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Abstract

Summary: The flood of recent cancer genomic data requires a coherent model that can sort out the findings to
systematically explain clonal evolution and the resultant intra-tumor heterogeneity (ITH). Here, we present a new
mathematical model designed to computationally simulate the evolution of cancer cells. The model connects the
well-known hallmarks of cancer with the specific mutational states of tumor-related genes. The cell behavior pheno-
types are stochastically determined, and the hallmarks probabilistically interfere with the phenotypic probabilities.
In turn, the hallmark variables depend on the mutational states of tumor-related genes. Thus, our software can deep-
en our understanding of cancer-cell evolution and generation of ITH.

Availability and implementation: The open-source code is available in the repository https://github.com/nagor

novys/Cancer_cell_evolution.
Contact: mamkato@ncc.go.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mathematical models, often coupled with computer simulation,
can provide insights into clonal evolution and intra-tumor hetero-
geneity in cancer, which cannot be obtained through direct obser-
vation of the genomic states of tumor patients. Previously, a
branching process model that computationally simulates clonal
evolution was used to estimate parameters such as the mutation
rate and relative fitness of tumor subclones (Williams et al.,
2018). In the study, an approximate Bayesian computation (ABC)
framework was applied to the observation data of variant allele
frequencies (VAFs) detected by next-generation sequencing at the
genome level in multiple cancers such as breast, blood, and lung
cancers. Multiple studies have also reported using computer simu-
lations for addressing cancer development and progression
(Altrock et al., 2015; Beerenwinkel et al., 2015; Conterno Minussi
et al., 2019; Sottoriva et al., 2013; Waclaw er al., 2015; Wang
et al., 2014).

Despite these advances, it remains difficult to elucidate the roles
of tumor-related genes in cancer development in these representa-
tive models. This is because these models postulate ‘abstract’ genes,
in which generated mutations are assumed to change parameter
values for the birth (cell division) and death (apoptosis) rates of
tumor cells, the fitness change, and the dispersal (migration) rate.
Gene functions such as angiogenesis by VEGF and immortalization
by TERT are abstracted into these parameters, and so cannot dir-
ectly be modeled. The roles of cancer-related genes were originally
summarized under six essential ‘hallmarks’, and more recently two
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extra hallmarks and two characteristics were added (we will col-
lectively refer to all the ten summary terms as hallmarks) (Hanahan
and Weinberg, 2000, 2011). Such hallmarks are not only conceptu-
ally proposed, but have also been individually assigned to specific
tumor-related genes in cancer knowledge databases such as
COSMIC (Forbes et al., 2017) and MSigDB (Liberzon et al.,
2015).

Introducing these essential cancer hallmarks into computer
simulation models will improve their ability to predict the effects
of tumor-related genes during cancer development. Indeed, some
studies have used cancer hallmarks in their simulation models
(Abbott et al., 2006; Basanta et al., 2011; Monteagudo and
Santos, 2014; Spencer et al., 2006). However, these hallmark
simulations focused on the phenotypic (behavioral) traits of can-
cer cells, in which an abstract gene corresponds to a hallmark
one-to-one. When a ‘phenotypic’ mutation occurs, the corre-
sponding hallmark is affected, though in reality, one gene can
contribute to multiple hallmarks and one hallmark can be
affected by multiple genes. This is exemplified in the case of
TP53, which contributes at the very least to both tumor suppres-
sion and apoptosis.

Here, we present a new computer simulation program, named
tugHall (fumor gene-Hallmark) simulator, of a cancer-cell evolution
model, wherein gene mutations are linked to the tumor cell behav-
iors that are influenced by the hallmarks of cancer. All first six hall-
marks were implemented. Our software can utilize the accumulated
genomic data to provide insights into the underlying mechanisms of
cancer-cell evolution.
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Fig. 1. The simulation framework. A cell is put to a ‘trial’, through which the next state of the cell is probabilistically determined. For example, a cell may die in the ‘apoptosis’
trial based on the probability value for cell death by apoptosis. Hallmarks interfere with such trial probabilities when genes related to hallmarks are impaired by mutations.

The variables of hallmarks represent probabilities or rates to modify trial probability values. For example, when a gene related to apoptosis is impaired, the hallmark variable

of apoptosis decreases a probabilistic value in the apoptosis trial.

A B
15000 -
6000 -
10000 -
4000 -
2000 - 5000 1
o 1 1 - o l

MAP -APC -KRAS TP53  -PIK3CA MAP -APC

| . 1

-KRAS  -TP53  -PIK3CA MAP -APC -KRAS P53 -PIK3CA

Fig. 2. Genes influencing the numbers of primary tumor cells, metastatic cells and clones. ‘MAP’ represents simulations using MAP estimates for the weight parameters
via ABC. ‘~APC’ represents simulations where the weight parameters for APC were set to zero and those for the other genes were kept as the MAP estimates. The
same applies to the other genes. The numbers at the last time-point from 12 000 simulations are plotted as distributions. (A) The number of primary tumor cells. (B)

The number of metastatic cells. (C) The number of clones.

2 Model

We briefly explain our model here, with full details provided in
Supplementary Material. In the model, cells at an initial time-point
are put on trials, where the next phenotypic state of each cell is
probabilistically determined based on each trial. For example, a cell
is put on the ‘apoptosis’ trial (Fig. 1), where the cell may die accord-
ing to the ‘apoptosis’ probability variable, a. Cancer hallmarks are
introduced to interfere with such trial probabilities. For example,
the ‘evading apoptosis’, simply abbreviated to the ‘apoptosis’ hall-
mark (Hanahan and Weinberg, 2000), designated variable H,,
decreases the apoptosis probability by a — H,. The value given to
each cancer hallmark variable is calculated by the linear combin-
ation of gene indicator variables to represent mutational states and
their constant weights (Supplementary Material). The mutational
states and weights can be estimated by observed data provided by
ICGC (International Cancer Genome Consortium et al., 2010) and
The Cancer Genome Atlas (TCGA) through ABC. Our simulation
model can be interpreted as an agent-based model of branching
processes where a cell’s future state is stochastically determined by
trials interfered with hallmarks that are linked to gene mutations via
linear combinations. The algorithm and state transitions of this
model are depicted in Supplementary Material.

3 Results

As an example, the simulation results for colorectal cancer with the
hallmarks defined in COSMIC (Forbes et al., 2017) and with simple
weighted coefficients has been provided. The time evolution of
clones (the number of clones, number of cells in each clone, total
number of cells, and final state of clones) in one simulation is shown

in Supplementary Material (Supplementary Fig. $4). The simulation
enabled observation of the competition between clones and deter-
mination of the clones that died. Finally, only a few clones survived.
The order of gene dysfunction (from first to last) is shown with the
number of cells. Additional results are described in Supplementary
Material (Supplementary Results and Supplementary Fig. S5).

We have provided an illustration to show how to estimate simu-
lation parameters by ABC and how to utilize the estimates as previ-
ously described (Kato et al., 2017; Sottoriva et al., 2015; Williams
et al., 2018). From TCGA (Ellrott et al., 2018), we downloaded
data on the experimentally observed VAFs of APC, KRAS, TPS3
and PIK3CA for a colorectal cancer patient and used the VAFs as
summary statistics for ABC to estimate posterior distributions for
the weight parameters (see Supplementary Material for the meth-
ods). The estimated posterior distributions suggest that PIK3CA
makes a greater contribution to invasion/metastasis than KRAS and
TP53 in this patient (Supplementary Fig. S6E in Supplementary
Material).

Based on the maximum a posteriori probability (MAP) estimates
from the posteriors, we searched for key genes important for the
numbers of primary tumor cells, metastatic cells, and clones, by arti-
ficially nullifying the aberrant function of each of the four genes (i.e.
by setting the weights to zero for a gene of interest). Figure 2 shows
that nullifying the aberrant function of TP53, but not the other
genes, decreased the number of metastatic cells in this patient.
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