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Agricultural is an indispensably public healthcare industry for human beings at any

time and smart management of it is of great significance. Since substantial technical

advance relies on long-term efforts and continuous progress, reasonably scheduling the

distribution of agricultural products acts as a key aspect of smart public healthcare. The

most intuitive factor affecting the distribution of agricultural products is its dynamic price.

Forecasting price fluctuations in advance can optimize the distribution of agricultural

products and pave the way to smart public healthcare. Most researchers study the prices

of various agricultural products separately, without considering the interaction of different

agricultural products in the time dimension. This study introduces a typical deep learning

model named graph neural network (GNN) for this purpose and proposes deep data

analysis-based agricultural products management for smart public healthcare (named

GNN-APM for short). The highlight of GNN-APM is to take latent correlations among

multiple types of agricultural products into consideration when modeling evolving rules of

price sequences. A case study is set up with the use of real-world data of the agricultural

products market. Simulative results reveal that the designed GNN-APM functions well.

Keywords: graph neural network, agricultural products, public healthcare, deep data analysis, smart management

1. INTRODUCTION

Since ancient times, agriculture has been a life industry for human survival, which is closely related
to the most basic life guarantee of human beings. At present, food shortage is one of the most
important problems faced bymany regions in the world (1). This phenomenon is generally reflected
in two aspects (2). For one thing, there is still room for improvement in current agricultural
technology, which makes grain yield fail to meet the expectations (3). For another, due to the lack
of scientific management and scheduling strategy, the production of agricultural products is not
reasonable (4). The exploration of advanced agricultural technology has lasted for at least a 100
years, and some technological breakthroughs have been made in some key fields (5, 6). However,
this process exerts an imperceptible influence as we all know, which needs to be accumulated over
a long period of time to make progress (7). The use of advanced computing technology to manage
the agricultural products market can improve the distribution and dispatch efficiency of global
agricultural products to a certain extent (8), and then alleviate the problem of food shortage (9). The
key to improving management efficiency is to forecast the market conditions of several major types
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of agricultural products (10). To realize such a goal, data-driven
methods are the most intuitive ways (11, 12).

Rationalizing the distribution of agricultural products is an
important aspect of smart public healthcare. Predicting price
fluctuations in advance can optimize the layout of agricultural
products and pave the way for smart public healthcare. Many
scholars have studied the agricultural products market in recent
years (13–32). For example, Fan et al. (14) analyzed the value-
added mechanism of agricultural products circulation value
chain and put forward three optimizationmethods of agricultural
products organization mode. These existing researches are
mainly realized through the research methods of social sciences.
Their analyses focus on the mechanism of social development
and evolution but have to deal with large-scale computational
tasks in a manual way. Without the assistance of intelligent
computing, these methods are always faced with certain
limitations. There are also some scholars who use intelligent
computing methods to solve this problem. They regard the
forecasting problem of the future agricultural products market
as a time series forecasting problem based on historical data.
However, most of them just treat different agricultural products
as independent categories and then build time series prediction
models separately. In this way, potential relationships between
categories are ignored, so that the precision of the modeling
process is reduced.

In order to solve the above challenges, a graph neural network
(GNN) can be used to model this time series prediction problem
(33). Different from the traditional model that deals with grid-
structured data, GNN deals with the data of topological structure.
GNN is based on deep learning (34) and is widely used in
various fields due to its good performance and interpretability
(35). It can deeply perceive the relationship between entities in
the process of modeling by graph-structured data. Vertexes and
edges connecting vertexes together constitute graph structure.
The vertexes are object entities, and the edges are the specific
relationship between the entities. Specifically, several common
agricultural products can be regarded as entities, and the
correlation between them can be regarded as edges, which
together constitute a kind of graph network. By introducing
a neural computing structure, a GNN model for time series
prediction can be constructed. Therefore, this study designs
a graph neural network-based smart management for the
agricultural products market (GNN-APM). The main highlights
of this article can be summed up as follows:

• The internal complexity of agricultural products systems is
investigated for further management.

• The GNN is employed to construct a time-series price
prediction method for agricultural products systems.

• A case study is carried out to evaluate the performance of the
proposed method on real-world scenes.

2. SYSTEM MODEL

The left part of Figure 1 illustrates the learning and training
process inside GNN-APM. First, the feature space of different
types of agricultural products is coded into vectorized

representations. Then a prediction model is obtained by
learning the data samples. As a necessity in our life, agricultural
products have a strong correlation among various categories,
and these correlations are very meaningful and worth exploring
further. The complex interrelation between different categories
affects their demand to a great extent. The introduction of the
GNN model deeply excavates the correlation between different
categories of agricultural products and builds a graph structure
with agricultural products as the entity. Through analysis, the
market conditions of agricultural products can be predicted and
further intelligent management of public health can be realized.

Generalized to the problem scenario in this study, there are
several types of agricultural products whose market conditions
need to be forecasted. The learning algorithm of GNN-APM is
shown inAlgorithm 1. Types of agricultural products are viewed
as the set of nodes, and their internal relations are regarded
as the set of edges. Market conditions of agricultural products
refer to the average market price in this research and will be
updated temporally. Each time that the market condition is
updated, is defined as a timestamp t which ranges from 1 to M.
During each timestamp, market conditions of all the agricultural

types are denoted as V
(t)
i , where i is the index number of

agricultural products types. Inputting market conditions data
of M timestamps, the main goal is to predict unknown market
conditions data of following timestamps. Obviously, internal
relations among nodes are likely to influence the tendency
of market conditions. Thus, a relationship-aware sequential
forecasting problem is formulated, and the GNN model is
adopted to deal with such a problem.

Algorithm 1 | The learning algorithm of GNN-APM.

Input: The market condition dataset: D; node set: V ; number of
agricultural products:N; total timestamp:M; learning rate:
l; parameter set: 2; penalty parameter: p;

1: initial iter = 1
2: repeat

3: for t ∈ [1,M] do
4: for i ∈ [1,N] do

5: compute V(t)
i = f (θ(; ; id(Vi);2);

6: compute loss =
∑N

i=1

∑M
t=1[‖V

(t)
i − V̂

(t)
i ‖ + p ∗

‖2‖2F];
7: compute the gradient of 2 according to loss;
8: update model parameters 2 according to their

gradients and learning rate l;
9: end for

10: end for

11: iter = iter + 1;
12: until convergence

3. METHODOLOGY

Graph convolution network (GCN), a typical GNN model, is
utilized here to model correlated sample space. The GCN extends
the convolution operation to non-Euclidean data with graph
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FIGURE 1 | System model and overview of the designed graph neural network-based smart management for agricultural products market (GNN-APM). (A)

architecture and (B) training process in computing layer.

FIGURE 2 | Workflow of the graph convolutional network employed for prediction.

structure. It is a deep learning method for graph structured data.
Graph data can naturally represent data structures in real life,
such as traffic networks, communication networks, and social
networks. In other words, it is the way to represent this kind of
data format. Unlike image and text data, graph data has different
local structures for each node. This is because the nodes in the

graph represent the different entities in the network, and the
edges that connect the nodes represent the relationships between
the entities.

As is shown in Figure 2, taking graph structure as input, GCN
obtains new node representation through graph convolution
operation on neighbor nodes of each node in the graph. Then,
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all nodes are pooled to obtain the representation of the whole
graph. In particular, an undirected graph with nodes is defined
as G (V ,E), where V is the number of nodes and E is the edge
between two nodes. Enumerating i from 1 to N, vi constitutes the
node setV . Let j denote the index number of nodes different from
node i, edge eij constitutes all the edges between pairs of nodes.
Additionally, all the edge states inside graph G are able to make
up an adjacency matrix A.

There are two kinds of GCN methods: spectral method and
spatial method. Spectral CNN is the first method to construct a
convolutional neural network on the graph. This method uses the
convolution theorem on the graph to define graph convolution
from the spectral domain. Specifically, it uses the convolution
theorem to define the graph convolution operator in each layer.
Under the guidance of the loss function, it learns the convolution
kernel by gradient backpropagation and builds neural networks
by stacking multiple layers. The spectral method is more general
in most time-series prediction problems and is selected as the
main technique of this study.

The spectral GCNmethod derives from the Fourier transform
(FT) theory which can transform signals of the time domain
into signals of the frequency domain. After such transformation,
complicated convolution operations of the time domain can
be approximated as multiplication operations of the frequency
domain. The FT and inverse Fourier transform (IFT) are defined
as follows:

x̂ = FT (x) = UTx (1)

x = IFT (x) = Ux̂ (2)

where U is the eigenvector that approximates the FT to matrix
computation. Thus, the graph convolution operation is defined
as follows:

x⊗Gg = U
(

UTx⊙ UTg
)

(3)

where x is the input, ⊗G is the graph convolution operator, g is
the core, and ⊙ is the harmand product operator. Introducing
Laplacian eigenvector as a basis function, the input signal can be
expanded as:

x











x (1)
x (2)
...

x (γ )











=
(

u1, u2, · · · , uγ

)











x̂ (1)
x̂ (2)
...

x̂ (γ )











(4)

Expanding g with matrix forms and then substituting
Equation (4) into Equation (3), the following formula can
be deduced:

x⊗Gg = U







ĝ (λ1)

. . .

ĝ
(

λγ

)






(5)

Letting Chev (λ1) denote first-order Chebyshev polynomials of
λ1, the convolution operator g can be approximated as:

gθ = U







Chev (λ1)

. . .

Chev
(

λγ

)






(6)

Among, the Chev
(

λγ

)

can be represented as:

Chev
(

λγ

)

= ξ0Ŵ0
(

λγ

)

+ ξ1Ŵ1
(

λγ

)

(7)

Hence, Equation (5) can be rewritten as the following formula:

x⊗Gg =
[

α0 − α1

(

E−
1
2 · A · E−

1
2

)]

x (8)

where E is the degree matrix, and α0 and α1 are parameters to
be learned. For simplicity, it is supposed to set α0 = α1 = −θ .
Therefore, the above equation can be rewritten as:

x⊗Gg =
[

θ
(

E−
1
2 · A · E−

1
2 + Dη

)]

(9)

In order to facilitate searching for optimum, renormalization
operation is conducted on the above formula:

E−
1
2 · A · E−

1
2 + Dη ≈ E−

1
2 · Ã · E−

1
2 (10)

Ã ≈ A+ Dη (11)

Ẽij ≈
∑

i

Ãij (12)

where Ẽij is the degree matrix of the i-th node, and
∑

i
Ãij is the

number of edges between the i-th node and other nodes. The final
expression of graph convolution operation can be represented as:

x⊗Gg = θ
(

E−
1
2 · Ã · E−

1
2

)

x (13)

At the t-th timestamp, the main input is related to the outputs of
the previous several timestamps and the relation status among
nodes. For the i-th node, its information state at the t-th
timestamp can be represented as the following formula:

S
(t)
i = β · O

(t)
i ·WS1 + (1− β) · ai ·WS2 (14)

where O
(t)
i is a vector that records output values at previous

several timestamps, ai is a vector that records relation status
between the i-th node and other nodes, β is a tuning parameter
that adjusts the weight of two parts in Equation (14), and WS1

and WS2 are parameters to be learned. It is widely known that
the internal of GCN is the information propagation process, as
GCN emphasizesmodeling of various dynamic or static relations.
Accordingly, the representative vectors for node status can be also
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FIGURE 3 | The total tendency of market conditions concerning five types of agricultural products.

propagated to the following timestamps, which can be expressed
as the following formula:

S
(t+1)
i = σ1

[

Ẽ−
1
2 · S

(t)
i · Ẽ−

1
2 ·WS3 + bS1

]

(15)

where WS3 and bS1 are parameters, and σ1 (·) is the Reluctant
Unit activation function represented as follows:

σ1 (x) =

{

0, x ≤ 0
x, x > 0

(16)

Hence, the prediction result at the t-th timestamp can be
calculated as the following formula:

V
(t)
i = σ1

[

S
(t)
i ·WS4 + bS2

]

(17)

whereWS4 and bS2 are parameters. As for training, the following
optimization objective can be formulated to search for the
optimal parameters:

min

N
∑

i=1

M
∑

t=1

[∥

∥

∥
V(t) − V̂(t)

∥

∥

∥
+ p · ‖2‖2F

]

(18)

whereV(t) is the predicted result at the t-th timestamp, V̂(t) is the
real result at the t-th timestamp, 2 is the parameter set, p is the
penalty parameter, and ‖·‖2F is the Frobenius norm. Finally, the
Adam optimization algorithm can be utilized to search optimal
solution for Equation 18.

4. SETTING OF CASE STUDY

To evaluate the GNN-APM designed in this study, real-world
data is used here to set a simulative analysis situation. The real-
world data was crawled from the official website of the Ministry

of agriculture of China 1, including the market data of several key
agricultural products from April 2019 to March 2021. The data
demonstrates the average market price of agricultural products
wholesale and contains five types of agricultural products. Market
condition data for these agricultural products are updated once a
week, and there are totally 96 weeks of data concerning the five
types of agricultural products. Of all the five types of agricultural
products, there are 10 kinds of node combinations, indicating
10 kinds of edges among these nodes. In other words, the
adjacency matrix in this situation is a matrix with five columns
and five lines, representing relation status between every two
combinations of nodes.

During each round of simulations, these 10 groups of relations
are randomly generated according to a Gaussian distribution
whose mean is set to 0.5 and variance is set to 0.05. As for the
ratio between training data and testing data, it is majorly set
to 7:3 and 6:4. To quantify the error between prediction results
and real results, two typical metrics are selected. They are mean
absolute error (MAE) and root mean squared error (RMSE).
In addition, two general prediction models are employed as
baseline methods for comparison. Different from the designed
GNN-APM in this study, the two baseline methods never take
internal correlations among nodes into consideration. The two
methods are the long short-termmemory (LSTM) model and the
multi-layer perceptron (MLP) model.

5. RESULTS AND ANALYSIS

In this study, the whole simulative experiments are composed of
three parts. First, the fluctuation tendency of the involved five
agricultural product types is visualized using a curve diagram.
Second, the prediction efficiency of the GNN-APM on five
objects is compared with two baseline methods. Third, the

1http://www.moa.gov.cn/

Frontiers in Public Health | www.frontiersin.org 5 April 2022 | Volume 10 | Article 847252

http://www.moa.gov.cn/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Yan et al. Deep Data Analysis Smart Healthcare

TABLE 1 | Mean absolute error (MAE) results when proportion of training data

ranges from 50 to 70% and learning rate ranges from 0.001 to 0.002.

Setting Learning rate: 0.001 Learning rate: 0.002

50% 60% 70% 50% 60% 70%

MLP 1.189 1.047 1.016 1.232 1.175 1.143

LSTM 1.116 1.052 1.044 1.139 1.091 1.107

GNN-APM 0.964 0.927 0.875 0.989 0.903 1.016

The bold values correspond to results of the proposed GNN-APM method.

TABLE 2 | Root mean squared error (RMSE) results when the proportion of

training data ranges from 50 to 70% and the learning rate ranges from 0.001 to

0.002.

Setting Learning rate: 0.001 Learning rate: 0.002

50% 60% 70% 50% 60% 70%

MLP 1.664 1.458 1.373 1.761 1.663 1.589

LSTM 1.512 1.408 1.387 1.553 1.476 1.481

GNN-APM 1.289 1.245 1.177 1.343 1.184 1.353

The bold values correspond to results of the proposed GNN-APM method.

robustness of the GNN-APM is tested by changing several
parameter combinations.

5.1. Data Pre-processing
Figure 3 visualizes the total tendency of market conditions for
five types of agricultural products. It can be observed from the
figure that five curves from the bottom to the top correspond to
eggs, chicken, pork, mutton, and beef. During a long period about
nearly 2 years, eggs and chicken remain relatively stable, mutton
and beef show an ascending tendency, and the pork fluctuates
frequently. These five types of agricultural products possess
their own fluctuation tendencies and satisfy the assumption of
diversity. And it can be also seen that the fluctuation tendency
of pork has some effect on the other four types of agricultural
products. Thus, the assumption that correlations exist among
these types of agricultural products is reasonable.

5.2. Performance Assessment
Tables 1, 2, respectively give MAE results and RMSE results of
these experimental methods when the proportion of training
data ranges from 50 to 70% and the learning rate ranges from
0.001 to 0.002. Each of them has five lines and seven rows. The
first two lines list the experimental setting, and the other lines
present the experimental results of three methods. The first row
lists three experimental methods, the second to the fourth rows
present results under a learning rate of 0.001, the fifth to the
seventh rows present results under a learning rate of 0.002. It
can be observed from the two tables that MAE results and RMSE
results of GNN-APM are below two other baseline methods,
regardless of the proportion of training data and learning rate.
This demonstrates that the performance of the GNN-APM is
better than baseline methods.

Figures 4, 5 illustrates prediction efficiency with respect to
using two metrics: MAE and RMSE. As there are totally five types

of agricultural products involved, the MAE results and RMSE
results are obtained as the mean value of prediction results on
the five types. This figure has two subfigures, corresponding to
MAE results and RMSE results. Among them, Figure 4 is the
curve diagram and Figure 5 is the bar diagram. For the former,
the X-axis demonstrates three kinds of training sizes and the Y-
axis demonstrates values of MAE results. For the latter, only the
two most typical training sizes are utilized for evaluation. Thus, it
has two clusters of bars, corresponding to RMSE results under
two training sizes. It is clearly observed that the GNN-APM
is always endowed with better prediction efficiency compared
with baseline methods. To sum up, this group of simulative
experiments well demonstrates the good performance of the
designed GNN-APM.

In order to visualize the tendency of MAE results and RMSE
results under different experimental settings, some of the results
are illustrated with the use of curve diagrams or bar diagrams.
Figure 4 illustrates the MAE results of three methods under
two different learning rate values: 0.001 and 0.002. It has two
subfigures that correspond to results about two learning rate
values. In each subfigure, the X-axis denotes the proportion of
training data ranging from 50 to 70%, and the Y-axis denotes
values of MAE results. Figure 5 illustrates RMSE results of three
methods when the training data size is set to 60 and 70%. This
is because it can be seen from previous experiments that result
under the two training data sizes are relatively better. It has two
subfigures that correspond to two learning rate values. In each
subfigure, the X-axis denotes two training sizes, and the Y-axis
denotes values of RMSE results. It can be observed from these
figures that values of GNN-APM are obviously below the other
twomethods and that values show descending tendency when the
proportion of training data increases. Such results demonstrate
the improvement process of methods with being trained more
sufficiently. These figures show a better performance tendency of
GNN-APM compared with two other baseline methods.

5.3. Parameter Sensitivity
Besides, it is also expected to explore parameter sensitivity of
the GNN-APM, and relevant simulative results are illustrated
in Figure 6. During this group of experiments, the GNN-APM
is not compared with baseline methods and just performance
of itself is explored. Figure 6 has two subfigures, corresponding
to sensitivity results using two different metrics: MAE and
RMSE. Inside each subfigure, the X-axis denotes the change
of learning rate, and the Y-axis denotes the change of training
size. In the middle square area, the color depth indicates the
different values of evaluation metrics. As the two subfigures
are heatmaps, the color depth degree inside figures is able to
indicate values of metrics. Each subfigure includes a squared area,
gentle color change inside it indicates that the performance of
GNN-APM fluctuates not heavily. It can be objectively found
that color fluctuation in both two subfigures seems quite gentle,
revealing that the GNN-APM is not susceptible to parameter
change. In other words, the GNN-APM is always able to remain
stable, no matter how the key parameters change. This group
of simulative results well prove that the GNN-APM possesses
proper robustness.
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FIGURE 4 | Average mean absolute error (MAE) results under two different learning rate values.

FIGURE 5 | Average RMSE results under two different learning rate values.

FIGURE 6 | Parameter sensitivity results of the designed GNN-APM concerning MAE and RMSE.

6. CONCLUSION

Agriculture has been viewed as the most fundamental industry

since ancient times. Nowadays, E-commerce is an important

sales channel of agricultural products. To better manage and
schedule the supply of agricultural products, dynamic price
prediction for agricultural products in the E-commerce market
is of great significance. To overcome the shortcomings of
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existing research studies, this article proposes a deep learning-
based price prediction model for agricultural products in the
E-commerce market. In particular, the most typical GCN is
utilized to establish a time-series prediction model for the
dynamic price of agricultural products. In addition, the whole
simulative experiments are composed of three parts. First, the
fluctuation tendency of the involved five agricultural product
types is visualized using a curve diagram. Second, the prediction
efficiency of the GNN-APM on five objects is compared with
two baseline methods. Third, the robustness of the GNN-APM
is tested by changing several parameter combinations.

Nowadays, data mining and data management for many
industries are gradually approaching the application of the
Internet of Things (IoT), yielding such as mobile IoT (36, 37),
financial IoT, medical IoT (38), cloud-assisted IoT (39), vehicular
IoT (40), and industrial IoT (41, 42). As is known to all, the
IoT is a kind of effective tool or platform to integrate multi-
domain data and schedule business flows. To realize more
effective scheduling management of the agricultural product
market, designing an integrated microservice IoT platform that
is embedded with robust artificial intelligence algorithms (43),
is in urgent demand to deal with many disturbing issues in
various industries. Thus, for future outlook, the authors plan to
deeply investigate optimal scheduling and management schemes
for the agricultural product market with the use of novel
IoT-related technologies.
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