International Journal of

ﬁ' Molecular Sciences

Review

Redox Homeostasis in Thyroid Cancer: Implications in Na*/I~
Symporter (NIS) Regulation

Juliana Cazarin 1-*

check for
updates

Citation: Cazarin, J.; Dupuy, C.; Pires
de Carvalho, D. Redox Homeostasis
in Thyroid Cancer: Implications in
Na* /I~ Symporter (NIS) Regulation.
Int. ]. Mol. Sci. 2022, 23, 6129.
https://doi.org/10.3390/
ijms23116129

Academic Editor: Giovanni Vitale

Received: 5 April 2022
Accepted: 27 May 2022
Published: 30 May 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Corinne Dupuy 2 and Denise Pires de Carvalho 1*

Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro,

Rio de Janeiro 21941-902, Brazil

2. UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, 94800 Villejuif, France;
corinne.dupuy@gustaveroussy.fr

*  Correspondence: cazarin@biof.ufrj.br (J.C.); dencarv@biof.ufrj.br (D.P.d.C.)

Abstract: Radioiodine therapy (RAI) is a standard and effective therapeutic approach for differenti-
ated thyroid cancers (DTCs) based on the unique capacity for iodide uptake and accumulation of
the thyroid gland through the Na* /I~ symporter (NIS). However, around 5-15% of DTC patients
may become refractory to radioiodine, which is associated with a worse prognosis. The loss of RAI
avidity due to thyroid cancers is attributed to cell dedifferentiation, resulting in NIS repression by
transcriptional and post-transcriptional mechanisms. Targeting the signaling pathways potentially
involved in this process to induce de novo iodide uptake in refractory tumors is the rationale of
“redifferentiation strategies”. Oxidative stress (OS) results from the imbalance between ROS pro-
duction and depuration that favors a pro-oxidative environment, resulting from increased ROS
production, decreased antioxidant defenses, or both. NIS expression and function are regulated by
the cellular redox state in cancer and non-cancer contexts. In addition, OS has been implicated in
thyroid tumorigenesis and thyroid cancer cell dedifferentiation. Here, we review the main aspects of
redox homeostasis in thyrocytes and discuss potential ROS-dependent mechanisms involved in NIS
repression in thyroid cancer.
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1. Introduction

The unique ability of the thyroid gland to accumulate iodide (I7) is the basis of
radioiodine (RAI) therapy, which has been used for decades as an effective therapy for dif-
ferentiated thyroid cancer (DTC) treatment [1,2]. However, around 5-15% of DTCs become
radioiodine-refractory (RAIR), which is associated with a worse prognosis [3-5]. Thus,
managing RAIR metastatic thyroid cancer is challenging, and must include alternative
therapeutic approaches. Although tyrosine kinase inhibitors (TKIs) bring significant thera-
peutic benefit to patients with RAI-refractory metastatic thyroid cancer, drug resistance and
adverse effects that compromise patient quality of life may limit treatment responses [6,7].
Alternative potential tools include restoration of the radioiodine sensitivity of those tumors,
which is the basis of redifferentiation strategies under current investigation [8].

Under physiological conditions, the thyroid gland can accumulate iodide in con-
centrations up to 40 times greater than those of plasma, which is attributed to a very
specialized and tissue-specific iodine-handling machinery [9]. The Na*/I~ symporter
(NIS), located in the basolateral membrane of thyrocytes, mediates active iodide uptake
from the bloodstream to the intracellular compartment using the Na* gradient generated
by the Na* /K" ATPase and the membrane potential as driving forces [10,11]. Additionally,
the KCNQ1-KCNE2 K* channel, also located in the basolateral membrane, has been shown
to be required for NIS-mediated I~ uptake in thyroid tissue [12,13]. In the apical membrane,
the iodide is oxidized to iodine and covalently incorporated into thyroglobulin (TG) in
a reaction catalyzed by thyroperoxidase (TPO) [14]. This iodide organification process is
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essential for hormonal biosynthesis and prolongs iodide retention in the thyroid gland,
which improves the tumor-absorbed dose of radiation and consequently the cytotoxic
efficacy of radioiodine [15,16]. Thus, RAI therapy’s effectiveness is greatly dependent on
proper NIS function but is also influenced by other specific factors of thyroid physiology.

Loss of RAI avidity in thyroid cancer is attributed to thyrocyte dedifferentiation,
which results in the decreased expression of iodine-handling machinery genes including
the NIS [17]. In corroboration, less-differentiated thyroid cancers, including poorly dif-
ferentiated carcinomas (PDTC) and anaplastic carcinomas, are usually bad responders to
RAI[18]. In addition to the repression of NIS expression, increased NIS internalization from
the basolateral membrane has been implicated in the inability of thyroid cancers to respond
to radioiodine [19,20]. Thus far, NIS impairment in thyroid cancers has not been attributed
to mutations in the NIS gene, suggesting that transcriptional and post-transcriptional
mechanisms are mainly involved. Therefore, targeting the signaling pathways involved in
NIS repression might promote thyroid redifferentiation of RAI-refractory tumors, allowing
de novo iodide uptake and effective radioiodine treatment.

MAPK pathway inhibitors have been shown to re-induce iodide uptake in RAI-
refractory thyroid tumors in some patients, but not in others [21,22], suggesting that
simultaneous or compensatory mechanisms might be involved in NIS regulation. Other
signaling pathways, including Smad signaling, PI3K/mTOR, Notch, and the (3-catenin
pathway, have also been implicated in NIS repression in thyroid cancer, and might be
potential targets for “redifferentiation” strategies [23]. Emerging evidence shows that redox
imbalance is involved in thyroid tumorigenesis and dedifferentiation [24-26]. This review
addresses how reactive oxygen species (ROS) impact NIS function in cancer and non-cancer
contexts, contextualizing potential redox-related mechanisms implicated in NIS repression
in thyroid cancer.

2. Redox Homeostasis in the Thyroid Gland

Reactive oxygen species (ROS) comprise a large group of highly reactive molecules
derived from O, reduction, which includes radical species such as superoxide (O,°7),
hydroxyl (OH®), and peroxyl (RO,*), and non-radical species such as singlet oxygen
(10,), hypochlorous acid (HOCI), and the most biologically relevant, hydrogen peroxide
(H203) [27]. Cellular ROS are produced by multiple sources, including mitochondrial
electron-transport chain, nitric oxide synthase (eNOS), P450 enzymes, cyclooxygenase,
and lipoxygenase as a by-product of metabolism. In contrast, NADPH oxidases produce
ROS as their exclusive function. ROS levels result from a balance between their produc-
tion and disposal by enzymatic (catalase, superoxide dismutase, glutathione peroxidase,
thioredoxin reductase, and peroxiredoxins) and non-enzymatic (glutathione, 3-carotene,
uric, acid, vitamin C and E) cell antioxidant systems [28]. ROS react with proteins, nucleic
acids, lipids, and inorganic molecules, inducing reversible or non-reversible modifications
that can impact molecule structure and function, acting on multiple physiological and
pathophysiological processes [29].

Physiologically, thyroid cells produce H,O, within the follicular lumen during hor-
monal synthesis. HyO, is required for the TPO-mediated oxidative iodination of tyrosine
residues of thyroglobulin (TG), which will further allow T3 and T4 synthesis [30]. Dual-
oxidase 2 (DUOX2), a member of the NADPH oxidase family, localized on the apical
membrane of thyrocytes, is the source of H,O; required for hormonal biosynthesis [31-34].
Indeed, loss-of-function mutations in DUOX2 or its maturation factor, DUOXAZ2, have been
found in patients with congenital hypothyroidism and induced dyshormonogenesis in
mouse models [33,35-37].

The amount of H,O, produced by thyrocytes is quantitatively significant, being compa-
rable to that produced by activated macrophages [38,39]. However, whereas macrophages
are short-lived, the life of adult thyrocytes is around seven years, suggesting that adap-
tive mechanisms might prevent the deleterious effects of ROS exposure [40]. Different
aspects of H;O, metabolism have been proposed to protect thyroid cells from toxicity:
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(1) DUOX2-mediated H,O, production is tightly regulated and restricted to the apical
membrane-luminal interface where it is consumed and degraded by TPO; (2) the thyrocyte
apical membrane exhibits poor permeability to H,O,; and (3) refined intracellular H,O,
detoxifying mechanisms exist [39,41].

Indeed, thyrocytes are more resistant to the cytotoxic effects of HO, than T cells, due
to the activation of transcriptional responses that increase antioxidant defenses, especially
glutathione peroxidase (GPx) [42]. In addition to GPx, the increased expression of other
antioxidant enzymes, such as thioredoxin reductase (TrxR) and peroxiredoxins (Prx), has
been reported during thyroid hormone synthesis and might be implicated in the regulation
of redox homeostasis in physiological conditions [43,44]. The nuclear factor erythroid
2-related factor 2 (Nrf2) is a key regulator of the transcription of antioxidant enzymes. In
thyrocytes, it positively regulates Gpx2 and Txnrd1, preventing intrathyroidal oxidative
damage in response to iodide-induced ROS [45].

Oxidative stress (OS) results from the imbalance between ROS production and depu-
ration that favors a pro-oxidative environment, which can result from increased ROS
production, decreased antioxidant defenses, or both [46]. OS supports multiple stages of
tumorigenesis by inducing oxidative DNA damage and genomic instability, sustaining
proliferative pathways and cell survival, and promoting angiogenesis and metastasis [47].
Indeed, cancer cells usually exhibit increased ROS levels because of multiple stimuli, in-
cluding hypoxia, metabolic imbalance, oncogene activation, and endoplasmic reticulum
(ER) stress [29]. Thyroid cancer tissue exhibits increased ROS levels compared with normal
thyroids [26,48], and a pro-oxidant environment has been implicated in chromosomal
aberrations and the dedifferentiation of thyroid cancer cells [24-26,48].

NADPH oxidases are an important ROS source in PTCs [24,49]. As discussed pre-
viously, DUOX2’s central role in hormonal biosynthesis in the thyroid gland has been
well-described. Across thyroid tumors, DUOX2 expression is widely variable, and its
implication in thyroid carcinogenesis is not clear [46]. In addition to DUOX2, thyroid cells
express two other ROS-generating enzymes from the NADPH oxidase family: DUOX1
and NOX4 [31,49]. Although their physiological roles are unknown, both are potentially
involved in thyroid tumorigenesis [24,25,49-51] (Figure 1).

Ionizing radiation (IR) is a well-established risk factor for thyroid cancer in young
people. It is significantly associated with the occurrence of cancer-driver RET/PTC translo-
cation in vivo [52] and in vitro [53]. Interestingly, in vitro studies have revealed ROS as
a mediator of this radiation-related effect, because the irradiation of cultured cells in the
presence of antioxidants inhibited the occurrence of RET/PTC translocation [53]. Moreover,
it has been shown that ionizing radiation induces the upregulation of DUOX1 expression
and activity in thyroid cells in a p38 MAPK-dependent fashion, creating a persistent ox-
idative environment that could hypothetically promote tumorigenesis [24] (Figure 1). In
corroboration, increased DUOX1 mRNA expression was found in radio-induced thyroid
tumors [24].

NOX4 is expressed in various human and murine tissues, including the kidneys, lungs,
heart, liver, vascular tissue, and thyroid gland [49,54]. NOX4 generates H,O, and/or O,°*~
in a constitutively active manner in intracellular compartments, including the endoplasmic
reticulum, mitochondria, nucleus, and focal adhesions [55-58], requiring interaction with
p22PhOX for proper maturation and stabilization [59]. NOX4 staining was intracytoplasmic
in human thyroid cells, whereas in rat thyrocytes, NOX4 was also detected in the plasma
membrane [49,60].

NOX4 is upregulated in several types of human cancers, such as melanoma, ovarian,
prostate, colorectal, and bladder cancer. It has been implicated in multiple aspects of
tumorigenesis, including cell proliferation, migration, invasion, epithelial-to-mesenchymal
transition (EMT), and metabolic rewiring [61-66]. NOX4 knockdown decreased tumor
growth in a thyroid cancer xenograft mouse model, demonstrating the functional im-
plications of NOX4 in thyroid tumorigenesis [67]. Indeed, both NOX4 and p22P"°X are
overexpressed in papillary thyroid cancers (PTCs), reinforcing the idea that thyroid can-
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cer cells are under oxidative stress [49]. In human thyroid cells, the oncogene H-RasV12
increases NOX4 expression, resulting in DNA damage caused by increased ROS levels in
the nuclear/perinuclear compartment, showing that NOX4 might impact genomic stabil-
ity [51]. Additionally, NOX4-derived ROS are implicated in cell dedifferentiation and NIS
repression in BRAFV®?E_driven PTC, as discussed later [25] (Figure 1). Corroborating these
findings, it has been demonstrated that the knockdown of NOX4 in the normal rat thyroid
cell line FRTL-5 increases the mRNA expression of thyroid-related genes, including TTF2,
TPO, and PAX8 [68].

Thyroid hormone biosynthesis
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Figure 1. The role of oxidative stress in thyroid carcinogenesis. A pro-oxidant environment is
associated with thyroid tumorigenesis, and NADPH oxidases have been described as important
ROS sources. Ionizing radiation, a risk factor for thyroid cancer, induces DUOX1-dependent H,O,
production, resulting in DNA damage and potentially genomic instability. NOX4 is upregulated in
PTCs and is positively regulated by the oncogenes BRAFV®%F and HRASV!?. Increased NOX4 has
been implicated in thyroid cancer dedifferentiation and genomic instability. DUOX2 is the source of
H,O; for thyroid hormone biosynthesis in the apical membrane of thyrocytes, but its role in thyroid
carcinogenesis is unclear.

Mitochondria are one of the main sources of intracellular ROS, and generate super-
oxide through complexes I and III as a by-product of oxidative phosphorylation [69]. The
relationship between mitochondrial ROS and carcinogenesis in thyroid cancers is still
poorly understood. Thyroid oncocytic tumors are characterized by the aberrant accumula-
tion of enlarged and dysfunctional mitochondria with higher levels of mitochondrial DNA
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mutations [58,70]. These cells exhibit increased ROS levels correlated with the decreased
activity of complexes I and III [71]. Clinically, oncocytic tumors are less responsive to
radio-iodine therapy [72], and in PTCs, the oncocytic phenotype is significantly associated
with the presence of BRAF mutations [73]. However, it is unknown whether the repressed
ability to trap iodine by these tumors is functionally related to a pro-oxidant environment.

It has previously been demonstrated that NOX4 can be localized in the mitochon-
dria, being a source of ROS within this compartment [56,74]. Mitochondrial NOX4 is
activated when mitochondrial ATP levels are low, and induces drug resistance through
ROS-dependent mechanisms in renal carcinoma cells [74]. NOX4 is required for mito-
chondrial ROS production in thyroid cancer cells under hypoxic conditions [67]. NOX4 or
p22phox downregulation decreases mitochondrial ROS in hypoxic thyroid cancer cells, im-
pairs HIF1« stabilization, HIF1x-induced glycolysis increment, and cell proliferation [67].
It is not clear whether this role of NOX4 is explicitly mediated by a pool of NOX4 located
in mitochondria, because NOX4 knockdown is not mitochondria-directed.

Although a moderate increase in ROS fuels cancer initiation and progression, excessive
ROS results in extensive macromolecular damage and cell toxicity [29]. Thus, fine-tuning
ROS levels in an already pro-oxidant environment might be critical for cancer cell survival.
It has been demonstrated that the PIM-1 kinase increases the protein expression of the
antioxidants GPX1 and SOD2 in thyroid cancer cells, whereas its inactivation increases
ROS [75]. Interestingly, the increased expression of GPX1 and SOD2 and augmented GPX
and SOD activities have been reported in thyroid cancer when compared with normal
tissue [48,75-77]. The expression of PIM-1 is overexpressed in PTCs and positively cor-
related with NOX4, GPX1, and SOD2 expression [75]. Interestingly, PIM-1, GPX1, and
SOD2 protein expression are positively regulated by NOX4 in vitro, suggesting that NOX4
induces compensatory antioxidant responses through PIM-1 [75]. It is tempting to speculate
that these compensatory antioxidant responses might be essential to maintain elevated
ROS in concentration ranges compatible with thyroid cancer cell survival.

3. Evidence of NIS Regulation by ROS

Accumulating evidence suggests that NIS expression and function are regulated by
ROS-dependent mechanisms in cancer and non-cancer contexts, such as during iodide
overload. High iodide levels (I7) induce a transient inhibition of thyroid hormone biosyn-
thesis, which is restored around two days after I~ administration, a mechanism of thyroid
autoregulation known as the Wolff-Chaikoff effect [78]. Thyroid escape from the iodide
inhibitory effect is attributed to reduced NIS iodide uptake and increased apical iodide
efflux, which reduces concentrations of intracellular iodide and relieves thyroid function
inhibition [78,79]. NIS-related responses to iodide overload are associated with dynamic
changes in the cellular redox state [38,80-82].

Leoni and collaborators showed that I~ overload increased ROS levels and induced
time-dependent decreases in NIS mRNA, protein, and activity in vitro and in vivo [80]. NIS
recovery after I~ treatment depended on a compensatory increase in thioredoxin reductase
antioxidant activity, showing that ROS levels are directly implicated in NIS regulation.
In agreement, subsequent studies also found an ROS-dependent acute decrease in NIS
mRNA and NIS inactivation at the plasma membrane in response to excess I, which was
reversed by ROS scavengers [83,84]. In addition to iodide overload, conditions that increase
ROS levels in thyroid cells, including treatment with the endocrine disruptor bisphenol A,
induced ROS-mediated NIS repression [85].

The mechanisms by which I~ increases ROS are still under investigation. Iodide has
been shown to induce an acute increase in mitochondrial superoxide anions (O,° ™), which
induces PI3K/AKT pathway activation and NIS repression [83]. Recent data revealed NOX4
as another potential ROS source positively regulated by excess iodide [68]. Oglio et al.
showed that I~ treatment increased NOX4 expression and induced ROS production, which
was eliminated in the presence of the unspecific NADPH oxidase inhibitor DPI or siRNA
against NOX4 in the rat thyroid cell line FRTL-5. NOX4 silencing inhibited iodide-induced
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NIS mRNA repression, indicating a central role of this NADPH oxidase in thyroid auto-
regulation mediated by iodide [68].

NOX4 is a critical mediator of cell dedifferentiation and NIS repression in thyroid
cancers harboring BRAFV6%E oncoprotein [25]. BRAFV6%E results from a gain-of-function
transversion mutation in exon 15 (BRAF ¢.1799T>A). It is the most frequent genomic
alteration found in PTCs, present in around 40-60% of cases, followed by RAS mutations
(15%) and RET/PTC translocations (10-15%). Those genomic alterations are mutually
exclusive and lead to constitutive activation of the MEK-ERK signaling pathway [86].
Clinically, the occurrence of BRAFV®?E has been associated with increased tumor size,
disease recurrence, and mortality. However, there is no consensus on the independent
prognostic value of this mutation in thyroid cancers [87-90].

It has extensively been demonstrated in vitro and in vivo that BRAFY'E represses
not only the expression of thyroid-specific genes involved in iodide-handling machinery,
including TPO, DUOX, TG, and NIS, but also impairs NIS activity and targeting in the
membrane [91,92]. Clinical studies also found a negative correlation between BRAFV6O0E
and NIS expression, and found that RAl-refractory metastatic thyroid cancer is enriched
in BRAF mutations [93-95]. In agreement, high-throughput analysis of a large cohort of
human PTC specimens also showed a negative correlation between the BRAFY'E and
thyroid differentiation score when compared with tumors harboring RAS mutations or
RET/PTC translocations [86]. Overall, these data support the concept that BRAFV600E
is functionally involved in radioiodine resistance. However, it is worth mentioning that
even though BRAFV®'E js a frequent mutation in DTCs, only a small subset of these
tumors is radioiodine-resistant, suggesting that additional molecular events cooperate with
BRAFV6E mutation in the loss of RAI avidity.

Constitutive MAPK activation plays a central role in cell dedifferentiation in thyroid
cancer. In PTCs, lower differentiation scores were associated with higher rates of MEK-ERK
activation [86]. Interestingly, BRAFV®0%Epositive PTC exhibits strong activation of the ERK
transcriptional program by escaping from ERK-mediated negative feedback loops [86,96].
Indeed, MEK-ERK pathway inhibition in BRAFV®"%E-induced thyroid cancer mouse mod-
els partially restores the expression of thyroid-related genes and iodide uptake [92,97].
These data motivated studies conducted with RAlI-refractory thyroid cancer patients using
MEK (selumetinib, trametinib, and cobimetinib) or BRAFVOE inhibitors (dabrafenib or
vemurafenib), or a combination of both as a redifferentiation strategy to improve RAI
avidity and induce better responses to RAI therapy [18,21,22,98-102]. Patients harboring
RAS mutations had a better response rate than patients carrying BRAFV®F mutation,
showing the development of more efficient MAPK inhibitors or a better comprehension of
mechanisms that cooperate with BRAFY'E-mediated dedifferentiation is necessary for the
design of new strategies to improve RAI responsiveness [21,101].

TGF-B1 has been described as a critical player in BRAFV®%E-induced thyroid ded-
ifferentiation [91]. In rat thyroid cells, Riesco-Eizaguirre and colleagues showed that
BRAFVE jncreases TGF-B1 secretion, which acts through an autocrine-loop-activating
SMAD pathway, inducing epithelial-to-mesenchymal transition (EMT) and cell migration,
and repressing NIS expression and function [91]. In human PTC, TGF-f31 and components
of the TGF-f3 cascade were found to be overexpressed, which was significantly correlated
with BRAF status and reduced NIS expression in the cell membrane [91]. Azouzi et al.
added a new piece to this puzzle, showing that NOX4 is upregulated by BRAFYF_TGFB-
SMAD?3 signaling and induces ROS-mediated NIS downregulation in human thyroid cancer
cells [25]. TCGA database analysis of human PTCs revealed that mRNA NOX4 levels are
increased in tumors harboring BRAFV®F as compared with wild-type BRAF [25]. Addi-
tionally, in BRAFV0E_positive PTCs, NOX4 expression was associated with increased ERK
activation and was inversely correlated with NIS mRNA levels and thyroid differentiation
scores [25].

Overall, these data suggest that ROS mediates NIS repression. However, the molecular
mechanisms involved remain to be elucidated. Based on the current knowledge of NIS
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regulation, we will now discuss potential mechanisms involved in the redox regulation of
NIS expression, activity, subcellular location, and protein stability.

3.1. Regulation of NIS Expression by ROS

PAXS is a transcriptional factor required for thyroid development and differentiation
that acts as a major regulator of NIS transcription. PAX8 binds to the NIS upstream enhancer
(NUE) in human and rat thyrocytes and induces NIS expression [103,104]. As with other
PAX family members, the PAX8 DNA binding activity depends on the redox state of two
cysteine residues in its structure: Cys-45 and Cys-57. In thyroid cells, PAX8 binding to
NUE and the induction of NIS transcription depend on PAX8 being converted to a reduced
form by apurinic/apyrimidinic endonuclease 1 (APE1) and a reduction cascade involving
thioredoxin reductase-1 (TxnRd1) [105,106]. These data agree with previous findings
showing that increased thioredoxin reductase activity is associated with the recovery of NIS
expression after iodide-mediated ROS increases in thyroid cells [80]. Thus, redox imbalance
in thyroid cancer cells might reduce NIS expression by promoting Pax8 oxidation.

It is well-documented that NIS repression in thyroid cancer also involves epigenetic
mechanisms. Hypermethylation of CpG islands in the NIS promoter has been found
in thyroid tumors that harbor low levels of NIS expression and/or impaired iodide up-
take [107,108]. In human thyrocytes, BRAF V0 expression promotes hypermethylation
of the NIS promoter and NIS repression, which is associated with increased levels of the
DNA-methylating enzyme, DNA methyl-transferase 1 (DNMT1) [109]. Reduced histone
acetylation in the NIS promoter has also been implicated in BRAFV*0%E-mediated NIS
repression, corroborating the increment in NIS expression found in thyroid cancer cells
treated with histone deacetylase inhibitors (HDACis) [110-115]. Finally, microRNAs (miR-
NAs) are also implicated in NIS regulation. miR-146b and miR-21 induce NIS repression
and are inversely correlated with thyroid differentiation scores in PTCs [86,116,117].

Oxidative stress induces epigenetic alterations that support tumorigenesis by silencing
tumor suppressor genes through the regulation of co-factor availability, miRNAs, and the
epigenetic machinery involved in DNA methylation and histone modifications [118]. In
colorectal cancer cells, HyO, treatment increases both DNMT1 and HDACT expression and
activity [119]. In addition, oxidative DNA damage induces the formation and relocation
of silencing complexes containing DNMT1, contributing to the modifications of DNA
methylation patterns seen in cancer cells [120]. Interestingly, miR-21, an oncogenic miRNA
implicated in NIS regulation, is positively regulated by NADPH-oxidase-derived ROS in
androgen-negative prostate cancer cells [121].

Finally, the subcellular site of ROS production and/or the spatial cellular distribution
of antioxidant enzymes might be determinants for the mechanism elicited. NOX4, for
example, produces H,O, close to the nuclear compartment in thyroid cells [51], which
might create a pro-oxidative microenvironment that enables the direct redox regulation of
epigenetic events and transcription factors involved in NIS regulation [122]. Indeed, NOX4
was recently described as an essential mediator of hypoxia-induced histone methylation in
pancreatic cancer cells [123].

3.2. Regulation of NIS Subcellular Location and Protein Stability by ROS

Loss of radioiodine avidity by thyroid cancers is caused by the repression of NIS
expression, but also by its internalization from the basolateral plasma membrane to the
intracellular compartment [19,20,91]. Although our knowledge of NIS trafficking regulation
has significantly improved in the last few years, the mechanisms involved in this process,
especially in cancer cells, remain unclear. NOX4 or p22P"°X downregulation increased NIS
plasma membrane expression in thyroid cancer cells, showing that NIS subcellular location
might be a redox-regulated process [25].

The pituitary-tumor-transforming gene (PTTG)-binding factor (PBF) is upregulated
in thyroid cancers, and it has been demonstrated to repress NIS function by decreasing
NIS expression and inducing NIS endocytosis from the plasma membrane [124-126]. The
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PBF-mediated NIS internalization and repression of iodide uptake depends on PBF phos-
phorylation at residue Y174 by tyrosine kinase Src, which is abrogated by the Src inhibitor
PP1 [127]. Src is a proto-oncogene tyrosine kinase activated by ROS [128]; therefore, it
might be a pathway involved in NIS internalization mediated by oxidative stress. Interest-
ingly, Src activation by NOX4-derived HyO; has already been demonstrated in cancer and
non-cancer contexts, suggesting a possible interplay between NOX4 and PBF signaling in
thyroid cancer [129,130].

In follicular thyroid cancer (FTC) cells, it has been demonstrated that HIF1x-induced
b-catenin activation induces the translocation of the NIS from the plasma membrane to
the intracellular compartment. In a xenograft model, 3-catenin knockdown increased the
radioiodine treatment responsiveness of FTC cells that overexpressed HIF1« [131]. Interest-
ingly, both HIF1ox and 3-catenin were found to be overexpressed in more aggressive thyroid
cancer types and are redox-regulated in other cell types [132,133]. ROS trigger b-catenin
signaling by oxidating the thioredoxin-like protein nucleoredoxin (NRX) and disrupting
NRX-Dishevelled protein interaction, impairing [3-catenin degradation [134]. At the same
time, intracellular ROS activate HIF1« in both normoxia and hypoxia conditions [135]. In
thyroid cancer cells, NOX4 has been shown to stabilize HIF1« in hypoxic conditions by
increasing mitochondrial ROS, enabling cell proliferation [67]. Thus, HIF1«/3-catenin
signaling might be a pathway potentially involved in the ROS-mediated regulation of the
NIS in subcellular locations.

In addition to NIS trafficking, the regulation of NIS protein stability impacts iodide
uptake by thyrocytes. Our group previously demonstrated that AMPK-activated kinase
(AMPK)), a cellular energy sensor negatively regulated by TSH, induces NIS lysosomal
degradation in rat thyroid cells [136]. Chai and colleagues recently demonstrated that
high-mobility group box 1 (HMGBI1) protein, a regulator of autophagy and chromatin
remodeling, is upregulated in human thyroid cancer samples and represses iodide uptake
by promoting NIS degradation [137]. HMGB1 induces autophagy and NIS lysosomal
degradation by activating AMPK through an ROS-dependent mechanism [137], which
corroborates previous findings showing that AMPK is redox-sensitive [138]. Interestingly,
AMPK and its active form, p-AMPK, are upregulated in human PTCs [139].

3.3. Regulation of NIS Activity by ROS

Iodide-induced ROS has been shown to cause a rapid decrease in NIS activity, which
is not related to protein internalization or preceded by alterations in mRNA or protein
levels, which suggests an inactivation of membrane-bounded NIS by post-translational
mechanisms [80,84]. In this context, ROS regulation of NIS activity might occur by both
direct and indirect means. A potential direct mechanism relies on the oxidation of cysteine
residues in NIS protein. Cysteine residues are sensitive to reversible redox modifications
that impact protein conformation and function, both being identified as eligible ROS direct
targets in the NIS structure [80]. However, no functional studies have been performed thus
far to demonstrate the direct implication of these residues on NIS activity [80].

It was previously demonstrated that NIS activity is regulated by the phosphorylation
of two serine residues in rat NIS protein: Ser-43 and Ser-581. The site-directed mutage-
nesis of these residues reduced the maximal iodide transport velocity by 40% and 60%,
respectively [140]. The activities of a variety of serine/threonine kinases and phosphatases
are redox-regulated; therefore, ROS might potentially inhibit NIS activity, indirectly, by
modifying the NIS phosphorylation pattern [141].

4. Conclusions

ROS repress NIS expression and activity in cancer and non-cancer contexts at the
transcriptional and post-transcriptional levels (Figure 2). Therefore, targeting redox home-
ostasis is a potential tool for promoting thyroid cancer cell redifferentiation. Although
our understanding of thyroid redox homeostasis has evolved over the last decade, the
molecular mechanisms involved in ROS-mediated NIS repression are not well-defined.
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Future studies are necessary to establish those mechanisms and evaluate whether they
can be explored therapeutically to promote de novo iodine uptake in iodine-refractory
thyroid tumors.
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Figure 2. Mechanisms hypothetically involved in NIS redox regulation: (1) PAX8 oxidation results in
reduced PAX8 DNA binding activity and the repression of NIS transcription; (2) ROS might mediate
alterations of epigenetic events also promoting NIS transcriptional repression; (3) ROS might directly
oxidize NIS protein or indirectly change the phosphorylation pattern of NIS protein, resulting in
decreased NIS activity; (4) ROS might activate pathways involved in NIS endocytosis and autophagy,
promoting NIS internalization and degradation.
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