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Abstract

Desertification is currently a major concern, and vast regions have already been devastated

in the arid zones of many countries. Combined application of cyanobacteria with soil fixing

chemicals is a novel method of restoring desertified areas. Three cyanobacteria, Nostoc sp.

Vaucher ex Bornet & Flahault, Phormidium sp. Kützing ex Gomont and Scytonema arcan-

geli Bornet ex Flahault were isolated and tested in this study. Tacki-SprayTM (TKS7), which

consists of bio-polysaccharides and tackifiers, was used as a soil fixing agent. In addition,

superabsorbent polymer (SAP) was applied to the soil as a water-holding material and nutri-

ent supplement. Application of cyanobacteria with superabsorbent polymer and TKS7

(CST) remarkably improved macro-aggregate stability against water and erodibility against

wind after 12 months of inoculation when compared to the control soil. The mean weight

diameter and threshold friction velocity of the CST treated soil were found to be 75% and

88% of those of the approximately 20-year-old natural cyanobacterial crust (N-BSC), re-

spectively, while these values were 68% and 73% of those of the N-BSC soil after a single

treatment of cyanobacteria alone (CY). Interestingly, biological activities of CST were similar

to those of CY. Total carbohydrate contents, cyanobacterial biomass, microbial biomass,

soil respiration, carbon fixation and effective quantum yield of CST treated soil were en-

hanced by 50–100% of the N-BSC, while those of control soil were negligible. Our results

suggest that combined application of cyanobacteria with soil fixing chemicals can rapidly

develop cyanobacterial crust formation in the field within 12 months. The physical properties

and biological activities of the inoculated cyanobacterial crust were stable during the study

period. The novel method presented herein serves as another approach for combating

desertification in arid regions.

Introduction

Desertification is a global environmental issue in which land in arid, semiarid and dry sub-

humid areas is degraded by factors such as climatic variations and anthropogenic activities [1].

Problems associated with desertification include loss of biodiversity, low soil productivity, dust

storms and economic losses. Drylands cover 41.3% of all land and are home to more than 2.5
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billion people worldwide [2, 3]. Desertification has reportedly affected 10 to 20% of these

lands, on which 250 million people live, while another 1 billion people live in areas at risk of

undergoing further desertification [2, 4]. Therefore, combating desertification is a major chal-

lenge facing humanity.

Various treatments have been employed to stabilize desertified soil. Several chemicals such

as organic polymers have been investigated for their ability to stabilize sand, which is essential

to increasing sand aggregate stability and protecting sand particles against wind erosion. In-

vestigation of the chemicals, PASP (poly aspartic acid), PVA (polyvinyl alcohol), PAM (poly-

acrylamide) and Gypsum [5–9] have revealed that they are less expensive than mechanical

and vegetative materials and are able to effectively stabilize soil particles [10]. However, this

method is not considered to be an ecological restoration method [5, 11]. A common and

widely adapted method of stabilizing desertified soil is planting native vegetation. However,

monotonous cultivation of the same species of trees is susceptible to widespread damage

caused by diseases or pests. Moreover, the annual precipitation of arid regions is generally less

than 300 mm, while the evaporation of trees is over 3000 mm [12]. Hence, plants may not sur-

vive without proper management of water supply, and may even drain groundwater from

nearby grasslands.

Cyanobacterial crusts, which are commonly found in arid and semiarid regions, are domi-

nated by cyanobacteria, but can also contain green micro-algae, bacteria and micro-fungi

[13]. Cyanobacterial crusts have been considered one of the solutions for the restoration of

degraded soil. Morphologically tangled filamentous cyanobacteria improve soil aggregate sta-

bility by adding organic matter and secreting extracellular polymeric substances (EPSs) [14–

18]. Cyanobacteria can also survive extreme environmental conditions such as high or low

temperature, acidic or alkaline environments, and salinity, low precipitation, strong irradia-

tion, and desiccation. Furthermore, cyanobacteria improve soil fertility through mineral chela-

tion, dust entrapment, and nutrient fixation, which are beneficial to plants and animals [19,

20]. However, the recovery times are required for cyanobacterial crusts are predicted to be sev-

eral decades under natural environmental conditions [21]. Therefore, methods enabling rapid

development of inoculated cyanobacterial crusts within a limited time span are being consid-

ered. Many studies have also reported the feasibility of inoculating cyanobacterial cells to

induce rapid development of BSCs to improve soil stability, productivity and nutrition [22–

29].

Many factors destroy early stage cyanobacterial crusts under natural environmental condi-

tions. Raindrops destroy soil aggregates, leading to the detachment of soil particles from cya-

nobacterial crusts [30]. Additionally, grazing and trampling of livestock cause decreases or loss

of biological soil crusts (BSCs) [31–33]. Moreover, frequent disturbances keep BSCs in the

early successional stage for long periods of time, or induce regression from late successional

BSCs to the early stage [34]. Combined application of cyanobacteria with soil fixing chemicals

has the potential to stabilize the early stages of inoculated cyanobacterial crust and accelerate

progression to the next successional stage. Non-toxic, eco-friendly materials suitable for soil

stabilization have been considered for use with cyanobacteria. Tackifiers based on naturally

occurring resins are used to increase the stickiness of adhesives. TKS7 (Tacki-SprayTM) is a

commercially available product made from tackifiers and bio-polysaccharides extracted from

plant seeds. Bio-polysaccharides, the main components of TKS7, are expected to enhance soil

aggregation, playing a role similar to that of EPS secreted from cyanobacteria in the soil. More-

over, superabsorbent polymer (SAP) can be applied to soil as a water-holding material and

nutrient supplement [35]. The feasibility of combined application of soil fixing chemicals with

cyanobacteria was described for the rapid development of inoculated cyanobacterial crust

under laboratory conditions [36]. In the present study, we conducted field experiments to
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evaluate the feasibility of combined application of soil fixing chemicals with cyanobacteria

under natural conditions.

Materials and methods

Mass cultivation of cyanobacteria

Sampling permissions were granted by the Cold and Arid Regions Environmental & Engineer-

ing Research Institute, Chinese Academy of Sciences. The field studies did not involve endan-

gered or protected species. Soil samples for isolating cyanobacteria were collected from the

Tengger Desert in Ningxia Province, Northern China (37˚25’33.2“N, 104˚40’20.5“E). Cyano-

bacterial isolates were determined and cultured as previously described [36]. A cyanobacterial

consortium consisting of Nostoc sp. Vaucher ex Bornet & Flahault, Phormidium sp. Kützing

ex Gomont and Scytonema arcangeli Bornet ex Flahault was used (Fig 1). Cyanobacteria were

cultured in mass in a translucent plastic container (53×40×30 cm) filled with BG-11 liquid

medium [37] for 2 weeks from 24 May to 22 August 2014 (Fig 1). All equipment for mass culti-

vation was set up in a greenhouse and culturing containers were covered with a lid until cell

harvest. The top of the greenhouse was covered with a black net to provide reasonable light

intensity and temperature. The mean temperature of the liquid medium was 23˚C under a

light intensity of 400 μmol photons m-2 s-1. Cyanobacterial cells were harvested during the

exponential growth phase by centrifugation at 1400 g for 5 min. Cyanobacteria cultured in the

laboratory were used as a seed for mass cultivation in the field at Shapotou Desert Research

and Experiment State Key Station, Ningxia Province, Northern China.

Fig 1. Light microscopy images of Nostoc sp. (A), Phormidium sp. (B) and Scytonema arcangeli (C) and their inoculum in plastic containers.

https://doi.org/10.1371/journal.pone.0179903.g001
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Field experiment design

Field experiments were conducted at the Shapotou Desert Research and Experiment State Key

Station, Ningxia Province, Northern China (37˚27’36.8“N, 105˚00’42.7“E). The annual precipi-

tation in this area is less than 300 mm [38], and rainfall occurs from June to September. The

surface soil crust was completely removed from each experimental plot (4 m2) to generate

equal conditions, after which plots were covered with bare sand collected from a depth of 30

centimeters. The following three treatments were used for the field experiment: 1) control soil

(Con); 2) cyanobacteria application (CY); 3) combined application of cyanobacteria with SAP

and TKS7 (CST). Cyanobacteria were applied at 200 g fresh weight (FW) m-2 (10 g dry weight

(DW)) by spraying three times from June to August 2014 for CY. At the same time, SAP

and TKS7 were applied at a concentration of 10 and 1 g DW m-2, respectively, together with

cyanobacteria during the first application, while the other two applications were only sprayed

with cyanobacteria for CST. TKS7 (Tacki-SprayTM) was purchased from STBi CO., Hwasung,

Korea and superabsorbent polymer (SAP, WCS-0907) was purchased from Greenfield Co.,

Ltd., Korea. The same amount of water was applied to the control plot instead of the treatment.

Next, 5 mm of water per square meter was sprayed onto the plots once a day for 1 week. For

comparison, natural cyanobacterial crust (N-BSC) was also analyzed. N-BSC was classified as

an algae-dominated crust approximately 20 years old according to Liu et al. [38].

Field soil sampling

Polystyrene Petri-dishes (50×10 mm) were used for regular sampling of the treated soils. The

Petri-dishes were turned over and gently pressed into the soil until the bottom reached the

same level of the soil surface. Soil samples were collected from depths of 10 mm at 10 random

points in each treatment plot during October of 2014 and July of 2015 after 4 and 12 months

of development in the field, respectively. Four collected samples were used for the aggregate

stability test, three samples were used to determine the fluorescence yield, and another three

samples were used for analysis of the chlorophyll a, total carbohydrate contents, organic car-

bon and microbial carbon. For chemical analysis, soil samples were air dried and leaves and

twigs were removed, after which soils were partially ground.

Aggregate stability

We conducted a fast wetting test for soil aggregate stability as described by Park et al. [36]. Fast

wetting is useful for testing the behavior of dry soils under fast wetting events such as heavy

rains during summer. The MWD (Mean Weight Diameter) is the total of the mass fraction of

soil left on each sieve after wetting.

Threshold friction velocity (TFV)

The threshold friction velocity (TFV) was determined using a potable wind tunnel that was

designed following the specifications described by Belnap et al. [39]. The tunnel is open-bot-

tomed, with a 150×150 mm cross section, a 2.4 m length of transparent polycarbonate and a

3:1 contraction section with a honeycomb flow straightener (Fig 2). Wind speed was estimated

by a pitot tube (Ø3 mm) inside the tunnel attached to a MP120 manometer (KIMO, Montpon,

France). Wind tunnels were placed on each experiment plot and the pitot tube was set at 75

mm above the soil surface. Wind speeds were then gradually increased until the threshold

friction velocity of each cyanobacterial crust was reached, after which they were maintained

for 3 min. The threshold friction velocity was defined as the value at which particles or small
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fragments were initially detached and moved forward from the soil surface [40]. Wind velocity

was then recorded when the soil particles were removed from the crust surface.

Cyanobacterial biomass

The biomass of cyanobacteria was determined by measuring the chlorophyll a concentration.

Briefly, 2 g DW of soil were added to 5 mL of ethanol (99.9%) in a 50 mL cap tube, then placed

Fig 2. Wind tunnel test in the field.

https://doi.org/10.1371/journal.pone.0179903.g002

Rapid development of inoculated cyanobacterial crust

PLOS ONE | https://doi.org/10.1371/journal.pone.0179903 June 23, 2017 5 / 20

https://doi.org/10.1371/journal.pone.0179903.g002
https://doi.org/10.1371/journal.pone.0179903


into an 80˚C water bath for 5 min. Next, samples were allowed to cool for 30 min, after which

they were centrifuged at 2500 g for 5 min. The absorbance of the supernatant was subsequently

measured (A665) and the chlorophyll a concentration was estimated using a previously

described equation [41]. All treatments were conducted in triplicate.

Total carbohydrate contents

The soil total carbohydrate contents were determined according to the method described by

Safařı́k and Šantrůčková [42]. Briefly, 5 mg DW of soil aggregates were placed into a test tube

(100×12 mm), after which 1 mL of distilled water and 5% phenol solution were added and vor-

texed. Next, 5 mL of concentrated sulfuric acid were added and the solutions were vortexed

for 10 sec, then incubated at room temperature for 1 h. Blanks were subsequently prepared

with distilled water instead of phenol solution. The tubes were then centrifuged at 3300 g for

10 minutes, after which the absorbance of the supernatant was measured at 485 nm. A linear

regression curve was obtained using glucose (Sigma-Aldrich, St. Louis, MO, USA) as a stan-

dard polysaccharide material, after which the polysaccharide concentration was calculated

using a regression equation. All treatments were conducted in triplicate.

Organic carbon

Soil organic C was measured according to the WLOI (weight loss on ignition) method

described by Wang et al. [43]. Briefly, approximately 3 g of soil were placed in a crucible and

dried at 105˚C for 12 h to determine the DW of the samples, after which they were put in a

muffle furnace (Hy-4500S, YUYU Scientific, Ansan, Korea) and combusted for 12 h at 500˚C.

The samples were then cooled to room temperature in a desiccator and weighed. All treat-

ments were conducted in triplicate.

Microbial biomass carbon

Soil microbial biomass was determined according to the chloroform fumigation and extraction

method described by Hobbie [44]. For non-fumigated samples, 10 g DW of soils were immedi-

ately extracted with 50 mL of 0.5 M K2SO4, then placed on a shaker for 1 h. After shaking,

extracted solutions were filtered through Whatman No. 1 filter paper and stored in the freezer.

For fumigated samples, beakers with 10 g DW of soil were placed into a vacuum desiccator

together with a 50 mL beaker containing boiling chips and 20 mL of chloroform in the middle

of the desiccator. The desiccator was then evacuated until the chloroform boiled, after which it

was vented four times repeatedly. The samples were subsequently incubated in the dark for 3

days at 25˚C. Following incubation, the vacuum was released and excess chloroform removed.

Next, the chloroform fumigated samples were extracted with 50 mL of 0.5 M K2SO4, then

placed on a shaker for 1 h. After shaking, extracted solution was passed through Whatman No.

1 filter paper and stored in the freezer. Total dissolved carbon was determined using a TOC

analyzer (GE Sievers Innovox TOC, Boulder, CO, USA). All treatments were conducted in

triplicate.

Cmic ¼ Ec=Kc

Where, Cmic = microbial biomass carbon,

Ec = fumigated carbon – non-fumigated carbon and

Kc = 0.45
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Soil respiration

Soil CO2 release was measured in October, 2014 and July, 2015 after 4 and 12 months of devel-

opment in the field using a Li-6400-09 Soil Chamber (LI-COR, Lincoln, USA). PVC collars

(10.4 cm in diameter, 12 cm in height, inserted ~10 cm) were installed in the experimental

plots in August of 2014. The soil surfaces were gently moistened with 5 mm of water 1 h before

the measurements, which were conducted from 10:00 am to 10:30 am (GMT +8). For each

measurement, CO2 release was recorded at 4 s intervals over a 40 s period once steady state

conditions were achieved within the chamber. All treatments were conducted in

quadruplicate.

Carbon fixation

Carbon fixation was measured on a clear day using Licor 6400 portable photosynthesis systems

(LI-COR Inc. Lincoln, NE, USA) with a 137 cm2 transparent polycarbonate chamber that fit

over the soil collar. The soil surfaces were gently moistened with 5 mm of water 2 h before the

measurements and soil samples were collected with a cylinder (42×3 mm). Gross photosynthe-

sis was measured in the light (Pg), and respiration (Re) was measured in the dark by placing

opaque foil over the chamber. Net photosynthesis was calculated by subtracting Re from Pg,

which gave the Pn of the cyanobacterial crust. These photosynthetic rates were calculated on a

surface area basis as μmol CO2 m-2 s-1. The Pn was calculated to determine for hourly carbon

fixation (H, mg C m-2) using the following equation.

bHc ¼ Pn � ð0:000012� gC=mmol CO2Þ � 3600s � h� 1 � 1000

Where, H = hourly carbon fixation and

Pn = net photosynthesis

Light response curves for quantum yield of PSII and relative electron

transport rate (rETR)

The light saturation curve was measured by Pulse-Amplitude-Modulation (PAM-2500, Heinz,

Walz, Germany). Soil samples were collected in experiment plots, then moved into the labora-

tory, and stabilized for 1 week. To determine the fluorescence yield, soil samples were moist-

ened with 2 mm water and dark-adapted for at least 20 min before measurement. The PSII

efficiency and relative Electron Transport Rate (rETR) of the soil were estimated under contin-

uous actinic light. A PAM light probe was connected to the cuvette to expose soil to eight light

steps (each 30 s) ranging from 7 to 1391 μmol photons m−2 s−1 PAR. Actinic light was provided

by a red LED (630 nm). The parameters were determined based on the following formulas

developed by Schreiber et al. [45]:

PSII eff iciency ðFPSIIÞ ¼ ðFm
0 � FsÞ=Fm0 ¼ DF=Fm0

Relative electron transport rate ðrETRÞ ¼ FPSII � PFD� 0:5� 0:84

Where, FPSII = effective quantum yield,

Rapid development of inoculated cyanobacterial crust
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Fs = steady-state level fluorescence during actinic illumination,

PFD = irradiance (mol m−2 s−1 PAR),

0.5 = the PSI/PSII allocation factor, and

0.84 = the mean absorbance factor for the plant [46]

All treatments were conducted in triplicate.

Statistical analysis

Data were analyzed using SPSS 18.0 (SPSS, Inc, Chicago, IL, USA) and a p<0.05 was consid-

ered significant for all analyses. Differences in mean weight diameter, total carbohydrate, chlo-

rophyll a, organic carbon, soil respiration, carbon fixation, microbial carbon and threshold

friction velocity values among treatments were analyzed by one-way ANOVA followed by

Duncan’s post hoc tests.

Results

Soil aggregate stability

Cyanobacterial crust was formed by application of cyanobacteria alone or with soil fixing

chemicals together in the field after 4 and 12 months of development (Fig 3). After develop-

ment for 4 months, the crusts formed following inoculation with CY and CST appeared to be

premature, with green-gray surfaces under wet conditions. Under wet conditions, CY and

CST were soft, and water was quickly absorbed (within 2–3 seconds). The surface of soils that

received CY and CST were evenly flat, and sand particles were firmly fixed by cyanobacteria

and TKS7. The developmental states of control soil (Con), CY and CST treated soil were nota-

bly different at 12 months after inoculation. Specifically, almost no cyanobacterial crust was

found in control soil; however, an aggregated soil crustal mass was observed in CY and CST

soil, and the soil crust was more prominently developed in CST soil than CY soil.

The fragment sizes of inoculated crusts were analyzed at 4 and 12 months after inoculation

in the field (Fig 4A and 4B). The CST increased soil aggregate stability as indicated by the per-

centage of coarse fragments (>2 mm) increasing by two times relative to CY after 4 months of

development. Coarse fragments of crusts formed by inoculation with CY and CST comprised

up to 30% of the approximately 20-year-old natural cyanobacterial crust (N-BSC). MWD val-

ues also confirmed that the CST improved soil aggregation (Fig 4C). The MWD value of CST

was 0.33 mm, while the CY was 0.27 mm after 4 months of development. In addition, the

MWD values of CST and CY were 0.31 mm and 0.28 mm, respectively, after 12 months of

development. The MWD value of the CST soil crust increased to more than 75% of that of the

N-BSC over 12 months, while the MWD values of the CY and Con were 68% and 51% of the

N-BSC, respectively (Table 1).

Threshold friction velocity

Wind erodibility of soil was evaluated using a portable wind tunnel. The soil fragments of cya-

nobacterial crust rapidly induced over 12 months were initially detached when the wind speed

reached more than 880 cm s-1 in CST treated soil, and 730 cm s-1 in CY treated soil, while the

control soil was 320 cm s-1 (Fig 5). The threshold friction velocity value of CST was signifi-

cantly higher than that of CY (p<0.05), while it was 88% of that of N-BSC (1000 cm s-1). The

photo images in Fig 5 were taken after the wind tunnel test. The CST plot was clearly more sta-

ble than the CY and Con plots against wind erosion, even at high wind speed (Table 1).

Rapid development of inoculated cyanobacterial crust
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Total carbohydrate contents

The total carbohydrate contents of CST, CY, Con and N-BSC were 799.3, 676.7, 176.8 and

1259 μg g-1, respectively, after 4 months. The total carbohydrate content of CST and CY were

significantly greater than Con (p<0.05). The total carbohydrate content of CST was higher at 4

months than at 12 months after inoculation. This might have been due to heterotrophic organ-

isms entering the crust community, which then consumed the total carbohydrate and hence

reduced the total carbohydrate content (Fig 6A).

Cyanobacterial biomass and soil organic carbon

Inoculation of bare sand in the field with cyanobacterial cells significantly increased cyanobac-

terial biomass compared to Con (based on the chlorophyll a concentration), and certain levels

of cyanobacterial biomass were successfully maintained in the crust 4 and 12 months after

inoculation. There was no significant difference in cyanobacterial biomass between CST and

CY for 12 months although chemicals were included in the CST (p>0.05). The level of cyano-

bacterial biomass in the inoculated crust of CST and CY reached more than 66% (3.1–2.7 μg g-

1) of the N-BSC (4.45 μg g-1) under the treatment conditions, while that of the Con was 10%

(Fig 6B).

Fig 3. Rapidly formed cyanobacterial crust images in the field at 4 and 12 months after inoculation. (Con) control soil; (CY) cyanobacteria treated

soil; (CST) cyanobacteria with SAP and TKS7 treated soil; (N-BSC) natural cyanobacterial crust. The photos of the 4 month old crusts were taken when the

soil was wet. Photos of the 12 month old crusts and the N-BSC were taken when the soil was dry.

https://doi.org/10.1371/journal.pone.0179903.g003
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Fig 4. Fragment size distribution (A, B) and mean weight diameter values (C) of cyanobacterial crusts

after 4 and 12 months of development. (Con) control soil; (CY) cyanobacteria treated soil; (CST)
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Soil organic carbon of the sandy soil in the field increased to some extent in response to

inoculation with cyanobacterial cells. There was no significant difference in soil organic car-

bon between CST (3.2 μg g-1) and CY (3.3 μg g-1) after 4 months of inoculation (p>0.05).

After 12 months it increased to 3.8 μg g-1 in CST soil and was equivalent to 86% of N-BSC

(4.4 μg g-1), while CY soil showed no significant difference in soil organic carbon between 4

and 12 months of development (Fig 6C) (p>0.05).

Soil respiration, carbon fixation and microbial biomass carbon

Inoculation of the sand with cyanobacterial cells also resulted in a significant increase in soil

respiration (CO2 flux), carbon fixation and microbial biomass carbon relative to control soil.

There was no significant difference in soil respiration between CST and CY after 4 and 12

months of induction (p>0.05). The CO2 flux values ranged from 0.63–0.76 μmol m-2 s-1,

which corresponded to 68% N-BSC (1.04 μmol m-2 s-1) (Fig 6D). The hourly carbon fixation

rates in inoculated cyanobacterial crusts were high, with values of 31.0 (CST) and 28.8 mg C

m-2 h-1 (CY) being observed, while the rate in Con was only 8.7 mg C m-2 h-1. The hourly car-

bon fixation rates of CST and CY ranged from 81.4 to 75.6% of the N-BSC (38.1 mg C m-2 h-1)

after 12 months of inoculation (Fig 6E). The microbial biomasses of CST (58.9 μg C g-1) and

CY (61.7 μg C g-1) did not differ significantly after 4 months of development (p>0.05); how-

ever, after 12 months of development the microbial biomass of CST and CY increased to 79.6

and 93.1 μg C g-1, respectively (Fig 6F).

Relationship of MWD to each soil property

The total carbohydrate contents, cyanobacterial biomass, total organic carbon and microbial

biomass were closely related to aggregate stability (Fig 7A–7D). The R2 values of the regression

equation were greater than 0.75 in all factors related to the MWD values. The total carbohy-

drate values (0.94) were the most closely related to the MWD values, followed by the chloro-

phyll a contents (0.86).

cyanobacteria with SAP and TKS7 treated soil; (N-BSC) natural cyanobacterial crust. Values represent the

means of quadruplicate measurements. Values with the same letter are not significantly different according to

the multiple comparison test (95% Duncan’s post hoc tests). Error bars represent the standard errors.

https://doi.org/10.1371/journal.pone.0179903.g004

Table 1. Biological and physical measurements of cyanobacterial crusts after 4 and 12 months of development.

Month MWD (mm) TFV (cm s-1) TC (μg g-1) Chl-a (μg g-1) Corg (g kg-1) CO2 flux (μmol m-2 s-1) CF (mg C m2 h-1) Cmic (μg C g-1)

Con 4 0.19±0.01a - 176.8±3.4a 0.47±0.06a 2.4±0.74a 0.34±0.06a - 15.7±5.3a

12 0.21±0.01a 320±20a 276.4±47.2b 0.47±0.01a 2.8±0.40ab 0.40±0.14a 8.7±0.4a 31.4±11.7ab

CY 4 0.27±0.02b - 676.7±53.9c 3.01±0.19b 3.3±0.35bc 0.63±0.05b - 61.7±7.2bcd

12 0.28±0.01b 730±10b 656.5±34.1c 3.10±0.22b 3.1

±0.33abc

0.76±0.18b 28.8±1.0b 93.1±27.2d

CST 4 0.33±0.01c - 799.3±39.5d 2.78±0.35b 3.2±0.61bc 0.69±0.07b - 58.9±9.9bc

12 0.31±0.01c 880±15c 669.1±68.4c 2.96±0.47b 3.8±0.28cd 0.71±0.06b 31.0±1.8c 79.6±11.5cd

N-BSC ≒20

years

0.37±0.01d 1000±20d 1259.0

±21.0e

4.45±0.40c 4.4±0.57d 1.04±0.14c 38.1±1.0d 137.8±33.2e

MWD, mean weight diameter; TFV, threshold friction velocity; TC, total carbohydrate; Chl-a, chlorophyll a; Corg, organic carbon; CO2 flux, soil respiration;

CF, carbon fixation; Cmic, microbial biomass carbon. Each number is the mean ± standard error. Values with the same letters within the same column are

not significantly different according to the multiple comparison test (95% Duncan’s post hoc tests). The bar (-) indicates no measured data.

https://doi.org/10.1371/journal.pone.0179903.t001
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Light response curves for quantum yield of PSII and relative electron

transport rate (rETR)

Cyanobacterial photosynthetic activity was evident in the inoculated crust of CY and CST, even

after 4 and 12 months of development in the field. The quantum yield efficacy of PSII (ΔF/Fm0)
was significantly higher in the inoculated crusts than control sand. There was no significant dif-

ference in the quantum yield of PSII between CST and CY. Although the mature natural cyano-

bacterial crust (N-BSC) showed the highest efficacy, the quantum yield of PSII of the inoculated

crusts was more than 50% of that of the natural crust after 4 months. However, at 12 months

after development the PSII values of CST and CY were greatly increased to the N-BSC level (Fig

8A and 8B). The relative electron transport rate (rETR) showed a similar response as the quan-

tum yield of PSII. Specifically, the inoculated crusts of CST and CY showed significantly higher

rETR values than the control sand, while there was no significant difference in rETR between

CST and CY. The percentages were more than 50% of the N-BSC during the first 4 months of

development, then increased to 100% within 12 months (Fig 8C and 8D).

Discussion

The inoculated cyanobacterial crusts of CY and CST were successfully developed within 12

months. When visually compared to approximately 20-year-old natural cyanobacterial crust

(N-BSC), the inoculated cyanobacterial crusts appeared to be in the early stage. Specifically,

N-BSC was characterized by a black surface 7 mm thick, which corresponded to algae-domi-

nated crust according to the Chinese classification [38]. However, soil physical properties and

biological activities of the inoculated cyanobacterial crusts were significantly improved com-

pared to those of non-inoculated sand (p<0.05), reaching a comparable level of mature natural

crust within 12 months.

Soil aggregate stability is closely related to EPSs secreted by microorganisms, especially cya-

nobacteria [47]. In this study, our measurements of cyanobacterial biomass and soil aggregate

Fig 5. Threshold friction velocity values of cyanobacterial crusts after 12 months of development. The images were taken after the wind tunnel

test. (Con) control soil; (CY) cyanobacteria treated soil; (CST) cyanobacteria with SAP and TKS7 treated soil; (N-BSC) natural cyanobacterial crust. Values

represent the means of triplicate measurements. Values with the same letter are not significantly different according to the multiple comparison test (95%

Duncan’s post hoc tests). Error bars represent the standard errors.

https://doi.org/10.1371/journal.pone.0179903.g005
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stability (MWD) increased in proportion to total carbohydrate contents in the inoculated and

natural crusts. The CST showed better performance of soil aggregation than CY in the field as

well. In addition to polysaccharides secreted from cyanobacteria, adhesive substances of TKS7

had a significant effect on soil aggregation and positively influenced erodibility during 4

months of development, but also sustained the same level of aggregation during 12 months of

development. These effects were more evident immediately after rainfall events. As shown in

Fig 9, the raindrop imprints of the area subjected to CST appeared to be flat, but the CY and

especially Con were uneven following impact by heavy raindrops. Barger et al. [48] reported

that raindrop impact is the most prominent soil erosion factor. Moreover, organic matter or

nutrient loss is higher in cyanobacterial crust in the early stage of formation than in relatively

well developed crust owing to weak soil aggregate stability. The results of the present study

indicate that raindrop impact caused breakdown and dispersal of soil aggregates on the soil

surface, while soil fixing chemicals effectively reduced soil erosion from the inoculated crusts

in the early stage of development by improving soil aggregate stability and surface hardness.

Furthermore, CST and CY were strong enough to resist erosion by both water and wind. In

our study area, the annual number of days with wind speeds higher than 1730 cm s-1 was 11.

Fig 6. Total carbohydrate (A), chlorophyll a (B), organic carbon (C), soil respiration (D), carbon

fixation (E) and microbial biomass carbon (F) of cyanobacterial crusts after 4 and 12 months of

development. (Con) control soil; (CY) cyanobacteria treated soil; (CST) cyanobacteria with SAP and TKS7

treated soil; (N-BSC) natural cyanobacterial crust. Values represent the means of triplicate measurements.

Values with the same letter are not significantly different according to the multiple comparison test (95%

Duncan’s post hoc tests). Error bars represent the standard errors.

https://doi.org/10.1371/journal.pone.0179903.g006
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Moreover, the total period with wind speeds higher than 500 cm s-1 was 49 days in one year

[12]. For these reasons, wind erosion during the early stage of cyanobacterial crust formation

with a threshold friction velocity lower than 500 cm s-1, such as occurred in the Con soil, is

inevitable. Conversely, CST can be protected or less damaged by gales or more continuous

wind erosion under natural environmental conditions. Therefore, application of soil fixing

chemicals with cyanobacteria can induce more stable cyanobacterial crust in the early stages of

formation, and the resulting crust can accelerate successional development of BSC formation

in the field.

Biological activities of the inoculated crust should be considered for further evaluation of

crust stability and sustainability. Abundant cyanobacterial biomass enhances fixing of soil par-

ticles and strengthens soil structure [49–51]. Organic matter is also an important factor in soil

aggregation, and soil organic carbon has been shown to be positively correlated with MWD

and biomass. Moreover, soil organic carbon is important for nutrient cycling, retaining soil

water [52], binding mineral particles [53], reducing aggregate wettability and structural stabili-

zation of soil [54]. Soil respiration and microbial CO2 production rate are closely related to the

size of microbial biomass pools and soil organic carbon [55]. To evaluate the biological proper-

ties listed above, cyanobacterial biomass, microbial biomass carbon, soil respiration, carbon

Fig 7. Relationship between MWD values and each soil content factor (total carbohydrate, chlorophyll a, organic carbon).

https://doi.org/10.1371/journal.pone.0179903.g007
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fixation and fluorescence yield were measured in the inoculated crust relative to mature natu-

ral crust. The CST or CY significantly enhanced the biological activities compared with bare

sand within a few months (p<0.05). Furthermore, during 12 months of development, biologi-

cal activities of inoculated crust, especially in the CST, remained stable or increased. The via-

bility of cyanobacterial cells in the inoculated crust was confirmed by photosynthetic functions

such as quantum yield of PSII and relative electron transport rate. The biological activities of

the inoculated crusts were estimated to be almost 100% of those of N-BSC within 12 months,

while they were 50% after 4 months of development. The carbon fixation of CST and CY

reached a similar level as that of 20-year-old N-BSC within 12 months. These findings indicate

that rapidly matured crust can play a critical role in accumulating organic carbon and promote

Fig 8. Quantum yield efficacy of PSII (ΔF/Fm0) (A, B) and relative electron transport rate (rETR) (C, D) of cyanobacterial crust after 4 and 12

months of development. (Con) control soil; (CY) cyanobacteria treated soil; (CST) cyanobacteria with SAP and TKS7 treated soil; (N-BSC) natural

cyanobacterial crust. Values represent the means of triplicate measurements. Error bars represent the standard errors.

https://doi.org/10.1371/journal.pone.0179903.g008
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the restoration of degraded soil [56]. Despite the use of TKS7, there were no significant differ-

ences among biological activities of CST and CY (p>0.05), but the physical properties of CST

were stronger than those of CY. Park et al. [36] investigated whether combined application of

Fig 9. Soil surface of the inoculated crusts immediately after heavy rain in the field. (Con) control soil;

(CY) cyanobacteria treated soil; (CST) cyanobacteria with SAP and TKS7 treated soil.

https://doi.org/10.1371/journal.pone.0179903.g009
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TKS7 with cyanobacteria can increase the physical strength of soil relative to the compres-

sional force of a small animal (�4.9 MPa) by using 0.5 mg dry weight cm-2 of TKS7 and 0.5

mg dry weight cm-2 of cyanobacterial cells, while singular treatment of TKS7 and cyanobacter-

ial cells were only 1.4 MPa and 2.3 MPa respectively. Furthermore, in addition to having water

holding capacity, SAP contains nutrients. These characteristics of SAP help cyanobacterial

growth under dry conditions by maintaining high moisture levels [35, 57]. TKS7 is made with

tackifiers and polysaccharides derived from plant seeds. Tackifiers include toxic components

that may negatively affect cyanobacterial growth [58, 59]. However, no growth inhibition was

found when using with SAP [35, 36]. These results suggest that TKS7 and SAP play comple-

mentary roles that improve aggregate stability, physical strength and cyanobacterial cell

growth [36]. TKS7 must have made a great contribution to soil aggregate stability in the initial

step of combined application; however, large filamentous cyanobacteria and its secreted extra

cellular polysaccharides will fix soil particles as time goes while TKS7 is degrading. Therefore,

a greater aggregate stability value of later stage inoculated cyanobacterial crusts is meaningful

and can be used as an index to evaluate settling of inoculated cyanobacteria and their biological

role in soil. These findings ruled out the harmful effects of soil fixing chemicals on cyanobac-

terial cells and the indigenous microbial community while maintaining structural stabilities.

The straw checkerboard system is a key technique for stabilizing sand particles, accumulat-

ing organic matter and nutrients. This system has been applied in large arid areas in China

and other countries [60, 61]. However, the straw checkerboard system has little worries in

automation of border installation at this moment. Accordingly, this technique is only feasible

in countries with low labor costs. Under natural conditions, BSCs develop very slowly without

any further treatments. The novel technique of combined application of cyanobacteria with

SAP and TKS7 has potential for rapid development of cyanobacterial crust in the field within

12 months. When compared to natural BSCs, cyanobacterial crust treated with SAP and TKS7

can reduce the time required for development and the relative cost for recovery. Furthermore,

acceleration of ecological succession or recovery will provide great advantages to solve the

global desertification problem.

Conclusions

Naturally formed cyanobacterial crusts in the early stage of development are vulnerable to

many destructive factors including rainfall, wind and wildlife. These factors can cause delay of

BSC development in the field. However, the novel technique of combined application of cya-

nobacteria with soil fixing chemicals presented herein can be applied for inoculated cyanobac-

terial crust formation while maintaining physical properties and biological activities within a

few years. Long term monitoring of these inoculated cyanobacterial crusts is needed to con-

firm the feasibility for timely combating against desertification.
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