micrographs show a representative cell imaged in two channels and a pseudo colour merge image (labeled TMRdex and aCar), in
red, green and merge respectively). Carnation (green) is seen enriched on peripheral, small, early fluid endosomes (red). Three examples of such
endosomes (white arrows in merge panel) are shown in the magnified inset. (C) Fluorescent micrographs depict the levels of fluid uptake in
representative S2R+ cells treated with dsRNA against car (first lower panel) or syx1A (last lower panel) or in hemocytes from car1 mutant flies (middle
lower panel), with their respective controls (upper panels). Bar graph represents mean and SD of normalized fluorescent integrated intensity per cell
from 2–3 experiments, with 100–150 cells per treatment (S2R+ cells) or 40 cells per genotype (hemocytes). (D) Representative fluorescent
micrographs depict fluid uptake measured in hemocytes as in (C), in flies that were: homozygous for a mutant allele of car (car1); a hetero-allelic
combination of car1/+;syx1/+;or wild type (CS). Also tested were flies heterozygous for syx1/+ and car1/+. Bar graph represents mean and SD of
normalized fluorescent integrated intensity per hemocyte from 2–3 experiments with 40 cells per genotype. (E) Representative micrographs show
human AGS cells treated with control siRNA or siRNA to hSYX1A and hVPS33A/B and pulsed with FITC-Dextran for 5 min. Right panel - Bar graphs
show population averaged mean fluorescence intensity uptake per cell (representative experiment with n.50 cells per replicate, 2 replicates). Scale
bar in (B–E) main panel = 5 mm, inset = 1 mm. Double asterisks denote significance p values lower than 0.01 with the Student’s T-Test.
doi:10.1371/journal.pone.0100554.g006
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reflect a divergence in host virulence factors given the evolutionary

distance between metazoans [63].

When overlap with selected genome-wide studies was examined,

some clear patterns emerged. We find that the Arf1/COP1

complex members are necessary for the CG pathway and several

of these are also necessary for lipid droplet formation [57] and for

Rho GTPase localization to the plasma membrane at sites of

SOPE injection by Salmonella typhimurium - effects that have been

ascribed to a central role of COPs in cholesterol homeostasis [64].

Given that CG endocytosis requires Cdc42 activation at the cell

surface via a cholesterol-sensitive mechanism [12], it is likely that

the requirement for COP1 in CG endocytosis may reflect its

ability to regulate cholesterol distribution in cells. Indeed,

replenishing cholesterol in a COP1-mutant cell line restored

endocytic uptake, whereas a similar treatment with cholesterol had

no restorative effect on Arf1 knock down cells (Thottacherry and

Mayor, unpublished results). Alternatively, COPs could have a

direct role in shaping endocytic invagination at the cell surface.

Figure 7. Vacuolar acidification and endocytic regulation. (A) Cartoon depicting arrangement of components of the V-ATPase complex [76] in
Drosophila, identified for their involvement in the CG (green) and CD (red) pathways in the primary screen. (B) Fluorescent images show
representative micrographs of S2R+ cells treated with control dsRNA or dsRNA against V-ATPase V1 subunits F (dvma7), B (dvma2) and H
(dvma13).Bar graphs on the right shows normalized FITC-Dextran uptake (fluorescent integrated intensity per cell; upper panel) or normalized Tf
uptake in the same cells (calculated as amount of internalized Tf normalized to cell surface Tf receptor; lower panel).Values are mean 6 SEM from a
representative experiment with n.100 cells per replicate, 2 replicates). (C) CHO cells were either untreated (control) or treated with Monensin (Mon;
left panels) or Bafilomycin A (right panels) in the presence of Brefeldin A (BFA) or absence, and then assayed for fluid uptake with a pulse of TMR-
Dextran (Methods S1).Fluorescent micrographs show representative fields of cells after the corresponding treatments (indicated in white). Bar graphs
depict data from a representative experiment showing mean fluorescent integrated intensity per cell for each condition, normalized to untreated
controls (mean 6 SEM, of 2 replicates, n.50 cells per replicate). Double asterisks denote significance p values lower than 0.01 with the Student’s T-
Test. Scale bar in (B) = 10 mm, (A) = 20 mm. (D) Untreated control MEFs or those treated with Bafilomycin A were pulsed with HRP for 2 min and then
fixed and processed for EM (Methods S1). EM micrographs were counted for the presence of small (40–60 nm) or large (80–120 nm) vesicles (marked
by black arrowheads) or the more complex early tubules that correspond to the CG pathway (marked by black arrows). Bar graph shows averaged
data from 4–6 cells per experiment across 2 independent experiments, p values are indicated for comparison sets using Student’s T-Test. Scale
bar = 200 nm; M = mitochondrion; PM = plasma membrane; NUC = nucleus. (E) MEFs were treated with Bafilomycin A and assayed for CD44 and Tf
uptake as described [9,13]. Fluorescent micrographs show representative fields of cells. Bar graph depicts data from three experiments showing mean
fluorescent integrated intensity per cell for each condition, normalized to untreated controls (mean 6 SEM, of 3 replicates, 10–12 cells per replicate).
p values are indicated for comparison sets using Student’s T-Test. Scale bar = 10 mm.
doi:10.1371/journal.pone.0100554.g007

Figure 8. Relationships of hit subsets to Genome wide screens and an interpretive summary of primary hits. (A) Relationships of hit
subsets to other screens. The heat map shows the degree of overlap between hits in different tree categories (rows) with various other RNAi screens
(columns). Overlap is quantified as the fraction of genes in a given tree category also identified as a hit by the group of screens. The number of genes
in each grouping is denoted in brackets. The screens are grouped as shown in Table S8, first tab. (B) Selected genes from collected nodes
(representing the CG pathway (red box), CD pathway (green boxes) and nuclear morphology (light orange box) parameters) are shown overlaid onto
the tree hierarchy.
doi:10.1371/journal.pone.0100554.g008
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While the role of actin regulation in CG uptake is well

established [8,10,12], the identity of the responsible molecular

machinery is largely unknown. Here we provide endocytic

signatures (Figure 8B, Figure S6B, Table S7) of several conserved

cytoskeletal components and identify several candidates for further

study. The PVs of Profilin, Abelson interacting protein (abi) and

the formin diaphanous and actin remodeling agents, Unc-5, Fimbrin

as well as Twinfilin, indicate important roles in CG endocytosis,

while the membrane tension regulators and transducers (ilk and

p130Cas) also segregate with negative regulatory control in the CG

pathway. Some of these candidates (Table S7) also affect CD

endocytosis, consistent with earlier evidence in mammalian cells

[65,66].This supports the idea that the CG pathway is exceedingly

sensitive to the physical state of the cell membrane, namely

tension, lipid availability and actin modulatory capacity. The

enrichment of Tf-uptake features in tubulin genes PVs suggests a

contrasting dependency on the microtubule skeleton for CD

endocytosis (Figure 8B).

We also identify a number of signal transduction and kinase

cascade families within our hit-set (Table S2), with evidence for

the functional segregation of kinases for different pathways of

endocytosis [67]. The presence of many membrane-associated

proteins encoded by genes that affected the two pathways (see

Table S2) also points to regulatory control of the two pathways by

cis-acting elements in the plasma membrane. An example of such

control is observed with the axon guidance genes, where down-

regulation of the frazzled receptor or its soluble ligands netB and

unc-5 act to enhance CG-pathway activity (Figure S6B).

New molecular players involved in CG endocytosis
We have discovered new components of the endocytic

machinery, thus validating the high-throughput genome-wide

design of our study. The identification of a role for the SM protein

Car/hVPS33A in the CG pathway, along with a SNARE

counterpart (Syx1), suggests that the CG pathway may be sensitive

to regulation at the level of the availability of SNAREs.SM

proteins have been previously shown to modulate levels of Syx1

[52,68]. Subsequently, Syx1 may be required for the normal

delivery of some component that is critical to CG endocytosis.

Alternatively, the levels of Syx1 itself could be a direct sensor for

the functioning of this pathway, since activated Cdc42 may

directly interact with SYX1A at the cell surface [69]. Interestingly,

Vps45 (CG8228), another SM protein in Drosophila, specifically

perturbs CD endocytosis (Table S2), in our study. Thus the two

SM proteins Car and Vps45 may serve to regulate the CG and

CD endocytosis, respectively.

In Drosophila, Car belongs to a special class of eye color genes,

called the ‘‘Granule Group’’ [70]. Several members of this group,

in addition to affecting pigment granule biogenesis, also affect

multiple steps of intracellular traffic and are components of the

HOPS and AP-3 complexes. We find that as many as five

members have been observed to affect the CG pathway-these

include Lightoid, Carmine and White, in addition to Dor and Car.

That these genes interact genetically with one another [70]

suggests that they may regulate the capacity of the CG pathway.

This is reminiscent of the master transcriptional regulator of

lysosomal biogenesis, which acts through CLEAR elements [71]. It

follows that we see seven genes (not shown) containing CLEAR

elements that play a role in the CG pathway, whereas only one

such gene plays a role in the CD pathway. This may indicate a

preference for the CG pathway in crosstalk between endocytic

routes and the dynamic regulation of lysosomal biogenesis.

The discovery of a role for V1 subunit of the V-ATPase in the

CG pathway coupled with the observation of rapid onset of

acidification of GEECs [11], indicates a central role for pH

regulation in the CG uptake mechanism. An interesting prospect

here is that acidification of GEECs regulates the return of key

players important for CG endocytosis, and provides a mechanism

to couple the huge flux of recycling membrane to internalization at

the cell surface. This mechanism may play a role in regulating

membrane homeostasis, and uncovering the molecular machinery

behind this is an important goal for future experimentation.

Conclusions and prospects
We have screened for core and peripheral molecular players

underlying endocytosis. An internal statistical analysis of the

primary assay establishes a 10% false-positive rate (though about

30% of the genes tested for a given feature do slip through the net).

The high rate of feature-specific recall in the classification assay, as

well as the correlation of the direction of endocytic perturbation in

the secondary assay compared to those observed in mutant cell

lines, provides further confidence in our methodology. Our

hierarchical classification gives us a sense of the peripheral genes

that control CD and CG endocytosis. Deeper analysis reveals a set

of new core regulators of clathrin-independent endocytic processes

in metazoa: the components hVPS33a and SYX1, as well as the

regulatory control of the tension sensing mechanism and vacuolar

acidification. Apart from these specific results, the set of PVs for all

the genes screened represents an information-rich resource that

can be used to test hypotheses beyond those we have considered

here. We have placed this resource online (http://rnai.ncbs.res.in/

endosite) and hope it will stimulate further study into the

molecular basis of endocytic routes and intracellular transport.

Materials and Methods

Cell culture, Fly stocks, RNAi and stable lines
Drosophila S2R+ cells were grown and treated for RNAi as

before [8]. dsRNA was prepared from the Drosophila Open

Biosystems library v1 (Table S9; [60,72,73] as described [8].

dsRNA against bacterially encoded zeocin and mock transfections

were used as negative controls. For seeding onto cell arrays, 10 ng

of dsRNA was dried onto the cell array added to a final volume of

2 ml of Schneider’s Drosophila Insect Medium (SDM; Invitrogen)

containing ,100–150 cells. Cell arrays were incubated in a humid

chamber for 72 hours before processing. Chinese Hamster Ovary

(CHO) cells stably expressing FR-GPI and human TfR (IA2.2

cells) or Human AGS cells (ATCC catalog No:CRL-1739) and

FR-AGS (Human Folate receptor expressing AGS cells) were used

for mammalian endocytic assays. They were grown in HF-12 or

RPM1 media (CHO,AGS/FR-AGS respectively; HiMEDIA,

Mumbai, India) containing NaHCO3 and penicillin, streptomycin

(100 mg/ml) and supplemented with 10% FBS (GibcoBRL,

Rockville, MD). Mouse embryonic fibroblasts (MEFs) were grown

and treated as described previously [9,13].

Endocytic uptake experiments and perturbations
For CD and CG uptake experiments, S2R+ cell arrays were

incubated with endocytic probes Fdex and Alexa568-Tf in M1

buffer (150 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2,

20 mM HEPES, pH 6.9) supplemented with BSA (1.5 mg/ml)

and D-glucose (2 mg/ml) at room temperature (21–24uC) for

20 minutes, and extensively washed in the same medium (see

Figure 1A for schematic outline and Supplementary Information

for details on probes and endocytic assays). In the case of genes

that affect TfR uptake it is necessary to monitor external levels of

TfR along with internal levels in each cell, as quantitative uptake is

revealed by internal:external ratios of Tf. To quantitate the
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specific endocytic uptake of TfR, cells were incubated with

fluorescent conjugates of Tf (along with fluorescent conjugated

10 kDa dextran (Molecular Probes, OH)) at room temperature for

different pulse times and then washed in M1 and placed on ice.

Ascorbate buffer with 50 mg/ml desferroxamine mesylate (pH 4.5;

10 min on ice) treatment was carried out to remove cell-surface Tf.

Surface pools of receptors were labeled by further incubation on

ice with antibodies to anti-hTfR (aOkt9) for 30 min. Endosomal

pH was neutralized by the addition of ammonium chloride

(30 mM in M1) post-fixation so as to dequench pH-sensitive

fluorochromes. Subsequently, cell arrays were washed, fixed (2.5%

paraformaldehyde in M1), mounted in Vectashield (Vector Labs,

CA) and imaged at 206 0.75 NA with an automated microscope

with manually guided focusing [8]. For pulse-chase classification

assays, either Alexa 568-Tf/Fdex or Fdex alone was pulsed for

5 minutes, and the Fdex only population was followed by a chase

of 12 minutes and a second pulse of another fluid-phase probe

(TMR-Dex) for an additional 3 minutes (Figure 3A).

CHO cells were treated with Bafilomycin (250 nM), Brefeldin A

(20 mg/ml) or Monensin (50 mM) (Sigma-Aldrich) and CG

endocytosis was monitored using 1 mg/ml TMR-dextran pulse

of 10 minutes. The drugs were maintained throughout the pulse

and the uptake was terminated using chilled M1. In the combined

assay, the drugs were treated sequentially with pulse of TMR-

Dextran containing the drugs during the assay. Details of time

points with inhibitors is provided in Supplementary Information.

For mammalian RNAi, sub-confluent cells (50–60%) were

transfected with the corresponding shRNA -Syntaxin1A-eGFP

shRNA (vector control, pG-SUPER empty vector) using Fugene 6

transfection reagent according to supplied protocol. For siRNA

treatments, cells were transfected with 150 ngs siRNA using

HiPerFect transfection reagent (Qiagen) for 60 hours according to

the recommended protocol. Human Syntaxin1A, Human

VPS33A and Human VPS33B ONTARGET plus siRNA

SMARTpool were acquired from Dharmacon RNAi Techniolo-

gies (Thermo Fisher Scientific). RNAi-treated cells were assayed

for CG or CD-endocytosis 60–72 hours post transfection as

described above. Anti-CD44 and Tf-555 or horseradish peroxi-

dase (HRP) endocytic assays in MEFs, followed by electron or

fluorescence microscopy were all exactly as described [9,13].

Primary cell cultures
Flies that were mutant for a few genes (see Table S5), identified

as affected (or not) in CG endocytosis in the characterization assay

were obtained from the Bloomington Stock Centre at Indiana

University. CG endocytosis was examined in primary hemocytes

derived from wild type or mutant animals as described [7]. Many

of the alleles (indicated by blue letters in ST5) were not viable as

adults. These were obtained as heterozygous mutants over

appropriate chromosomal balancers (FM7, CyO or TM6, for

the 1st, 2nd or 3rd chromosome, respectively). Since these markers

can only be identified in adult stage, they were crossed to flies

containing GFP-tagged balancers. GFP –expressing adult males

and females carrying the mutant allele in heterozygous condition,

were selected from this cross and allowed to mate. From this cross,

larvae that were non–green (ie. homozygous for mutant allele)

were used for the assays. Primary hemocytes from wild type and

mutant larvae were pulsed with the two fluid probes (as done in the

characterization assay) and fixed and imaged at high resolution

(606, 1.4 NA). Assays were repeated twice or more for each allele;

alleles for which no-non green larvae were obtained were likely

lethal before the 3rd instar larvae (orange letters in Table S5).

Imaging and image processing
Quantitative imaging and image processing of mammalian cells

and Drosophila hemocytes has been described previously

[7,9,11,13]. Analysis of image-based features for S2R+ cells is

described in detail in Table S1 and summarized here. We

analyzed 27 different image-based parameters: Fint1–3/Tint1–3:

Average per cell intensity in Fdex or TfR channel with different

background subtractions, respectively; Fint4/Tint4: Fraction of

cell with non-zero Fdex or TfR signal; Fmph1/Tmph1: average

size of Fdex or TfR endosome; Fmph2/Tmph2: Fraction of cell

area occupied by endosomes; Fmph3/Tmph3: average circularity

ratio of endosomes; Fnum/Tnum: average number of endosomes;

Okt: average intensity of the surface levels of TfR as marked by

aOkt9; Rto1–3: only for the TfR channel, represents the surface

level normalized pool of internal TfR ie. Tint1/Okt or Tint2/Okt

or Tint3/Okt respectively; Fclc/Tclc: the fraction of Fdex

endosomes that colocalize with TfR endosomes, and vice versa;

NucSize/NucCirc/NucFluct/NucDist/CellSize: measures of nu-

clear and cell size.

A Z-score to quantify shape changes of phenotypic
distributions

To quantitatively distinguish between distributions, we use the

test statistic from the Kolmogorov-Smirnov test for two distribu-

tions. This test is non-parametric, which means that it makes no

assumptions about the actual shapes of the distributions being

tested. The Kolmogorov-Smirnov test statistic [28] is defined as

the maximum vertical deviation between two cumulative distri-

bution functions. Our Z-score is a scaled version of this statistic

based on pooled comparisons between test wells and negative

control wells on every slide (See Supplementary Information).

Tree construction
Algorithms used for phylogenetic analysis can generally be used

to hierarchically cluster any type of data. Here we use a parsimony

approach to build our tree. We regard the 27 features as ‘‘species’’,

and the 7131 profiled genes as binary ‘‘characters’’. If a certain

gene is observed to influence a certain feature, that entry of the

2767131 matrix is set to ‘1’; otherwise, it is set to ‘0; that is, each

column of this matrix is the 27-dimensional feature vector. The

tree describes the observed distribution of characters at each leaf

(each feature) with the minimal number of character (gene) gain

and loss events on internal nodes. This structure can be judged a

good description of the data if (1) we observe only character gains,

so a gene added at an ancestral node occurs in all descendants of

that node; and (2) if each character is associated with a single gain

event, so that a gene which influences two nodes also influences all

others descended from their common ancestor. In practice we

observe only a small number of character losses (280 out of 1881

total events), which we interpret as due to the false-negative rate of

our assay; we therefore focus only on the genes added at each

node. To quantify multiple gain events, we examined the overlap

between genes added at pairs of nodes, and tested this against the

null hypothesis that they are selected at random from the

background of hits. Node pairs were significantly depleted in

common genes, with a single interesting exception - Fdex and Tf

colocalization (which are related by definition). Once this overlap

is removed, only 203 out of 1072 characters show multiple gains

(Figure 2C). Housekeeping genes such as RNA polymerase

subunits, which are close to the root of the tree and affect almost

all features, do not provide much insight into the mechanisms of

endocytosis. In contrast, genes which influence a restricted set of

processes without affecting any others are interesting targets for
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future study. Maximum parsimony trees were constructed using

PHYLIP [74]. We first restricted the set of characters to 505 non-

trivial genes, those which were hits for two or more features. We

used ‘seqboot’ to generate 100 datasets using the half-jackknife

option. For each dataset we used ‘pars’ to construct maximum

parsimony trees, in each case selecting the best tree from 25 runs

with shuffled species order. We used ‘consense’ with the majority

rule option to generate a consensus tree (Figure S5). We then re-

ran ‘pars’ on the consensus tree and stored the inferred set of

characters at each internal node. Finally, assuming the least

populated internal node to be the root, we determined the set of

genes added at each node.

GO-guided tree construction
In this procedure, the leaves of the individual features are now

populated with GO cellular component annotations instead of

their CG numbers. The parsimony algorithm shifts shared GO

annotations to higher nodes in the tree; generic annotations

(cytoplasm, nucleus, membrane, intracellular, extracellular region,

plasma membrane) converge at the root of the tree.

Network prediction
Genes belonging to a given secondary quadrant were tested for

functional association with GeneMania [75]. We used three main

criteria for association (genetic, physical and predicted interac-

tions) and selectively omitted co-expression and co-localization so

as to rule out less specific networks. We selected the GO biological

process based association option and added up to 20–50 additional

genes into the predicted networks to enhance searching. With

these conditions, approximately 50–80% of genes in the quadrants

highlighted (Figure S6) were captured in networks. We considered

functional GO annotations as enriched at p values,1023 within

the GeneMania network report.

Enrichment calculations
Orthologs and screens enrichment. The standard proce-

dure for determining the annotation enrichment of a list

(orthologs/screen hits) within a given node, consists of calculating

the probability of drawing the same or higher number of study set

genes annotated to the term if we selected a list of genes of the

same size as the study set randomly from the population set.

Enriched nodes were the ones which had a P value of 0.05 or lesser

post multiple hypothesis correction.

Interactions enrichment. The number of interactions

present at each node of the tree was calculated for the real

dataset. 10000 permuted interaction datasets were constructed,

keeping the total number of interactions constant. For each

permutation, the total number of interactions present in each node

was calculated. The probability of drawing the same or higher

number of interactions within each of these nodes for the

randomized trials was calculated as an empirical p-value. Nodes

with a p-value of 0.05 or less (post-multiple hypothesis correction)

were considered statistically enriched for interactions.

String database parameters. Protein-protein interaction

data for D. melanogaster was obtained from the STRING v8.3 database

(www.string-db.org) using a confidence score filter of . = 0.400. The

prediction method was set to ‘All methods’, which represents a

combination of 7 different prediction methods used by STRING to

incorporate protein-protein interactions (Jensen et al., 2009).

Supporting Information

Figure S1 Primary Screen and post processing. (A) The

‘cell array’ platform used for the screen is a clear borosilicate glass

slide (25675 mm) printed with hydrophobic ink (Erie Scientific,

OR) to create 300 wells (30610) of 1 mm diameter each, with a

working volume of 2 ml/well and an inter-well spacing of 1 mm.

The hydrophobic mask prevents mixing of soluble content

between wells while allowing assays based on multiple liquid

exchange steps to be performed easily and with high time

resolution without the use of robotics. Pertains to Figure 1A. (B,C)

Three randomly selected unprocessed images from three different

slides, acquired at 16 bit depth in the Fdex (B) or Tf (C) channels,

and displayed here without any rescaling or background

subtraction. Graphs on the right show histograms of the pooled

raw pixel intensities from all the images in the relevant channel

from a single slide (1500*512*512 pixels). During acquisition of all

images in the screen, care was taken to ensure that the maximum

intensity in each image is far below saturation (,20000 of 65536

or 2‘16 possible grayscale levels). (D) Sample Fdex image

highlighting the image processing steps used to extract information

at different spatial scales. Each image was subjected to semi-local

or local (tophat) background subtraction using a morphological

disk of varying size (large: 64 pixel radius; medium: 10 pixel radius;

small: 5 pixel radius). The large disk was chosen to exceed the size

of the largest possible cell, ensuring the subtraction of the global

background, while the medium and small disks were chosen to

emphasize different aspects of the endosome distribution (large:

total cellular fluorescence, medium: large endosomes and un-

resolved clumps, small: individual bright and dim endosomes).

Per-cell information from these three processed images corre-

sponds to the parameters Fint1, Fint2 and Fint3 respectively. The

same transformation was applied to the Tf images with slightly

different disk sizes (large: 64; medium: 14; small: 7; to account for

the tubular morphology of Tf endosomes). (E) The prevalence of

metagenes (left, genes conserved across multiple phyla [21]) and

genes with dsRNAs predicted to have multiple off-target effects

(right) in the set of hits (green) relative to the entire library (black).

The data indicate a slight enrichment for metagenes in the hit-set.

We identified dsRNAs with at least one potential off-target ([77],

DRSC, http://www.flyrnai.org/RNAi_find_frag_free.html), and

found no enrichment within the set of hits (bars on the right),

pertains to the properties of genes detailed in Table S1. (F) Plot

quantifying the fraction of hits determined to be detectably

expressed (green) or absent (black) by transcriptome analysis of

S2R+ cells [78] across multiple screens carried out in this cell line.

The data shown here include screens for N-FAT activation

(NFAT) [79], Wingless signaling (Wingless) [80], store operated

Ca+2 entry (Cracm1) [81], light-dependent CRY degradation

(CRY) [82] and nuclear import of SMADS (Msk) [83] in addition

to this screen. Pertains to the properties of genes detailed in Table

S1.

(PDF)

Figure S2 Negative control distributions. (A) Cumulative

distributions (cdfs) of single cell intensity distributions from 30

negative control wells, shown here after affine-normalization (by

subtracting the mean and dividing by the standard deviation).

Each graph shows the negative controls from a different slide. (B)

Frequency histogram of Z-scores, with positives (panel 1–4),

unused negatives (panel 5) and test genes (panel 6) plotted

separately. Potential hits are picked at a threshold. = 3. The final

selection of a hit depends on how a gene performs in triplicate.

(PDF)

Figure S3 Sec23 affects fluid-phase uptake in mamma-
lian cells. (A, B) Human AGS (wild type) cells were transfected

with SEC23A shRNA (targeting bases 494–512 in human

SEC23A mRNA (accession #NM_006364)) encoded in pG-Super
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vector or empty pG-Super vector (control) in separate dishes, and

transfected cells were identified by EGFP expression ,60 h after

transfection. Endocytosis via the CLIC/GEEC pathway was

assessed by TMR-Dex uptake (A) and CD-endocytosis was

monitored by uptake of Cy5-labelled transferrin (Cy5-Tf)

normalized to the surface level expression of transferrin receptor

as ascertained by measuring the amount of Cy3-labelled Okt9

antibody (Cy3-aOkt9) against the transferrin receptor (B). For

these experiments, cells were pulsed for 5 min at 37uC with TMR-

Dex (1 mg/ml) or Cy5-labelled transferrin (Cy5-Tf) and fixed and

imaged at 206. Micrographs of representative fields of cells from

brightfield (BF) EGFP and the respective endocytic (TMR-Dex

and Cy5-Tf) and surface (Cy3-aOkt9) are shown in the panels on

the left. In (A), a histogram from one representative experiment

shows the measured integrated intensities of TMR-Dex uptake per

cell in each condition; the error bars here represent the weighted

mean of fluorescence intensities 6 SEM (n.50 cells per replicate,

2 replicates per experiment). In the upper panel in (B), the

histogram shows the integrated intensities of internalized Cy5-Tf

in SEC23A shRNA transfected or control cells (normalized to

control values; white bars), and the corresponding surface level

expression of TfR as measured by Okt9 binding also normalized

to control values (black bars). The error bars represent the

weighted mean of fluorescence intensities 6 SEM (n.40 cells per

replicate, 2 replicates per experiment). The second histogram

represents uptake of Tf (normalized to surface TfR expression

level) in the same transfected cells plotted as an internal:external

ratio for each condition (Lower panel). (C) AGS cells were

transfected with SEC23A shRNA or control vector in separate

90 mm dishes. Transfected cells from each dish were separated by

FACS on the basis of the EGFP expression at two different time

points, 48 hours post transfection and 72 hours post transfection.

Lysate from each of these time points were used to carry out a

Western blot. In the right panel, the amount of SEC23A protein as

detected by anti-SEC23A (kind gift of Benjamin Glick, U.

Chicago) on western blots is quantitated and normalized to the

actin level (as a loading control) per lane. Bars, 20 mm.

(PDF)

Figure S4 Enrichment of protein-protein interactions
within nodes of the tree. (A) Based on the distribution of genes

in the nodes and leaves of the tree (Figure 3; Table S2) intra-node

protein-protein interactions were identified using parameters

collected from STRING. The total number of interactions present

in each node was calculated and the probability of drawing the same

or higher number of interactions across 10000 randomized trials

was estimated. Nodes with a p-value#0.05 (post-multiple hypothesis

correction) were considered to be enriched for interactions,

represented as pixels in the heatmap. A subset of nodes is

significantly enriched with respect to orthologs in other species,

potentially indicating the presence of evolutionarily conserved hubs.

(B) Interaction maps of nodes enriched for interactions in Drosophila.

Genes are color-coded based on the presence of orthologs in yeast

(yellow), humans (blue), or both yeast and humans (green).

(PDF)

Figure S5 Bootstrap results for the primary tree. 100

replicate trees were generated by a half-jackknife operation,

leaving out half the genes at random for each replicate. The final

tree is a consensus of these 100 replicates. The bootstrap support

for each branch (the fraction of replicates in which this branch

occurs) is shown.

(PDF)

Figure S6 Highlighted networks involved in protein
degradation, the stress response, cell proliferation and

the organization of the cytoskeleton. (A) Genes that affect

both CG and CD pathways negatively (intersecting quadrants

from Figure 5; see main text) were overlaid on a protein-protein

interaction map (GeneMania; [84], with selected GO annotations

highlighted in different colors (see legend). (B) Genes involved in

cytoskeleton organization were selected using GO annotations,

and were assayed for their roles in the CG pathway using the assay

detailed in Figure 4. Complete scores are listed in Table S6. A

network analysis [84] on the pooled set of results from this

additional assay and the screen (Tables S1 and S4) highlights the

significance of specific cytoskeletal elements in the two pathways of

interest. The color of each edge in the network denotes the type of

interaction (see legend below) and the fill color for each node

denotes the functional category (see legend above network).

Classification of the gene into a CG pathway hit, CD pathway

hit, or a common hit is denoted by the letters F, T, or FT.

(PDF)

Figure S7 CG and CD pathways assessed in primary
larval hemocytes from drp and Flo-1 mutants. (A,B)

Fluorescent dextran (fluid) and anionic ligand binding receptor

uptake of Cy3-malelylated BSA (receptor) in drp1 (DRP) and Flo-1

(FLOT) mutant hemocytes as compared to those from wild type

CS flies. Graphs represent means 6 SEM of relative fluorescence

intensities (RFU) from 3 independent experiments (n = 10–20 cells

per experiment). In each case, differences were not statistically

significant from controls (Student T-test, p.0.05). (C) Represen-

tative micrographs of CS or mutant hemocytes (dor4, car1) that were

pulsed for 3 min with fluorescent dextran and then chased for

12 min. As shown previously [47], these late endosomal mutants

fail to traffic cargo to lysosomes and thus accumulate probe during

the chase. See Figure 5B for quantifications.

(TKF)

Figure S8 Effect of depletion of Car (hVps33) and
Syntaxin 1 on levels of Syntaxin 1 and CD endocytosis.
(A, B) Histograms show uptake of Tf (normalized to cell surface

TfR (Okt9) staining levels) in Car-depleted S2R+ cells (A) and

uptake of Cy3-malelylated BSA (receptor) in car1 mutant

hemocytes (B). Note that there appears to be no significant

difference in the uptake of bona fide CD-cargo in both cases when

compared to control cells. Inset in A shows the protein levels of

Car in the dsRNA-treated cells compared to untreated cells by

western blot. Actin staining (at 40 kD) from the same western blots

was used as a loading control. (C) Histogram shows that

normalized Tf uptake in Syx1A-depleted S2R+ cells was no

different from that measured in control cells as seen in a single

representative experiment out of three independent experiments

(n.50 cells per replicate, 2 replicates per experiment). (D) Levels

of Syx1A were measurably different in Syx1-depleted cells

(immunofluorescence, n.50 cells per replicate from 2 replicates).

(E) The amount of Syx1A is reduced in Car-depleted cells. Graph

represents normalized data from a representative experiment with

n.50 cells per treatment from 2 replicates. (F) Histogram shows

that normalized Tf uptake is unaffected in human AGS cells

depleted of SYX1A, VPS33A and VPS33B.

(PDF)

Table S1 Z-scores for the entire screen, the hits and
parameter descriptions. Primary Z-Scores (tab labeled ‘‘Z-

score’’) calculated for the 7216 genes tested in triplicate across all

27 parameters (details in tab labeled ‘‘Parameter Description’’),

and the corresponding parameter-wise list of hits (tab labeled

‘‘Hits-Parameter wise’’) obtained using a KS-based Z-Score with a

threshold of Z. = 3 for at least two out of three replicates.

(XLS)
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Table S2 Distribution of hits within the nodes and
leaves of the parsimony-generated tree structure. Distri-

bution of hits within the nodes and leaves of the parsimony-

generated tree structure described in Experimental Procedures

and Figure 2. In addition, hits annotated to be membrane-

associated, involved in signal transduction, or specifically anno-

tated to be kinases (by Gene Ontology) are detailed separately in

additional tabs to highlight functional categories of potential

interest.

(XLS)

Table S3 Tree classification of GO terms associated
with the set of hits. Distribution of Gene Ontology Cellular

Component (GO_CC) annotations within the nodes and leaves of

the parsimony-generated tree structure, utilizing GO_CC guided

pull-up methods (see Experimental Procedures and Figure 2).

(XLS)

Table S4 Detailed results from the high-resolution
classification assay. p values and normalized means (relative

to the local control wells, as described in Experimental Procedures)

for genes tested in the classification assay for CG or CD pathway

activity as indicated. Additional tabs represent quadrant-wise

(Figure 4) distribution of genes at a p value,0.10.

(XLS)

Table S5 Drosophila strains used in this study. Detailed

description of the Drosophila mutant lines screened for their effects

on the CLIC/GEEC pathway using primary hemocytes from

viable and wandering third instar larvae.

(XLS)

Table S6 Gene lists from other genome-wide RNAi
screens. Tabs contain lists of hits overlapping between this

screen and multiple other siRNA screens grouped into functional

categories.

(XLS)

Table S7 Cytoskeleton-related genes tested in the high-
resolution classification assay. p values (Student’s T-test) and

normalized means of a sub-set of cytoskeletal genes selected based

on their Cytoskeleton GO classification. Genes not tested in the

primary screen are highlighted in red. This subset of genes was

tested separately in the high-resolution classification assay (Figure

S6), to assess their roles in the CG pathway.

(XLS)

Table S8 Comparison with other screens for endocyto-
sis. List of genes already classified as endocytosis genes by KEGG

(Endocytosis genes) and the hit lists from other recent endocytosis

or lipid droplet screens (as indicated) compared to the set of hits

from this screen.

(XLS)

Table S9 Sequences of dsRNA primers used in the
primary screen.

(XLS)

Methods S1

(DOCX)
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