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Abstract: Previously, we showed that desethylamiodarone (DEA), a major metabolite of the widely
used antiarrhythmic drug amiodarone, has direct mitochondrial effects. We hypothesized that
these effects account for its observed cytotoxic properties and ability to limit in vivo metastasis.
Accordingly, we examined DEA’s rapid (3–12 h) cytotoxicity and its early (3–6 h) effects on various
mitochondrial processes in B16F10 melanoma cells. DEA did not affect cellular oxygen radical
formation, as determined using two fluorescent dyes. However, it did decrease the mitochondrial
transmembrane potential, as assessed by JC-1 dye and fluorescence microscopy. It also induced
mitochondrial fragmentation, as visualized by confocal fluorescence microscopy. DEA decreased
maximal respiration, ATP production, coupling efficiency, glycolysis, and non-mitochondrial oxygen
consumption measured by a Seahorse cellular energy metabolism analyzer. In addition, it induced a
cyclosporine A–independent mitochondrial permeability transition, as determined by Co2+-mediated
calcein fluorescence quenching measured using a high-content imaging system. DEA also caused outer
mitochondrial membrane permeabilization, as assessed by the immunoblot analysis of cytochrome C,
apoptosis inducing factor, Akt, phospho-Akt, Bad, and phospho-Bad. All of these data supported our
initial hypothesis.

Keywords: amiodarone; apoptosis; metastatic melanoma; mitochondrial fusion-fission; mPT; Bad;
Akt; Aif

1. Introduction

Mitochondrial processes are indispensable for most eukaryotic cells. As a metabolic compartment,
mitochondria produce ~90% of cellular ATP and represent a hub in the catabolism and synthesis of
essential intermediates and macromolecule precursors for cell growth and proliferation [1]. In addition,
mitochondria participate in the maintenance of Ca2+ homeostasis and redox balance, as well as
the regulation of cell death [2]. Notably, mitochondria can regulate their functions according to
the metabolic demands of the cell [3], and these functions are characteristically altered in cancer
cells [4]. Accordingly, cancer is regarded as a mitochondrial metabolic disease [4–7], and intensive
research efforts have been devoted to the identification of novel mitochondria-targeted therapeutic
strategies [3,8].

Desethylamiodarone (DEA), the major metabolite of amiodarone (AM), accumulates rapidly in the
extracardiac tissues of patients during AM antiarrhythmic therapy [9]. Although AM is one of the most
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frequently prescribed antiarrhythmics in the United States and is widely used in various life-threatening
ventricular tachyarrhythmias worldwide, AM therapy is often limited by the toxic side effects of
both the parent molecule and DEA itself [10]. These side effects include thyroid, hepatic, pulmonary,
cardiac, psychiatric, ocular, dermatologic, hematological, and neuromuscular symptoms [10], which
in most cases appear when the AM plasma concentration exceeds the recommended therapeutic
value of 5.7 µM [11]. The tissue concentrations of AM and DEA can be 100–1000 times higher than
the corresponding plasma concentration [11]. The accumulation of DEA in the myocardium, as
well as in lung, liver, thyroid gland, pancreas, and skin, but not in adipose tissue, exceeds that of
the parent molecule [9,12,13], and its mean elimination half-life is about 40 days [14]. Based on the
tissue accumulation properties and toxic effects of DEA, we previously proposed that the compound
has a potential use in cancer therapy and provided experimental evidence for its cytostatic and
metastasis-limiting properties in the bladder, cervix, and melanoma cell lines [15–17].

In previous studies in isolated liver and heart mitochondria, we found that DEA at concentrations
of 10–30 µM inhibits the mitochondrial respiratory chain, collapses the mitochondrial membrane
potential (∆Ψm), and induces a mitochondrial permeability transition (mPT) [18]. We concluded that
these effects could account for the toxic side effects of AM [18]. In light of the dependence of cancer
cells on optimized mitochondrial metabolism, these effects of DEA may contribute to its observed
cytotoxic and metastasis-limiting properties. To explore this possibility, in this study we examined the
effects of DEA treatment on mitochondrial processes in B16F10 melanoma cells.

2. Results

2.1. Effect of DEA on Cellular Reactive Oxygen Species (ROS) Production

Cancer cells and tissues exist under persistent oxidative stress, which affects their survival
and metastatic properties [19]. Therefore, we were interested in whether DEA has any effect on
ROS formation in the B16F10 melanoma line. To resolve this issue, we treated the cells with 5 and
10 µM of DEA in the presence of the non-fluorescent reduced derivatives of fluorescent redox dyes,
and registered the increase in fluorescence resulting from the oxidizing effect of cellular ROS. We used
two different fluorescent redox dyes to asses ROS formation separately in the aqueous and membranous
compartments. Additionally, we used MitoSOXTM Red, a redox dye of red fluorescence targeted to
the mitochondria, where it is oxidized selectively by superoxide [20]. Taxol, which generates ROS at
low micromolar concentrations, was used as a positive control [21]. In agreement with our previous
results obtained in isolated liver and heart mitochondria [18], we did not detect significantly elevated
ROS levels in either the aqueous or membranous compartments of B16F10 melanoma cells (Figure 1).
However, we found that 10 µM of DEA did induce mitochondrial superoxide formation, which was
much smaller in extent than the one caused by 5 µM of Taxol (Figure 1).
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Figure 1. Effect of DEA on the cellular ROS formation in the B16F10 melanoma line. Cells were treated
with 5 or 10 µM of DEA or 5 µM of taxol (positive control). ROS formation in the lipid (light bars) and
aqueous (dark bars) phase and mitochondrial superoxide production (empty bars) were calculated
based on the rate of fluorescence intensity change vs. time; fluorescent dyes were generated by
ROS-mediated oxidation from their respective non-fluorescent counterparts. The results are expressed
as the % of ROS formation in the absence of agents (means ± SEM of five independent experiments).
* indicates a significant difference relative to the control (p < 0.05).

2.2. Effect of DEA on the Mitochondrial Membrane Potential (∆Ψm)

∆Ψm is a significant factor in ATP synthesis and has a number of non-energetic functions essential
for cell survival [22]. Accordingly, we were interested in how DEA treatment affects ∆Ψm in B16F10
melanoma cells. For this purpose, we used a membrane potential-dependent fluorescent dye, JC-1,
which accumulates in the mitochondria due to its positive charge. When ∆Ψm is normal, the dye forms
J-aggregates that emit red fluorescence upon excitation. Depolarization decreases the abundance of
the dye in the mitochondria; consequently, the aggregates fall apart, and the monomer dye emits a
green fluorescence when excited at 490 nm. When ∆Ψm dissipates completely, the dye is not retained
in the mitochondria, manifesting as a loss of fluorescence. Within 3 h, treatment with > 5 µM of DEA
markedly depolarized the mitochondria in intact B16F10 melanoma cells (Figure 2).
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Figure 2. Effect of DEA on ∆Ψm in B16F10 melanoma cells. Cells were treated with 5 or 10 µM of DEA
for 3 h. ∆Ψm was assessed using the membrane potential-dependent fluorescent dye, JC-1. Red and
green fluorescence indicates normal and depolarized ∆Ψm, respectively. (a) Representative fluorescence
images in the red, green, and merged channels of cells treated with 10 µM of DEA. (b) Quantitative
assessment of ∆Ψm, expressed as the % of fluorescence intensity (means ± SEM of three independent
experiments). Quantitative comparisons are true within the same color only. Red and green bars denote
red and green fluorescence, respectively. * and # indicate a significant difference relative to the control
and 5 µM of DEA, respectively (p < 0.05).

2.3. Effect of DEA on Mitochondrial Fragmentation in Intact B16F10 Melanoma Cells

Mitochondrial fusion requires healthy ∆Ψm, which forms the basis of mitochondrial quality
control [22]. Therefore, compromised ∆Ψm results in mitochondrial fragmentation, raising the
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possibility that DEA treatment causes such an effect. To test this possibility, we performed
confocal fluorescence microscopy on DEA-treated B16F10 melanoma cells transiently transfected
with mitochondria-targeted red fluorescent protein (mtRFP) expressing vector [23]. Under these
conditions, the intensity of the mitochondrially localized fluorescence did not depend on ∆Ψm.
Treatment for 3 h with 10 µM of DEA resulted in mitochondrial fragmentation comparable to that
caused by 25 µM of cisplatin (positive control [24]) (Figure 3). Although treatment with 5 µM of DEA
tended to increase the mitochondrial fragmentation, the difference from the control did not reach the
level of statistical significance (Figure 3).

Figure 3. Effect of DEA on mitochondrial fragmentation. mtRFP-transfected cells were treated with 5
or 10 µM of DEA, or 25 µM of cisplatin (positive control [24]), for 3 h. Mitochondrial fragmentation was
determined based on confocal fluorescence images, as described in [25]. (a) Representative fluorescence
images for all the treatment groups. (b) Quantitative assessment of mitochondrial fragmentation
expressed as % (means ± SEM of three independent experiments). * indicates a significant difference
relative to the control (p < 0.05).
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2.4. Effect of DEA on the Energy Metabolism of B16F10 Melanoma Cells

Given that the DEA treatment compromised ∆Ψm, a major determinant of ATP synthesis [22],
we next sought to assess DEA’s effect on energy metabolism of B16F10 melanoma cells. We used the
Seahorse XF Cell Mito Stress Test to monitor the cellular oxygen consumption rate (OCR), an indicator
of mitochondrial respiration, and the extracellular acidification rate (ECAR), an indicator of aerobic
glycolysis in live B16F10 melanoma cells. We treated cells with 5 or 10 µM of DEA for 3 h, and then
monitored the OCR and ECAR for 75 min. After registering basal respiration (Figure 4a-1) for 15 min,
we added oligomycin, an inhibitor of FoF1 ATP synthase, to assess the ATP production (Figure 4a-4).
After 20 min of recording, we added carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP),
which uncouples respiration and ATP synthesis, to measure maximal respiration (Figure 4a-3). After a
further 20 min of recording, we inhibited mitochondrial respiration by adding the Complex I inhibitor
rotenone and the Complex III inhibitor antimycin A to determine the proton leak and non-mitochondrial
oxygen consumption (Figure 4a-2, Figure 4a-5). Simultaneously, we also monitored ECAR (Figure 4b).
From the original recordings, the instrument output multiple parameters of cellular energy metabolism
(Figure 4c–k). The DEA treatment did not significantly affect basal respiration (Figure 4c) or proton
leak (Figure 4d), although 10 µM of DEA tended to decrease the former and increase the latter. By
contrast, 10 µM of DEA did suppress the maximal respiration (Figure 4e), ATP production (Figure 4f),
and coupling efficiency (Figure 4g); the last of these indicates how tightly respiration is coupled to
ATP synthesis. DEA decreased the non-mitochondrial oxygen consumption (Figure 4h), and spare
respiratory capacity, expressed either as the difference (Figure 4i) or ratio (Figure 4j) of maximal
and basal respiration, in a concentration-dependent manner. Although it did not affect the basal
fermentative ATP synthesis, DEA decreased lactate accumulation after oligomycin administration in a
concentration-dependent manner (Figure 4b–k), indicating that the drug interfered with the glycolytic
machinery as well as the mitochondrial respiratory chain.
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Figure 4. Effect of DEA on the energy metabolism of B16F10 melanoma cells. Cells were treated with
5 or 10 µM of DEA for 3 h, and then the OCR and ECAR were monitored for 75 min. The FoF1 ATP
synthase inhibitor oligomycin (o), the uncoupler FCCP, and the respiratory inhibitors rotenone and
antimycin A (R+AmA) were added at the bold arrows. (a) OCR recordings for untreated (filled circles),
5 µM of DEA-treated (triangles), and 10 µM of DEA-treated (open circles) cells (means ± SD of three
independent experiments running in two replicates in each experiment. The double-headed arrows
with numbers next to them indicate (1) basal respiration, (2) proton leak, (3) maximal respiration,
(4) ATP production, (5) non-mitochondrial oxygen consumption, and (6) spare respiratory capacity.
(b–i) Parameters derived from (a); for explanation, see the text and (a). Appropriate parts of the
recordings were averaged and presented as the means± SEM of three independent experiments running
in two replicates in each experiment. * indicates a significant difference relative to the control (p < 0.05).
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(b) Basal respiration. (c) Proton leak. (d) Maximal respiration. (e) Mitochondrial ATP production.
(f) Coupling efficiency; for explanation, see the text. (g) Non-mitochondrial oxygen consumption.
(h,i) Spare respiratory capacity, presented as the difference (h) and ratio (i) of maximal and basal
respiration. (j) ECAR recordings for untreated (filled circles), 5µM of DEA-treated (triangles), and 10µM
of DEA-treated (open circles) cells (means ± SD of three independent experiments running in two
replicates in each experiment). All the labeling is the same as for (a). (k) Extracellular acidification rate
before (dark bars) and after (light bars) the administration of oligomycin. OCR and ECAR data were
normalized to mg of protein content.

2.5. Effect of DEA on mPT in Intact B16F10 Melanoma Cells

According to our previous results, DEA induced mPT in isolated liver and heart mitochondria
that was resistant to cyclosporine A, a specific inhibitor of mPIT induced by elevated Ca2+ [26]. We
were interested in determining whether the drug has the same effect in melanoma cells. Therefore,
we adapted the method of Petronilli et al. [27] for measuring mPT in intact live cells using a 96-well
automated high-content fluorescence imaging system. The method is based on the quenching of calcein
fluorescence by Co2+. Non-fluorescent acetoxymethylcalcein is taken up by the cells, and is converted
intracellularly to fluorescent calcein by non-specific esterases. Co2+, the cellular uptake of which is
facilitated by the Ca2+ ionophore A23187, quenches the cytoplasmic calcein fluorescence; however,
it cannot enter intact mitochondria, resulting in exclusively mitochondrial calcein fluorescence. When
the mPT pore opens, Co2+ is free to enter the mitochondria and quench the calcein fluorescence there
as well. Accordingly, we monitored the calcein fluorescence of melanoma cells treated with 5 or 10 µM
of DEA or 1.5 mM of CaCl2 (positive control [27]) in the presence of acetoxymethylcalcein, CoCl2,
and A23187 with or without CsA for 3 h. In complete agreement with our previous results obtained in
isolated liver and heart mitochondria [18], 10 µM of DEA induced mPT that was CsA-independent
(Figure 5). As expected, elevated Ca2+, the cellular uptake of which is facilitated by A23187, caused a
massive mPT that was fully CsA-dependent (Figure 5).

Figure 5. Effect of DEA on mPT in intact B16F10 melanoma cells. Cells were treated with 5 or 10 µM of
DEA or 1.5 mM of Ca2+ (positive control [27]) in the presence (dark bars) or absence (light bars) of
the mPT inhibitor CsA for 3 h. mPT was assessed by monitoring the Co2+-mediated quenching of
mitochondrial calcein fluorescence [27]. The results are expressed as fluorescence intensity (the means
± SEM of three independent experiments). * and # indicate a significant difference relative to control
and CsA-treated cells of the same treatment group, respectively (p < 0.05).

2.6. Effect of DEA on Outer Mitochondrial Membrane (OMM) Permeabilization

OMM permeabilization can lead to apoptotic death [28]; therefore, we studied the effect of DEA on
OMM integrity. When the OMM is intact, pro-apoptotic intermembrane proteins such as cytochrome C
(Cyt c) and apoptosis-inducing factor (Aif) are retained in the mitochondria. Anti-apoptotic members
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of the B-cell lymphoma 2 (Bcl2) family form heterodimers with pro-apoptotic members, thereby
inactivating them. When the Bcl2-associated agonist of cell death (Bad) is dephosphorylated, it binds
to anti-apoptotic Bcl2 family members, releasing the pro-apoptotic ones, which in turn dimerize with
each other, translocate to the OMM, and permeabilize it. This leads to a release of the pro-apoptotic
intermembrane proteins, eventually resulting in apoptotic cell death [28]. A major mechanism of
protection against apoptosis is the phosphorylation of Bad by the cytoprotective kinase Akt [28]. Optic
atrophy1 (Opa1) is an inner mitochondrial membrane (IMM)-associated large GTPase protein that is
present in the mitochondria only [29]. Stimuli leading to OMM permeabilization and Cyt c release
results also in release of Opa1 to the cytosol [30]. Accordingly, we assessed DEA’s effect on OMM
integrity by determining its effect on the expression, localization, and activation of Cyt c, Opa1, Aif,
Bad, and Akt. To this end, we prepared whole-cell homogenate, and in parallel nuclear and cytoplasmic
fractions from B16F10 melanoma cells treated with different concentrations of DEA for 6 h, and then
subjected them to immunoblot analysis. To determine the phosphorylation states of Akt and Bad, we
used phosphorylation-specific primary antibodies. At a concentration of 10 µM, DEA increased the
steady-state level of Bad and decreased Bad phosphorylation in a concentration-dependent manner
(Figure 6). Both of these effects shift the balance in the pro-apoptotic direction. Accordingly, DEA
induces the release of Cyt c and Opa1 into the cytosol and nuclear translocation of Aif (Figure 6).
In addition, 10 µM of DEA decreased Akt phosphorylation without affecting the steady-state level
of the enzyme (Figure 6). This latter effect of DEA was fully consistent with its effects on the other
proteins studied. Together, these data indicated that DEA caused OMM permeabilization.
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Figure 6. Effect of DEA on the OMM permeabilization in B16F10 melanoma cells. Cells were treated
with 5 or 10 µM of DEA for 6 h, harvested, and homogenized (Whole cell). Alternatively, nuclear and
cytosolic fractions were prepared from the harvested cells. Steady-state levels and phosphorylation
states of Akt and Bad were assessed in whole-cell homogenate. The steady-state levels of Cyt c and
Opa1 were determined in the cytosolic, whereas that of Aif was measured in the nuclear fraction by
immunoblotting. In the whole-cell homogenate, the cytosolic fraction and the nuclear fraction, we used
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin and histone H1 (HH1), respectively, as
loading controls. The proteins were visualized by enhanced chemiluminescence. (a) Representative
blots. (b) Quantitative assessment of proteins in the subcellular fractions. Results are expressed as pixel
density or chemiluminescence intensity of the bands, both expressed in arbitrary units (means ± SEM
of three independent experiments). * indicates a significant difference relative to the control (p < 0.05).

2.7. Effect of DEA and Akt Inhibitors on the Viability of B16F10 Melanoma Cells

Because of the importance of mitochondrial processes in cancer [5], we were interested in
determining whether the observed mitochondrial effects of DEA manifested as viability changes in
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B16F10 melanoma cells. To this end, we treated the cells for 3–12 h with 5 or 10 µM of DEA before
determining their viability using the sulforhodamine B (SRB) assay. This assay is considered the most
suitable for assessing the toxicity of substances in cultured cells, especially when the toxicity affects the
mitochondria [31]. In complete agreement with our previous results [17], DEA decreased the viability
of B16F10 melanoma cells in a time- and concentration-dependent manner, although at 5 µM and for
up to 6 h of incubation, this effect did not reach statistical significance (Figure 7).

Figure 7. Effect of DEA on the viability of B16F10 melanoma cells. Cells were treated with 5 or 10 µM of
DEA for 3–12 h, and then the viability was determined using the SRB assay. The results are expressed as
the % viability of the control (means ± SEM of five independent experiments). * indicates a significant
difference relative to the control (p < 0.05).

3. Discussion

Mitochondria contribute in multiple ways to carcinogenesis, tumor survival, and metastasis.
The respiratory chain, situated in the inner mitochondrial membrane (IMM), is responsible for the
majority of the ATP production under physiological conditions; moreover, it is a massive source of ROS
formation in various maladies, including cancer [32,33]. Different ROS-associated signaling pathways
have been proposed as oncologic therapeutic targets, particularly the nuclear factor erythroid 2-related
factor 2 (Nrf2)–regulated anti-oxidant defense system [34,35]. A number of antineoplastic drugs and
substances that inhibit the mitochondrial respiratory chain increase cellular ROS production [21,36–38].
Using a mitochondria-targeted fluorescent redox dye, we found that DEA at a concentration of 10 µM
but not at 5 µM elicited mitochondrial superoxide formation (Figure 1). However, we failed to observe
significantly elevated ROS levels either in the aqueous or membranous cellular compartments (Figure 1).
The latter results are in accordance with our previous results obtained in isolated liver and heart
mitochondria [18]. It is not clear whether this discrepancy was due to technical issues, or simply if the
extent of mitochondrial superoxide production was insufficient to elevate the overall cellular ROS level.
Indeed, oxidases—most notably, members of the NADPH oxidase family—are the major source of
cellular ROS production besides the mitochondrial respiratory chain. Additionally, the latter is tightly
controlled, and the superoxide produced by it is readily neutralized by antioxidant enzymes [39].
However, it is worth noting that the DEA-induced mitochondrial superoxide production was less than
20% of the one caused by 5 µM of Taxol (Figure 1), and the Taxol-induced cellular ROS production was
detectable by conventional fluorescent redox dyes [21], not only by MitoSOXTM Red.
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In addition to its role in providing the driving force for ATP synthesis, ∆Ψm plays essential roles
in the transport of mitochondrial proteins encoded in the nucleus [40], as well as in cations such as K+,
Ca2+, and Mg2+ [22]; ROS generation [41] and mitochondrial network dynamics [42]; and the regulation
of cell death via the release of pro-apoptotic intermembrane proteins [26,43,44]. The maintenance
of ∆Ψm is so important for cell survival that in ischemic situations, the FoF1 ATPase can operate in
reverse mode, consuming rather than synthesizing ATP to rescue the cell. Under such conditions,
the substrate-level phosphorylation of non-glucose substrates supplies the ATP to be cleaved by the
FoF1 ATPase, providing a narrow survival window [45–47]. Cancer cells, especially those in solid
tumors, exist in a permanent state of partial ischemia, to which their cytoplasmic and mitochondrial
metabolic pathways must adapt [3,48]. Therefore, drugs that interfere with tumor cell metabolism
could be of therapeutic value [3]. DEA is an example of such a candidate drug: it decreased ∆Ψm in a
concentration-dependent manner in B16F10 melanoma cells, and a 3 h treatment with 10 µM of DEA
massively decreased ∆Ψm (Figure 2). This finding was in accord with our previous results obtained in
isolated liver and rat mitochondria [18].

Mitochondrial network dynamics play important roles in mitochondrial biogenesis, the satisfaction
of cellular energy and metabolic demands, retrograde signaling, and mitochondrial quality
control [42,49]. To fulfill these tasks, continuous mitochondrial fusion and fission processes must
be maintained in balance, and are mainly regulated by intracellular signaling [49]. However, ∆Ψm

plays a decisive role in this balance, as below a certain ∆Ψm threshold the fusion process cannot take
place [42,49]. Accordingly, excessive fission is a common feature of many tumors [50,51]. Although
mitochondrial fission does not necessarily lead to apoptotic cell death, fragmented mitochondria are
more susceptible to damage and are more apt to be eliminated by mitophagy, which forms the basis of
mitochondrial quality control [52]. Excessive fission can lead to a significantly reduced mitochondrial
DNA copy number, as observed in various malignancies including astrocytomas; prostate cancers;
and breast, colon, and hepatocellular carcinomas [42]. Decreases in the mitochondrial copy number
compromise normal mitochondrial function and promote cellular migration, thus contributing to tumor
progression [53]. Accordingly, the fragmentation-inducing effect of DEA (Figure 3) may contribute
to its cytotoxic properties and ability to limit in vivo metastasis, which we observed previously
in cultured bladder and cervix carcinoma and melanoma cells [15–17]. Increased mitochondrial
fragmentation results from increased fission or decreased fusion. Considering that fusion requires
intact ∆Ψm [29], and DEA-impaired ∆Ψm (Figure 2), it seems likely that DEA caused mitochondrial
fragmentation by impeding fusion. Opa1 is responsible for the fusion of the IMM, and maintains its
cristae morphology [29]. Short and long isoforms of the protein are in balance, and normally they are
associated with the IMM. However, their balance is disrupted, and the protein is released to the cytosol
when stimuli disturb the ∆Ψm and/or permeabilize the OMM [30]. DEA at a concentration of 10 µM
evoked Opa1 release to the cytosol (Figure 6), indicating that its mitochondrial fragmentation-inducing
effect was indeed caused by impeding fusion rather than by promoting fission.

Cancer cells change their metabolism in characteristic ways to adapt to the predominantly hypoxic
conditions of their environment [54]. For energy production, many cancer types prefer glycolysis over
mitochondrial oxidative phosphorylation, even in the presence of sufficient oxygen. The importance of
this switch in ATP production, known as the Warburg effect [55], is validated by the diagnostic value of
18F-deoxyglucose positron emission tomography in identifying tumors based on their increased glucose
uptake [56,57]. However, the most malignant cancer types, including cancer stem cells, metastatic tumor
cells, and therapy-resistant tumor cells, have elevated levels of mitochondrial ATP synthesis [58,59].
Moreover, oxidative phosphorylation is essential for the survival, proliferation, and metastasis of these
cells and forms the basis of their resistance to chemotherapy and radiotherapy [60,61]. Accordingly,
oxidative phosphorylation is considered as an emerging therapeutic target, especially for the most
malignant cancer types [62]. Based on its effects on energy metabolism in B16F10 melanoma cells, DEA
exhibits promise as a candidate cancer therapy. At a concentration of 10 µM, DEA diminished maximal
respiration, ATP production, and coupling efficiency (Figure 4). These findings are in line with our
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previous results obtained in isolated liver and heart mitochondria [18]. Additionally, DEA decreased
fermentative glycolysis and non-mitochondrial oxygen consumption in a concentration-dependent
manner (Figure 4). This latter effect might contribute to the drug’s cytotoxic and anti-metastatic
properties. Impeding both the mitochondrial and glycolytic ATP producing pathways (Figure 4) seems
an attractive mechanism for DEA’s cytotoxic property. However, this remains to be proven in future
studies aimed at identifying the targets of DEA both in the respiratory chain and the glycolytic pathway.

Adverse environmental conditions such as hypoxia, low nutrient availability, and growth factor
withdrawal can induce mitochondria-associated cell death, most often in the form of mPT or OMM
permeabilization. When opened, the mPT pore forms a nonspecific channel, allowing the unrestricted
passage of water and solutes of up to 1.5 kDa in size across the IMM [26]. The physiological role of
transient channel opening remains unknown; however, prolonged opening results in the complete
loss of ∆Ψm, the termination of ATP synthesis, mitochondrial swelling, and the rupture of the IMM
due to water influx driven by the high osmolarity of the mitochondrial matrix [26,63]. Outflowing
Ca2+ triggers mPT in the neighboring mitochondria, resulting in eventual necrotic cell death [26].
However, cancer cells are often relatively resistant to mPT induction [64]. In complete agreement
with our previous results obtained in isolated liver and heart mitochondria [18], 10 µM of DEA
induced a CsA-independent mPT (Figure 5). This likely contributes to DEA’s cytotoxicity in cultured
bladder carcinoma, cervical carcinoma, and melanoma cells [15–17]. Furthermore, DEA definitely
compromised IMM integrity, as calcein fluorescence was not quenched in the absence of DEA or
Ca2+ stimulation (data not shown). In addition, Ca2+ evoked a CsA-dependent mPT that was more
pronounced than the mPT induced by 10 µM of DEA (Figure 5). The identity and composition of
the mPT pore remains controversial [63], and CsA-independent mPT induction has been reported by
others [65]. Therefore, we will refer to this effect of DEA as “mPT-inducing” until a clearer definition
of mPT can be established.

The other major form of mitochondria-associated cell death is OMM permeabilization-mediated
apoptosis. However, resistance to apoptosis is a hallmark of cancer that is achieved by disrupting the
balance between pro- and anti-apoptotic Bcl2 proteins [66]. Resistance arises due to a multitude of
mechanisms, including the downregulation of pro-apoptotic, up-regulation of anti-apoptotic Bcl-2
genes [67], and upregulation of protein inhibitors of apoptosis [68]. Although only preliminary data
are available regarding how DEA interferes with these mechanisms, some trends have emerged. Firstly,
even a relatively short DEA treatment (6 h) elevates the steady-state level of the pro-apoptotic Bcl-2
family member Bad (Figure 6). Future studies should investigate whether Bad levels rise due to the
upregulation of expression or the inhibition of degradation. Second, the Akt, which is constitutively
active in melanomas [69], was inactivated by 10 µM of DEA (Figure 6). In this case, the duration was
more than adequate for the observed effect, as the covalent regulation of a kinase activity could be
achieved within minutes. The observed decrease in Bad phosphorylation and increase in Cyt c and Aif
release (Figure 6) could be explained by the previous two findings.

However, the data in Figure 6 also indicate that several elements of the signaling network
underlying DEA’s OMM-permeabilizing effect were not examined in this study. Although it is difficult
to compare blots using different primary antibodies, it seems unlikely that the observed Akt inhibition
can fully account for the reduction in Bad phosphorylation (Figure 6). Additionally, the extent of Cyt
c release seems disproportional with the other observed changes (Figure 6). Future studies should
seek to identify missing mechanisms. On the other hand, all the aforementioned data are in line with
our previous findings on DEA [15–18], and they account for the time- and concentration-dependent
cytostatic effect of DEA treatment (Figure 7). Based on the data presented in this study, it is difficult to
propose a mechanism that can explain the said multiple effects on several mitochondrial processes.
Considering the central role of Ca2+ in regulating apoptosis and thereby the survival and therapy
resistance of cancer cells [70], it is a limitation of this study that it cannot account for DEA’s effect on
intracellular calcium.
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On the other hand, we presented experimental evidence that DEA decreases ∆Ψ; induces
mitochondrial fragmentation; decreases maximal respiration, ATP production, coupling efficiency,
glycolysis, and non-mitochondrial oxygen consumption; and induces CsA-independent mPT and
OMM permeabilization. All of these effects may account for the rapid (3–12 h) cytotoxicity of the
drug. Furthermore, these results are in agreement with our previous findings obtained in isolated liver
and heart mitochondria, and may account for DEA’s long-term (24–72 h) cytotoxicity and ability to
suppress in vivo metastasis by bladder carcinoma, cervical carcinoma, and melanoma cell lines [15–18].

4. Materials and Methods

4.1. Materials

Protease inhibitor cocktail and all chemicals for cell culture were purchased from Sigma-Aldrich
Kft (Budapest, Hungary). DEA was a gift from Professor Andras Varro (Department of Pharmacology
and Pharmacotherapy, University of Szeged, Szeged, Hungary). The following primary antibodies
were used: anti-Bad, anti–phospho-Bad (Ser136), anti- Akt, anti-phospho-Akt (Ser473), anti-AIF,
anti-histonH1, anti-cytochrome C, anti–Opa1 (1:500 dilution), anti-GAPDH (1:2000, clone 6C5),
and anti-actin (1:2000). All the antibodies were purchased from Cell Signaling Technology (Beverly,
MA, USA), but GAPDH that was from EMD Millipore Bioscience (Darmstadt, Germany).

4.2. Cell Culture

B16F10 mouse metastatic melanoma cells were obtained from the American Type Culture
Collection (LGC Standards, Wesel, Germany). B16F10 cells were split twice a week for 4 months and
maintained as monolayer adherent cultures under standard conditions (5% CO2, 37 ◦C) in RPMI
1640 media supplemented with 10% fetal calf serum (FCS) and 1% penicillin–streptomycin mixture
(Life Technologies, Darmstadt, Germany).

4.3. Cell Viability Assay

B16F10 cells were seeded in 96-well plates at a starting density of 5 × 103 cells/well in quintuplicate
(five replicate wells per sample) overnight. The cells were treated with 0, 5, or 10 µM of DEA for 3–12 h.
After treatment, the cells were washed in phosphate-buffered saline (PBS) and fixed in 100 µL of cold
10% trichloroacetic acid solution. The plates were incubated for 30 min at 4 ◦C, washed five times with
distilled water, and dried overnight at room temperature. The cellular protein content in the wells
was determined by the SRB assay. Briefly, 70 µL of 0.4% SRB (Sigma-Aldrich Co., Budapest, Hungary)
prepared in 1% acetic acid were added to each well and incubated for 30 min at room temperature.
The SRB reagent was discarded, and the plates were washed five times with 1% acetic acid and dried at
room temperature for a few hours. Then, 200 µL of a 10 mM Tris base was added to each well, and the
samples were incubated at room temperature on a plate shaker for 30 min to solubilize the bound SRB.
Absorbance was measured at 560 and 600 nm in parallel on a plate reader. OD600 was subtracted as a
background from the OD560. These experiments were repeated five times.

4.4. Bioenergetic Analysis

To determine the balance of oxidative vs. fermentative energy production in B16F10 cells, OCR
and ECAR were measured using a Seahorse XFp Analyzer (Agilent, Santa Clara, CA, USA). Cells were
seeded into XFp cell culture 8-well miniplates at a starting density of 4 × 104 cell/well in duplicate and
cultured under standard conditions overnight. Then, the cells were treated with 0, 5, or 10 µM of DEA
for 3 h. Prior to the measurement, the medium was replaced with Seahorse XF Assay Media (Agilent,
Santa Clara, CA, USA) pH 7.4 supplemented with 10 mM of glucose, 2 mM of L-glutamine, and 1 mM
of pyruvate. Mitochondrial stress test was performed using the following inhibitors at the indicated
final concentrations: 1 µM of oligomycin, 1 µM of FCCP, and 1 µM of rotenone–antimycin A. In each
experiment, two wells without cells were running to assess the non-cellular oxygen consumption,
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which was subtracted from the corresponding OCR value. The OCR and ECAR data were normalized
to the mg protein content using the Micro BCA Protein Assay kit (Thermo Fisher Scientific, Waltham,
MA, USA) for the measurement of protein concentrations. No other data correction was applied. These
experiments were repeated three times.

4.5. ∆Ψm Assay

Changes in ∆Ψm were assayed using the mitochondrial fluorescent dye JC-1. B16F10 cells were
seeded at a starting density of 2.5 × 104 cells/well in 6-well plates containing coverslips and cultured at
least overnight before the experiment. After subjecting the cells to different concentrations of DEA for
3 h, the coverslips were rinsed twice in PBS and placed upside down on top of a small chamber formed
by a microscope slide filled with PBS supplemented with 10% FCS and 1 µg/mL of JC-1 dye (Molecular
Probes, Eugene, OR, USA). The cells were imaged with a Nikon Eclipse Ti-U fluorescent microscope
(Auro-Science Consulting Ltd., Budapest, Hungary) equipped with a Spot RT3 camera, using a 20×
objective lens with epifluorescence illumination. After the cells were loaded with dye for 15 min,
the same microscopic field was imaged with a 490 nm bandpass excitation and > 590 nm (red) and < 546
nm (green) emission filters. Under these conditions, we did not observe considerable bleed-through
between the red and green channels. The quantification of JC-1 fluorescence intensities in each sample
was performed in 15 randomly chosen microscopic fields containing 20–30 cells using the MetaXpress
image analyzer software (Molecular Devices LLC., San Jose, CA, USA). These experiments were
repeated three times.

4.6. Analysis of Mitochondrial Network Dynamics

For confocal imaging, B16F10 cells were seeded onto 25 mm round glass coverslip medium at a
starting density of 2.5 × 104 cells/coverslip, and cultured in antibiotic-free culture for 24 h. The transient
transfection of B16F10 cells with mtRFP was performed using TransFectin Lipid Reagent (Bio-Rad,
Hercules, CA, USA). On the following day, the cells were treated for 3 h, as indicated in the text;
washed twice in PBS; and fixed in 4% formalin. Fluorescence was visualized on an Olympus FluoView
1000 (Olympus, Hamburg, Germany) confocal laser scanning microscope. For excitation, a multiline
argon-ion laser at 488 nm and a green helium-neon laser at 543 nm were used (10 µs/pixel) in the
photon-counting and sequential mode. The field of interest was scanned in XYZ mode, scanning the
total thickness of the cells with a 1.5 µm layer distance and taking 1024 × 1024 pixel images of each
layer. The quantitative determination of mitochondrial fragmentation was performed as described [25];
we considered mitochondria shorter than 2 µm to be fragmented and those longer than 5 µm as
filamentous. These experiments were repeated three times.

4.7. Subcellular Fractionation

Three semi-confluent 10 cm plates of B16F10 cells were harvested, washed twice with
PBS, and resuspended in 1 mL of fractionation buffer (250 mM of sucrose, 20 mM of
2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES), pH 7.4, 10 mM of KCl, 1.5 mM of
MgCl2, 1 mM of ethylenediamine-tetraacetic acid (EDTA), 1 mM of ethyleneglycol-tetraacetic acid
(EGTA), 1 mM of dithiothreitol (DTT), and proteinase inhibitor cocktail (Sigma, #P2714)). The cell
lysate was manually homogenized in a Teflon–glass homogenizer, chilled on ice, and centrifuged
for 7 min at 720× g at 4 ◦C. The nuclear pellet was resuspended in 700 µL of fractionation buffer,
re-homogenized, and centrifuged for 10 min at 600× g. This procedure was repeated one more time,
and the pellet was resuspended in lysis buffer (10% glycerol, 25 mM of NaCl, 50 mM of NaF, 10 mM
of Na-pyrophosphate, 2 nM of EGTA, 2 nM of DTT, 20 nM of p-nitrophenyl-phosphate, 25 mM of
Tris-HCl, pH 7.4, 50 nM of beta-glycerophosphate, and 0.1% Triton X-100) to yield the nuclear fraction.
The supernatant of the 7 min, 720× g centrifugation step was subjected to centrifugation at 10,000× g
for 5 min at 4 ◦C. The supernatant and pellet of this step yielded the cytoplasmic and mitochondrial
fractions, respectively; the latter was not used in this study.
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4.8. Immunoblot Analysis

B16F10 cells were seeded in 10 cm plates at 106 cells/plate and treated as described above for the
cell viability assay. The cells were harvested at intervals in chilled lysis buffer containing 0.5 mM of
sodium-metavanadate, 1 mM of EDTA, and protease inhibitor cocktail (1:200). The cell lysates were
boiled and subjected to 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis before being
transferred to nitrocellulose membranes. The membranes were blocked in 5% low-fat milk for 1.5 h at
room temperature, and then exposed to primary antibodies at 4 ◦C overnight in blocking solution.
Appropriate horseradish peroxidase–conjugated secondary antibodies were used at a dilution of 1:5000.
Signals were visualized by using enhanced chemiluminescence and captured on X-ray film. The films
were scanned, and the pixel densities of the bands were determined using the NIH ImageJ software.
Alternatively, chemiluminescence was measured on an Azure 300 (Azure Biosystems) imaging system
that digitized the bands’ chemiluminescence intensities using its inbuilt software. For stripping and
reprobing, the membranes were washed in stripping buffer (0.1 M glycine, 5 M MgCl2, pH 2.8) for
1 h at room temperature. After washing and blocking, the membranes were incubated with primary
antibodies against non-phosphorylated or loading control proteins. These experiments were repeated
three times.

4.9. Determination of Cellular ROS Formation

B16F10 cells were seeded as described above for the viability assay and treated with 5 or 10 µM
of DEA or 5 µM of taxol (positive control [21]). The cellular ROS levels were determined based
on the formation of N-acetyl-8-dodecyl-resorufin and 6-carboxy-2’,7’-dichlorofluorescein from their
nonfluorescent reduced counterparts, N-acetyl-8-dodecyl-3,7-dihydroxyphenoxazine (1.3 mg/L final
concentration) and 6-carboxy-2’,7’-dichlorodihydrofluorescein diacetate (2 mg/L final concentration), as
described previously [21,71]. The former assessed the cellular ROS formation in the lipid phase, and the
latter in the aqueous phase. Fluorescence was measured by a plate-reader fluorimeter (PerkinElmer,
Hungary) at excitation wavelengths of 578 and 495 nm and emission wavelengths of 597 and 522 nm for
N-acetyl-8-dodecyl-resorufin and 6-carboxy-2’,7’-dichlorofluorescein, respectively. The mitochondrial
superoxide formation was assessed by MitoSOXTM Red (Thermo Fisher Scientific, Waltham, MA, USA).
Cells were incubated for 30 min in 5 µM of MitoSOXTM Red, then were rinsed and treated with 5 or
10 µM of DEA or 5 µM of taxol for 3 h. Fluorescence was recorded by the plate-reader fluorimeter
at excitation wavelengths of 495 nm and emission wavelengths of 590 nm. Under these conditions,
the fluorescence intensity is proportional to the mitochondrial superoxide level [20]. The ROS levels
were calculated from the slopes of the registration curves. These experiments were repeated five times.

4.10. Measurement of mPT in Intact B16F10 Cells

The B16F10 cells were seeded as described above for the viability assay and cultured in
antibiotic-free medium overnight. Cells were washed with Ca2+- and Mg2+-free Hank’s balanced
salt solution (HBSS), and then treated with 250 nM of A23187, 90 µM of CoCl2, 1 g/L of glucose, 5
or 10 µM of DEA or 1.5 mM of CaCl2 (positive control [27]), and/or 2.5 µM of CsA in HBSS for 3 h.
For the detection of mPT, acetoxymethylcalcein was added to the medium at a final concentration of
1 µM. Fluorescence in wells resulting from unquenched de-esterified calcein in the mitochondria [27]
(cytoplasmic calcein is quenched by Co2+) was monitored using the ImageXpress Micro4 automated
high-content imaging system (Molecular Devices LLC., San Jose, CA, USA) using a 4× objective and
epifluorescence illumination. The quantification of calcein fluorescent intensities was performed using
the MetaXpress software. These experiments were repeated three times.

4.11. Data Analysis

All the data are expressed as means ± standard deviation (SD). The concentration-dependent
effects of DEA in each experiment were tested with ANOVA using the post hoc Dunnett test. Differences
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were considered significant at p < 0.05. Statistical analyses were performed using IBM SPSS Statistics
v20.0.
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AIF Apoptosis inducing factor
AM Amiodarone
Bad Bcl2 associated agonist of cell death
Bcl2 B-cell lymphoma2
CsA Cyclosporine A
Cyt c Cytochrome C
DEA Desethylamiodarone
∆Ψm Mitochondrial membrane potential
DTT Dithiothreitol
ECAR Extracellular acidification rate
EDTA Ethylenediamine-tetraacetic acid
EGTA Ethyleneglycol-tetraacetic acid
FCCP Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone
FCS Fetal calf serum
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
HBSS Hank’s balanced salt solution
HEPES 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid
HH1 Histone H1
IMM Inner mitochondrial membrane
mPT Mitochondrial permeability transition
mtRFP mitochondria-targeted red fluorescent protein
Nrf2 Nuclear factor erythroid 2-related factor 2
OCR Oxygen consumption rate
OD Optical density
OMM Outer mitochondrial membrane
Opa1 Optic atrophy1
PBS Phosphate-buffered saline
ROS Reactive oxygen species
SD Standard deviation
SEM Standard error of the mean
SRB Sulforhodamine B
Tris 2-Amino-2-hydroxymethyl-propane-1,3-diol
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