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Abstract: A copper sulfide nanoflakes-decorated carbon nanofragments-modified glassy carbon
electrode (CuS-CNF/GCE) was fabricated for the electrocatalytic differentiation and determination
of hydroquinone (HQ) and catechol (CC). The physicochemical properties of the CuS-CNF were
characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction,
X-ray photoelectron spectroscopy and Raman spectroscopy. The electrocatalytic determination of
HQ and CC over the CuS-CNF/GCE was evaluated by cyclic voltammetry and differential pulse
voltammetry. An excellent detection limit and sensitivity of the CuS-CNF/GCE are obtained (0.293 µM
and 0.259 µM) with a sensitivity of 184 nA µM−1 cm−2 and 208 nA µM−1 cm−2 (S/N=3) for HQ and
CC, respectively. In addition, the CuS-CNF/GCE shows a selective identification of HQ and CC over
potential interfering metal ions (Zn2+, Na+, K+, NO3−, SO4

2−, Cl−) and organic compounds (ascorbic
acid, glucose), and a satisfactory recovery is also obtained in the spiked water samples. These results
suggest that the CuS-CNF/GCE can be used as an efficient electrochemical sensor for the simultaneous
determination of co-existing environmental pollutants such as HQ and CC in water environments
with high selectivity and acceptable reproducibility.

Keywords: carbon nanofragments; copper sulfide; catechol; hydroquinone; electrochemical sensor;
simultaneous determination

1. Introduction

Dihydroxybenzene isomers such as hydroquinone (HQ) and catechol (CC) have been extensively
used in the cosmetics, dye, pharmaceutical, plastics and pesticide manufacturing industries [1,2].
During industrial process, HQ and CC are generally released into the aqueous environment, which can
cause serious environmental impacts due to their high genotoxicity and carcinogenicity, even at low
concentrations. Thus, the European Union and the United States Environmental Protection Agency
have categorized these isomers as harmful pollutants [3,4]. The rapid and accurate detection of these
isomers in the aqueous environment is a prerequisite for their effective management and treatment, but
in practice, it is difficult to distinguish HQ and CC in environmental samples because of their similar
chemical structure and properties [5]. So far, although several methods including chromatography [6],
electrochemical sensors [7,8], spectrophotometry [9] and fluorescence [10] have been developed for the
determination of dihydroxybenzene isomers, simple, cost-effective, selective and sensitive techniques
are still needed.
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As a promising method, electrochemical sensors are highly attractive for the simultaneous
determination of dihydroxybenzene isomers because of their advantages like inexpensive
instrumentation, rapid evaluation and high sensitivity [11,12]. However, the overlapping oxidation
and reduction peaks of HQ and CC on bare electrodes hinder their simultaneous determination [13].
Therefore, the exploration of functional materials-modified electrodes to extend the dynamic range
of analytical determinations still remains a major challenge for the electrochemical determination
of HQ and CC. So far, various carbon-based nanomaterials such as carbon nanocages (CNCs) [14],
carbon nanofibers [15], carbon nanotubes (CNTs) [16], carbon nanofragments (CNFs) [17], carbon
dots (CDs) [18], graphene-like carbon nanosheets (GCN) [19] and activated graphene oxide [20] have
been developed for the electrochemical detection of HQ and CC. Thereinto, CNFs reveal unique
nanostructured fragments with high surface area, abundant functional groups, excellent structural
stability and high electrical conductivity and electrocatalytic oxidation efficiency [21]. Interestingly,
the CNFs derived from spent graphite exhibit various applications after converting into another
form [17,22]. Our previous work confirmed the efficacy, selectivity and electrocatalytic performance of
metal-based nanomaterials-anchored CNFs for the simultaneous determination of HQ and CC [22].
Also, the study indicated that the preparation of the metal-based nanomaterials-anchored CNF may be
an effective method to improve the performance of the modified electrode.

It is noted that as a binary functional material, copper sulfides usually exist in the form of
CuS (covellite) and Cu2S (chalcocite) [23]. In particular, CuS nanoparticles are widely used in solar
cells, sensors and batteries due to their non-linear optical properties, high conductivity, excellent
solar radiation absorbing properties and environmental compatibility [24,25]. Interestingly, a CuS
nanotubes-modified electrode showed an excellent electrochemical sensing of glucose in an enzyme-free
environment [26]. Inspired by the good electrochemical sensing properties of CuS, it is expected that a
CuS-decorated CNF may be an effective electrode modifier. In this work, CuS nanoflakes-decorated
CNFs (CuS-CNF) were synthesized by a controllable refluxing method, and then the CuS-CNF used
to modify glassy carbon electrode (CuS-CNF/GCE) for simultaneous determination of CC and HQ.
The fabricated CuS-CNF/GCE showed high sensitivity, selectivity and reliability for the simultaneous
determination of CC and HQ in environmental water samples.

2. Experimental

2.1. Chemicals

HQ, CC and N,N-dimethylformamide (DMF) were purchased from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). The Li-ion batteries used were obtained from Guangzhou Tinci
Materials Technology Co., Ltd. (Guangdong, China). Polyvinylpyrrolidone (PVP), ethylene glycol,
copper chloride dehydrate (CuCl2.2H2O), thiourea (CH4N2S), zinc sulfate monohydrate (ZnSO4.H2O),
potassium chloride (KCl), sodium nitrate (NaNO3), ascorbic acid (C6H8O6) and D-glucose (C6H12O6)
were obtained from Aladdin Chemicals (Shanghai, China). All solutions were prepared using ultrapure
water (18.2 MΩ·cm) from a Milli-Q system (Millipore, Bedford, MA, USA). Phosphate buffer solution
(PBS; 0.1 mol L−1) with different pH values (3–8) were prepared by using NaH2PO4 and Na2HPO4.

2.2. Preparation of the CuS-CNF/GCE

The CNF was prepared from spent graphite which recovered from cycled Li-ion batteries according
to the protocol described in our previous work [27]. For the synthesis of CuS-CNF, PVP (1 g) was
dissolved in ultrapure water (40 mL), followed by addition to a solution of CuCl2 (2 mmol) and
thiourea (4 mmol) dissolved in ethylene glycol (30 mL). Further, the prepared solution was mixed with
well dispersed CNF (20 mg of CNF in 50 mL of DMF) and refluxed at 160 ◦C for 2 h. The obtained
precipitate was repeatedly washed with ultrapure water and ethanol through centrifugation (8000 rpm;
5 min). The collected pellet was dried in a vacuum oven at 60 ◦C for 12 h. Then, 2 mg of CuS-CNF was
dispersed in 1 mL of ultrapure water and used for electrode modification. Before modifying the GCE
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with CuS-CNF, the GCE was polished with 0.3 and 0.03 µM alumina slurry and washed with ultrapure
water and ethanol, and finally dried by N2 gas. Then, 10 µL of CuS-CNF suspension was dropped on
the GCE surface and air-dried under ambient conditions. Similarly, CNF modified electrode was also
prepared using the same procedure.

2.3. Apparatus and Characterization

The electrochemical detection of HQ and CC were tested by cyclic voltammetry (CV) and
differential pulse voltammetry (DPV) using CHI660B electrochemical workstation (Chenhua, China).
In the three-electrode system, Ag/AgCl (3 mol L−1 KCl), Pt foil and modified GC were used as a
reference, counter and working electrodes, respectively. DPV was measured in the potential window
of −0.2 – 0.6 V, with a pulse width of 0.25 s, an increment of 0.005 V, a pulse period of 0.5 s and a voltage
amplitude of 0.05 V. The surface morphology of the CNF and CuS-CNF were analyzed by scanning
electron microscopy (SEM, ZEISS Ultra-55, Carl Zeiss, Oberkochen, Germany) and transmission
electron microscopy (TEM, JEM-2100, JEOL Ltd., Tokyo, Japan). The structural and chemical states
of the materials were analyzed using X-ray diffraction pattern (XRD, Bruker, Karlsruhe, Germany)
and X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Scientific, Waltham, MA, USA).
The pH was measured using a PHSJ-3F pH instrument (Leici, Shanghai, China). Raman measurements
were carried out in Alpha 300R instrument (WITec GmbH, Ulm, Germany) at a wavelength of 532 nm.
The electrochemical impedance was measured on a CHI660B system (CH Instruments, Austin, TX,
USA) at the frequency range of 0.1 to 100 kHz with an amplitude of 10 mV.

3. Results and Discussion

3.1. Characterization of the CuS-CNF Nanomaterials

The surface morphology and structural characteristics of the as-prepared CNF and CuS-CNF
were analyzed through SEM, XRD and Raman measurements. A wrinkled thin sheet-like structure can
be seen in the SEM images of the CNF (Figure 1a,b).
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Figure 1. SEM images of (a,b) CNF (inset: higher magnified image) and (c,d) CuS-CNF; (e) XRD pattern
CuS-CNF; and (f) Raman Spectra of bare CNF and CuS-CNF.
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The SEM images of CuS-CNF shown in Figure 1c,d indicate the uniform and homogenous growth
of CuS nanoflakes on CNF, and the flakes are self-assembled to form an interconnected 3D-flower like
structure. In addition, XRD was also measured to find out the structural information of CuS-CNF,
as shown in Figure 1e. Sharp diffraction peaks at 27.3, 29.5, 31.9, 47.8, 52.3 and 59.1 corresponding to the
(100), (102), (103), (110), (108) and (116) planes of CuS with hexagonal structure (covellite, space group:
P63/mmc(194)) (JCPDS No. 006-0464) can be seen [28]. There was no clear peak in the structure
corresponding to the CNF, thus Raman measurements were carried out to confirm the presence of the
CNF and to study the structural disorder in the CNF. As shown in Figure 1f, the Raman spectrum of
the CNF clearly indicates two distinct peaks at 1358.7 and 1596.5 cm−1 corresponding to the structural
deformation of the in-plane sp2 domain (D peak) and in-plane vibrational mode (G peak). Besides
these peaks, an extra peak appeared at 2700–3000 cm−1 corresponding to the 2D peak. A higher ID/IG

value specifies the larger number of structural defects in the graphitic plane in the CNF. In CuS-CNF,
an additional peak appeared at 474 cm−1, indicating the presence of CuS. For clear visualization, the
TEM analysis of CuS-CNF and its corresponding elemental mapping were recorded.

Figure 2a,b demonstrate the homogeneous distribution of CuS on layered CNF sheets. In addition,
the wrinkled nature of CNF sheets indicates the very small sheet thickness. Moreover, the elemental
analysis also confirmed the uniform distribution of the Cu, S, and C elements in the CNF surface.
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The purity and chemical oxidation state were measured by XPS analysis, as shown in Figure 3 and
Figure S1. The XPS survey spectrum of CuS-CNF indicates the presence of the Cu, S and O elements in
the prepared sample (Figure S1). From the high-resolution Cu 2p spectrum (Figure 3a), the two broad
peaks observed at 932 and 951.9 eV corresponds to the spin-orbit of Cu 2p3/2 and Cu 2p1/2, respectively.
Furthermore, the peak separation of two spin-orbit was ~19.9 eV, which confirms the existence of Cu1+

ions in CuS and is comparable to the reported value [29,30]. Further, there is no satellite peak clearly
indicating the Cu1+ oxidation state [31]. In a similar way, the high-resolution S 2p peak also has a two
spin-orbit splitting of S 2p3/2 and S 2p1/2 at 162.1 and 163.4 eV with a peak separation of 2.3 eV clearly
showing the presence of S2− in the composite.
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N and graphitic-N, respectively [32,33]. Further, the N doping enhances the electrochemical kinetics 
of the composite and N doping may occur during the refluxing of thiourea.  
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Figure 3. XPS spectra of CuS-CNF: (a) high resolution Cu 2p spectrum, (b) high resolution S 2p
spectrum, (c) high resolution C 1s spectrum, and (d) high resolution N 1s spectrum.

Moreover, an additional peak appeared at 168.9 eV corresponds to satellite peak. In high-resolution
C 1s spectrum (Figure 3c), three peaks appeared at 284.3, 284.9 and 287.9 eV were represents the
sp3/sp2 carbon, C-N and C-O, respectively. Furthermore, N 1s core-level spectrum (Figure 3d) consists
of three peaks at 399.1, 399.6 and 400.6 eV corresponds to pyridine-N, pyrrolic-N and graphitic-N,
respectively [32,33]. Further, the N doping enhances the electrochemical kinetics of the composite and
N doping may occur during the refluxing of thiourea.

3.2. Electrochemical Performances of the CuS-CNF/GCE

The electrochemical performance of the modified electrodes was analyzed by CV and
electrochemical impedance (EIS) measurement in the presences of 1 mM [Fe(CN)6]3−/4− in 0.1 M KCl
solution at a scan rate of 50 mV s−1 (Figure 4).
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Figure 4a shows the CV curve of different electrodes. Interestingly, a higher redox current
(Ipa = 80 µA) was observed for CuS-CNF/GCE compared to bare GCE (Ipa = 37.4 µA) and CNF/GCE
(Ipa = 46.7 µA), which may be due to the excellent catalytic properties of CuS and the conductive
path provided by CNF. The charge transfer characteristics of the different electrodes were analyzed
through EIS. As shown in Figure 4b, the result clearly indicates the lower charge transfer (RCT: 103 Ω)
characteristics of the CuS-CNF/GCE compared to the other two electrodes. It is obvious that the
fabricated CuS-CNF/GCE has good interfacial electron transfer properties and is very consistent with
the CV results.

Furthermore, the electrochemical detection of the CuS-CNF/GCE was carried out in 0.1 M PBS at
different pH values in the presence of HQ and CC (50 µM), and the results are shown in Figure 5a and
Figure S2. The peak current has increased with increasing the pH from 3 to 5, and further, the increase
of pH reduces the peak current (Figure S2). At the same time, a negative peak shift was observed
with increasing pH (Figure 5b). At higher pH (>5), the peak current was decreased due to the higher
electrostatic repulsion between the modified electrode and analytes. Hereafter, all the electrochemical
measurements were carried out at pH 5. The regression equation of HQ and CC was calculated from
Figure 5b, which was Ep(V) = −0.0531 pH + 0.464 (R = 0.9954) and Ep(V) = −0.0522 pH + 0.5646
(R = 0.9989) for HQ and CC, respectively. The slope of the regression equation represents the anode
peak shift for each pH, and these values are in good agreement with the theoretical value (58.5 mV/pH)
calculated according to the Nernst equation:

(
dEp/dpH

)
= −2.303mRT/nF. This result concludes the

overall electrochemical redox reaction was achieved based on two-electron and two-proton transfer
process [34,35].
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Figure 5. (a) DPV curves, (b) potential vs pH of CuS-CNF/GCE in 0.1 M PBS containing 50 µM of HQ
and CC at different pH value. (c) CV curves of different electrodes at 50 mV s−1, and (d) CV curves of
CuS-CNF/GCE in 0.1M PBS (pH = 5) containing a 50 µM of HQ and CC at different scan rates (inset:
redox peak potential vs. square root of scan rate).
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For comparison, CV curves were measured for all electrodes in 0.1 M PBS with 50 µM of HQ and
CC at a scan rate of 50 mV s−1 (Figure 5c). The result shows a pair of redox peaks in the CV curves
for all the electrodes, indicates the detection of HQ and CC in the electrolyte. However, a higher
peak current was measured for CuS-CNF/GCE indicates the greater electrochemical kinetics of the
electrode from CuS. Moreover, a small peak separation between the anodic and cathodic peaks of
HQ and CC indicates the high electrochemical reversibility of the electrode, which is mainly due
to the higher electrocatalytic property of CuS. The higher redox current and low over-potential of
the CuS-CNF makes this material a good platform for the electrochemical detection of HQ and CC.
The CuS-CNF/GCE was tested at different scan rates in 0.1 M PBS with 50 µM of HQ and CC at a
scan rate of 50 mV s−1 (Figure 5d). The result shows that the anodic and cathodic peak currents of
both HQ and CC were linearly increased with the increasing scan rates (Figure 5d inset). Moreover,
the anodic and cathodic peaks shifted positive and negative sides, respectively, for increased the
scan rates. The regression equation of HQ and CC indicates the electrochemical reaction followed a
diffusion-controlled reaction.

3.3. Electrochemical Detection of HQ and CC

To check the selectivity of the modified electrode, we measured at one compound as a constant and
varying the concentration of another compound through DPV measurement in the presence of 0.1 M
PBS at pH 5. Figure 6a shows the DPV measurement at a constant CC (50 µM) with various amount
of HQ from 1 to 3500 µM. While increasing the HQ concentration, the corresponding anodic current
gradually increased and anodic peak current of CC maintained a constant value. Similarly, at increasing
the CC concentration from 1 to 3000 µM, HQ maintained a constant current (Figure 6c). The regression
equation of HQ was determined by linear fitting the anodic peak current vs HQ concentration plot.
The resultant graph was plotted as shown in Figure 6b.
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Two linear regions were found in the results; i.e, linear range: 1–850 and 850–3450 µM,
which corresponds to the regression equations of IHQ1 = 31.79 + 0.0552 CHQ (R = 0.998) and
IHQ2 = 64.63 + 0.014 CHQ (R = 0.995), respectively. Similarly, the linear region for different CC was
calculated from Figure 6d, and the resultant linear region for CC was 1–900 µM; 900-3000 µM with
corresponding regression equations of ICC1 = 8.846 + 0.0139 CCC (R = 0.998); ICC2 = 16.28 + 0.0066 CCC

(R = 0.998), respectively.
The dihydroxybenzene isomers HQ and CC have similar chemical structures with higher current

sensitivity, thus it is important to measure simultaneously. Figure 7a shows the simultaneous detection
of HQ and CC in 0.1 M PBS from 1 to 3000 µM. There was a clear peak appeared for both HQ
and CC component separately from low concentration to higher concentration, indicates the higher
selectivity of the CuS-CNF/GCE. Further, the regression equation derived from the linear fitting
of the peak current vs. concentration plot is shown in Figure 7b,c. The linear range for HQ and
CC at simultaneous measurement were 3–200 µM and 7–150 µM and the corresponding regression
equation was IHQ = 4.15 + 0.0129 CHQ (R = 0.999); ICC = 3.187 + 0.0146 CCC (R = 0.999), respectively.
The calculated LOD of HQ and CC were 0.293 µM and 0.259 µM with a sensitivity of 184 nA µM−1 cm−2

and 208 nAµM−1 cm−2 (S/N=3), respectively. These results confirm that CuS-CNF is a good candidature
for the simultaneous detection of co-existing dihydroxybenzene isomers such as HQ and CC with
higher sensitivity and selectively.
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The performances of the CuS-CNF/GCE were better and competitive with previously reported
values of metal-doped carbon materials modified GCE (Table 1). This high efficiency may due to the
excellent physiochemical properties of the CuS present in CuS-CNF/GCE composite, which delivered a
high sensing performance during electrochemical reaction [24,25]. Although the performance of the
electrode material fabricated in this study is no better than that of a few other metal-based sensors,
here we have successfully recycled waste battery materials for a useful waste-to-sensor” application.
Notably, the CuS used in this study is also environmentally compatible [25]. Further, the performance
of the electrode will be improved by controlled extraction of spent graphite from dead batteries.

Table 1. Performance comparison of CuS-CNF/GCE with previously reported metal doped carbon
materials modified GCE.

Metal Doped Carbon
Materials Modified GCE

Linear range (µM) LOD (µM)
References

HQ CC HQ CC

Boron doped graphene 5–100 5–200 0.3 0.2 [36]
Fe/PC 0.1–120 1–120 0.014 0.033 [37]

NiO/CNT 10–500 10–400 2.5 2.5 [16]
NiO/MWCNT 7.4–56 7.4–56 0.039 0.015 [38]

GO-MnO2 0.01–0.7 0.03–1 0.007 0.01 [39]
CuO-CNF 3–80 0–150 1 2 [22]

Bi-CNF - 3–20 - 0.2 [40]
CuS-CNF 3-200 7–150 0.293 0.259 This work

PC: porous carbon; CNT: carbon nanotube; GO: graphene oxide; CNF: carbon nanofragment; CuO: copper oxide;
Bi: bismuth oxide.
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3.4. Interferences and Application of CuS-CNF/GCE

The interference studies were carried out in the presence of various metal ions (Zn2+, Na+, K+,
NO3−, SO4

2−, Cl−) and organic compounds (ascorbic acid, glucose) in the electrolyte (Figure S3).
No significant changes in the detection of HQ and CC in this environment indicate the higher selectivity
of the modified electrode towards HQ and CC. The repeatability of the CuS-CNF/GCE was tested
under 25 repeated CV measurements in the presence of 50 µM HQ and CC in 0.1 M PBS. The standard
deviations of the peak currents of HQ and CC were 3.1% and 3.5%, respectively, indicates excellent
stability of CuS-CNF/GCE. Furthermore, in order to check the reproducibility of the proposed sensor,
the experiment was performed with different CuS-CNF/GCE (5 nos.) at a similar condition. The result
clearly shows only 2.5 and 3.2% deviation in the peak current for HQ and CC, respectively, confirms
the higher reproducibility of the modified electrodes.

The electrochemical sensing ability of CuS-CNF/GCE for real samples was tested in tap water.
Since the concentrations of HQ and CC were very low in the tap water, no peak was observed. In order
to detect HQ and CC in a real sample, we added different concentrations of HQ and CC to the tap
water by the standard addition method and resultant recoveries of HQ and CC were 99–102% and
101–103%, respectively (Table 2). These results show the potential for practical application of CuS-CNF
modified electrode.

Table 2. Detection of HQ and CC in tape water using CuS-CNF/GCE.

S. No.
Add (µM) Found (µM) Recovery (%)

HQ CC HQ CC HQ CC

1 50 50 49.7 51.7 99.4 103.4
2 100 100 103.8 101.5 103.8 101.5
3 150 150 153.1 152 102.1 101.3

4. Conclusions

In this work, we have successfully prepared CuS nanoflakes-anchored CNF by a controllable
refluxing method and then used it to modify a GCE to detect HQ and CC. The results demonstrate
that the electrochemical sensor properties of CNF derived from spend graphite (dead batteries) have
been successfully improved by the combination of environmentally suitable CuS for simultaneous
detection of co-existing pollutants with similar structures. In this CuS-CNF complex, novel and unique
3D-flower-like CuS nanoflakes provide higher electroactive sites for oxidizing HQ and CC; further, CNF
provides a good conduction path for electrons during electrochemical reactions. The CuS-CNF-modified
electrode showed higher selectivity, wide linear range, low LOD and excellent stability for HQ and
CC detection. The proposed CuS-CNF/GCE is relatively simple to fabricate and has high reliability,
and can simultaneously detect co-existing environmental pollutants HQ and CC. Furthermore, this
novel “waste-to-sensor” concept may stimulate more interest in CNF for various electrochemical
sensor applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/10/2289/s1,
Figure S1: XPS survey spectrum of CuS nanoflakes anchored CNF. Figure S2: a) CV curves and b) Current vs pH
(DPV curve) of CuS-CNF/GCE in 0.1 M PBS containing 50 µM of HQ and CC at different pH value. Figure S3:
Interference study of CuS-CNF/GCE in 0.1 M PBS containing various metal ions (Zn2+, Na+, K+, NO3−, SO4

2−,
Cl−) and organic compounds (ascorbic acid, glucose).
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